1,833 research outputs found

    PadChest: A large chest x-ray image dataset with multi-label annotated reports

    Get PDF
    We present a labeled large-scale, high resolution chest x-ray dataset for the automated exploration of medical images along with their associated reports. This dataset includes more than 160,000 images obtained from 67,000 patients that were interpreted and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, covering six different position views and additional information on image acquisition and patient demography. The reports were labeled with 174 different radiographic findings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical taxonomy and mapped onto standard Unified Medical Language System (UMLS) terminology. Of these reports, 27% were manually annotated by trained physicians and the remaining set was labeled using a supervised method based on a recurrent neural network with attention mechanisms. The labels generated were then validated in an independent test set achieving a 0.93 Micro-F1 score. To the best of our knowledge, this is one of the largest public chest x-ray database suitable for training supervised models concerning radiographs, and the first to contain radiographic reports in Spanish. The PadChest dataset can be downloaded from http://bimcv.cipf.es/bimcv-projects/padchest/

    Semiautomatic Detection of Scoliotic Rib Borders From Posteroanterior Chest Radiographs

    Get PDF
    3-D assessment of scoliotic deformities relies on an accurate 3-D reconstruction of bone structures from biplanar X-rays, which requires a precise detection and matching of anatomical structures in both views. In this paper, we propose a novel semiautomated technique for detecting complete scoliotic rib borders from PA-0° and PA-20° chest radiographs, by using an edge-following approach with multiple-path branching and oriented filtering. Edge-following processes are initiated from user starting points along upper and lower rib edges and the final rib border is obtained by finding the most parallel pair among detected edges. The method is based on a perceptual analysis leading to the assumption that no matter how bent a scoliotic rib is, it will always present relatively parallel upper and lower edges. The proposed method was tested on 44 chest radiographs of scoliotic patients and was validated by comparing pixels from all detected rib borders against their reference locations taken from the associated manually delineated rib borders. The overall 2-D detection accuracy was 2.64 ± 1.21 pixels. Comparing this accuracy level to reported results in the literature shows that the proposed method is very well suited for precisely detecting borders of scoliotic ribs from PA-0° and PA-20° chest radiographs.CIHR / IRS

    Computer-aided diagnosis in chest radiography: a survey

    Full text link

    Implementation and evaluation of a bony structure suppression software tool for chest X-ray imaging

    Get PDF
    Includes abstract.Includes bibliographical references.This project proposed to implement a bony structure suppression tool and analyse its effects on a texture-based classification algorithm in order to assist in the analysis of chest X-ray images. The diagnosis of pulmonary tuberculosis (TB) often includes the evaluation of chest X-ray images, and the reliability of image interpretation depends upon the experience of the radiologist. Computer-aided diagnosis (CAD) may be used to increase the accuracy of diagnosis. Overlapping structures in chest X-ray images hinder the ability of lung texture analysis for CAD to detect abnormalities. This dissertation examines whether the performance of texturebased CAD tools may be improved by the suppression of bony structures, particularly of the ribs, in the chest region
    corecore