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Abstract— 3D assessment of scoliotic deformities relies on an 

accurate 3D reconstruction of bone structures from biplanar X-

rays, which requires a precise detection and matching of 

anatomical structures in both views. In this paper, we propose a 

novel semi-automated technique for detecting complete scoliotic 

rib borders from PA-0º and PA-20º chest radiographs, by using 

an edge-following approach with multiple-path branching and 

oriented filtering. Edge-following processes are initiated from 

user starting points along upper and lower rib edges and the final 

rib border is obtained by finding the most parallel pair among 

detected edges. The method is based on a perceptual analysis 

leading to the assumption that no matter how bent a scoliotic rib 

is, it will always present relatively parallel upper and lower 

edges. The proposed method was tested on 44 chest radiographs 

of scoliotic patients and was validated by comparing pixels from 

all detected rib borders against their reference locations taken 

from the associated manually delineated rib borders. The overall 

2D detection accuracy was 2.64  1.21 pixels. Comparing this 

accuracy level to reported results in the literature shows that the 

proposed method is very well suited for precisely detecting 

borders of scoliotic ribs from PA-0º and PA-20º chest 

radiographs. 

 
Index Terms—Scoliosis, chest radiographs, rib detection, edge 

following, oriented filtering, perceptual parallelism 

I. INTRODUCTION 

tereoradiography consists in reconstructing 3D anatomical 

structures using two planar X-ray views taken from 

different angles. Prior to 3D reconstruction, relevant structures 

in both planar radiographic views need to be detected and 

matched. The present paper focuses strictly on this crucial 2D 

detection step, applied to rib detection in chest radiographs. 

Currently, at the Research Center of Sainte-Justine 

University Hospital Center (UHC) in Montreal, we utilize a 

completely manual rib detection technique which requires a 

technician to place eleven markers on every rib midline in two 
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postero-anterior X-ray images, namely, the PA-0º and PA-20º 

views, which are oriented toward the patient at respectively 0º 

and 20º from the horizontal. This manual detection step is very 

time-consuming and currently limits the associated clinical 

applications. Indeed, a radiology technician takes about two 

hours to place all the markers in both radiographs [1]. Another 

limitation is that the current method is only concerned with rib 

midlines, leading to a wireframe 3D model in which 

information from actual rib borders is discarded. Finally, the 

3D geometry of the ribs is completely operator dependent, 

which prevents the extraction of clinical indices from the 3D 

model of the rib cage for 3D assessment of scoliotic 

deformities. However, scoliosis involves a rib hump mainly 

due to a 3D axial rotation of the ribs, which is visible on the 

back of the trunk and is considered as the main concern for the 

patient. Thus, it is of paramount importance to improve the 

accuracy of the 3D reconstruction of the rib cage to be able to 

take into account the rib hump in the clinical assessment of 

scoliosis. A prerequisite task for an accurate 3D reconstruction 

is automatic matching of the anatomical structures identified 

in a pair of views. Thus, the detection of rib borders, instead of 

rib midlines, will lead to an automatic matching of high level 

primitives describing each rib as a whole instead of a set of 

markers manually identified by an operator, hence providing a 

more accurate 3D reconstruction of the rib cage. 

Rib detection from PA chest radiographs has been 

investigated for the past three decades. However, most of the 

proposed solutions apply only to the dorsal portions of the ribs 

and are strictly concerned with PA-0º chest radiographs. Also, 

some of them are intended for rib subtraction screening 

applications and are thus limited to detecting ribs located over 

the lung fields. Furthermore, very few of the methods are 

concerned with scoliotic ribs. Existing rib detection methods 

are not suitable for detecting scoliotic ribs for the following 

reasons. First, because of their large variability in shape and 

curvature between different patients, scoliotic ribs would not 

be properly detected using parametric curve fitting techniques 

[2,3,4,5] or parametric curve-searching algorithms such as the 

modified Hough transform [3,6]. Also, techniques using 

global spatial filtering and rib reconnection through rule-based 

reasoning [2,3,4,5,7] would often miss the edges at rib 

crossings near the rib cage border, due to high overlapping and 

locally reduced contrast. In addition, methods based on 

vertical profile analysis [4,5,8,9] would also encounter major 
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limitations, as they greatly rely on assumptions that the ribs 

are strictly horizontally-oriented (in their dorsal portions) and 

that the intercostal space is approximately constant from one 

rib to another, which is clearly not the case with scoliotic ribs, 

as observed in [10]. Yet another approach [6] makes use of 

active contours (snakes) in order to better delineate actual rib 

borders, but still relies on the Hough transform to initialize the 

algorithm. More recent approaches use deformable statistical 

models [11,12,13], but, although promising results have been 

reported, only the rib midlines are considered in [13] and 

information from the rib borders is thus lost. Finally, yet 

newer approaches make use of iterated training sets (ICPC or 

MTANN) for per-pixel classification [14] or rib suppression 

[15]. Although these methods seem suitable for detecting 

scoliotic rib borders, [14] is strictly interested in detecting 

dorsal portions of the ribs whereas [15] produces bone-image-

like output images, lacking a way to discriminate the ribs from 

each other. 

Our goal is to develop a semi-automatic rib detection 

method that can accurately delineate the scoliotic rib borders 

for both the ventral and dorsal rib portions, in either PA-0º or 

PA-20º angled-down chest radiographs. We previously 

published a proof of concept of our method in [16] for which 

we will hereafter give more detailed materials and methods 

and present an extensive validation. Also, it is to be noted that 

a team from the Wright State University already implemented 

and successfully applied our method for rib segmentation in 

order to obtain 3D reconstructions of the rib cage [17].  

II. MATERIALS AND METHODS 

A. Overview 

 
In order to meet our goals, we propose herein a novel, semi-

automated technique for detecting both dorsal and ventral 

portions of scoliotic rib borders using an oriented filtering and 

edge-following approach with multiple-path branching. The 

key idea behind the proposed method is that, even in cases of 

great scoliotic deformity, a single rib will always present 

relatively parallel upper and lower edges. Our method consists 

in following multiple promising edges simultaneously. For 

every rib, four edge-following detections are initiated from 

four user-provided starting points placed along the upper and 

lower rib edges and the final rib border is obtained by finding 

the most parallel pair among the detected edges. The block 

diagram in Fig. 1 shows the different logical units within the 

proposed solution. Each of them will be analyzed in detail in 

the following subsections. 

B. Radiographic materials and data acquisition system 

50 digital chest radiographs of scoliotic patients were 

randomly selected from the Sainte-Justine UHC radiographic 

database. All radiographs were produced with a Fuji FCR 

7501S device equipped with a Shimadzu UD150L camera. 

The digitalized images of size 880 X 2140 pixels are eight bits 

per pixel and compressed in TIFF format. Our method was 

tested on 44 of these; the other 6 were previously used to build 

the peak classification statistical model described in section II-

D-4. Among those 44 radiographs were 32 PA-0º views and 

12 PA-20º views. Each radiograph was manually classified as 

being of “good quality”, “regular quality” or “poor quality” by 

a radiology technician. This resulted in a classification of 17 

good, 18 regular and 9 poor images. Quality levels were 

ascertained by taking into account the presence or absence of 

several undesirable radiographic characteristics such as noise, 

non-uniform illumination, extra-scoliotic pathologies such as 

tumors, and radiographic artifacts. 

C. User interaction 

Scoliotic ribs present very few shape priors due to their 

irregularities from one patient to another. In that context, 

semi-automation involving human interaction in both an 

initialization step and a post-processing step was considered a 

better approach than full automation. In the following, 

radiographic ribs consist of an inner edge (I), closer to the 

spine, and an outer edge (O), further from it, as shown in Fig. 

2. Ribs are assumed to begin (B) at the dorsal extremity and 

end (E) at the sternal extremity. Prior to detection, only four 

user starting points are needed (pib, pob, pie, poe) for each rib. 

Their associated starting angles (θB and θE) are automatically 

set perpendicular to the lines joining pib to pob and pie to poe. 

Thus, the user must be careful that the four starting points be 

approximately perpendicular to the rib’s orientation at 

extremities B and E. No automatic, gradient-driven fine-tuning 

of the starting points’ locations has been implemented yet. 

Finally, after detection, the user can manually adjust any rib 

edge in a corrective post-processing step. This, however, is 

beyond the scope of this paper and this manual correction step 

will not be treated further. 

 

 

D. Multiple-path edge-following 

The whole idea behind the proposed rib detection algorithm 

 

 
 

Fig. 1.  Block diagram of the proposed method. 

 
 

Fig. 2.  An illustration of the required four user inputs per rib (pib, pob, pie, 

poe). A close-up of the 11th left rib is seen here. θb and θe are automatically 
computed perpendicularly to lines joining pob to pib and poe to pie, 

respectively. Letters B, E, I and O indicate the rib’s beginning, end, inner 

side and outer side, respectively. 
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is to follow a rib’s edge, starting from its two extremities (B 

and E) and going inwards as if walking along the rib’s border, 

and expecting that these concurrent detections will intersect 

each other at some edge point in between B and E. This task is 

carried out using the edge following paradigm. 

Most conventional edge-following methods deal exclusively 

with binary edges, namely, black or white pixels obtained after 

filtering and thresholding. However, given a chest radiograph 

containing variable edge magnitudes and much overlapping 

between different structures, a global thresholding approach 

with isotropic filtering would result in the loss of many partial 

features, resulting in a spurious binary image and diminished 

edge-following capabilities [18]. We propose a modified edge-

following approach, applied directly to grayscale images with 

no thresholding, using only oriented filtering and multiple-

path branching. A block diagram of the technique is presented 

in Fig. 3. 

 
1) Oriented filtering 

Radiographic ribs present a great deal of mutual crossings 

as well as overlappings with other structures at various angles. 

This poses serious difficulties to edge following algorithms, 

which are likely to fail at detecting a complete rib by 

mistakenly following a border that does not belong to it but to 

another structure such as a clavicle.  Most conventional edge-

following methods compute edge-followed angles in either an 

8-neighbor square-grid or a 6-neighbor hexagonal-grid 

discrete space. However, these choices limit the angular 

resolution to 45 or 60-degree steps, respectively. Since 

crossings between different structures may arise at any angle 

in a real radiograph, better results can be obtained using a 

continuous addressing space, as explained in [19]. Bilinear 

interpolation was used to access gray values in between pixels. 

The proposed oriented filtering approach uses the anisotropic 

filter depicted in Fig. 4.  

Assuming that a grayscale radiographic image can be seen 

as a discrete function ]255...1,0[),( yxf  with 

]1...1,0[,  Kyx , the filtered image g(x,y), using the 

convolution mask h(s,t), can be expressed by a 2-D discrete 

convolution [20] as in: 
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This expression only applies to the unrotated version of the 

proposed filter depicted in Fig. 4. For its correct 

implementation at any given orientation, the steerable filter 

paradigm [21] can be used, but by taking advantage of the fact 

that the filter h(s) is indeed 1-D and contains only 2 non-

negative values, (1) can be rewritten as: 
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which is the difference between the image translated by δ at 

angle θ and the same image translated by δ in the opposite 

direction (at θ + 180º). Contrast is controlled by γ, δ is the 

depth of the filtering operation and the mean grayscale level is 

set by μ. Popular image-editing software packages implement 

(2) under the name “Emboss filter”. In fact, when the output is 

centered around grayscale level 128 (μ=128), g(x,y) looks like 

an embossed image, featuring hills and valleys, as in Fig. 5. 

However, in our method, μ = 0. The parameter γ was 

empirically set to 3 because this led to a good tradeoff 

between contrast and border thickness. 

 
By noticing the disappearance of ribs 9R to 12R in Fig. 5b 

and ribs 3L to 8L in Fig. 5c, it becomes obvious that it is 

possible to “clean” crossing edges by using the proposed 

anisotropic filter properly aligned with respect to overlapping 

structures. In fact, this consists, at each step of the edge-

following process, in applying the anisotropic filter 

perpendicularly to the current edge-followed rib orientation. It 

has been observed that doing so emphasizes the currently 

 

 
 
Fig. 5.  Embossed image from the anisotropic filter in (2) applied to a chest 

radiograph of a scoliotic patient with centered grayscale (μ=128). Orientation 

θ, contrast γ and depth δ are all controllable parameters. Shown here are (a) θ 
= 90º, γ = 5, δ = 3; (b) θ = 40º, γ = 6, δ = 5; (c) θ = 336º, γ = 1, δ = 2. The 

white arrows point out zones where ribs have almost completely disappeared. 

 
 

Fig. 4.  Anisotropic filter h(s) used in oriented filtering step. (a) Unrotated 
1D version. The filter output gives approximations of image partial first-

order derivatives of magnitude γ, scale δ and orientation θ. Two rotated 

instances of the filter are shown in (b) with γ = 1, δ = 2, θ = 30º and (c) with 

γ = 3, δ = 1 and θ = -20°. 

 
 

Fig. 3.  The proposed multiple-path edge-following method. 
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followed border while attenuating most of the undesirable 

edges (see Fig. 6). The notation ),( yxg   will be used when 

referring to the perpendicularly filtered image. 

 
2) Angular search 

Even after applying the oriented filtering, some remaining 

concurrent edges can still mislead the edge following process, 

especially when these are strong edges almost parallel to the 

followed rib border. Throughout this paper, we will use the 

term “ambiguous” to refer to any location along the followed 

border at which two or more significant edges cross each 

other. Contrary to conventional edge-following algorithms, the 

proposed method has the ability to follow multiple promising 

paths simultaneously, thus reducing the likeliness of being 

misled in the presence of ambiguous edge crossings. The 

underlying idea is to see image pixels as potential vertices v in 

an n-ary rooted tree T [22]. The notion of seeing edge-

following as a graph-searching process is not new [23]. For 

each visited vertex j

iv , there is a variable number n of 

followed children with a maximum of N vertices in T. In this 

notation, j

iv  represents the ith visited vertex at depth j and 0

1v  

is the root vertex input by the user. Typical detection results, 

as shown in Fig. 7, will thus appear as a tree-like set of visited 

pixels belonging to many different detected borders, among 

which the actual rib edge is expected to be found. 

 
From a specific parent vertex j

iv  in the edge-following 

process, children are always chosen λ pixels away. This 

distance is called the edge-following “step” and was 

empirically fixed at λ = 5. At each step, child vertices 1j

iv  are 

obtained by computing the partial angular projection presented 

in (3) below and by detecting and localizing its local maxima. 

Each local maximum is associated with an edge orientation 

and represents a potential child vertex, as shown in Fig. 8. The 

partial angular projection (PAP) can be expressed as: 
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g  is expressed in polar coordinates (r, θ), centered at the 

current vertex location (xf, yf) and ρ(θ) is the PAP of g  on 

the θ axis, limited to ],[   ff
 and ],0[ Rr . Fig. 8 

summarizes all the steps seen thus far, from the oriented 

filtering to the PAP computation. 

 

3) Peak detection 

Local maxima in ρ(θ) are simply detected by analyzing 

zero-crossing occurrences in the PAP derivative ρ’(θ), 

computed with simple finite differences as shown in Fig. 8e. 

 Care is to be taken in choosing τ and R. If τ is chosen too 

small, the field of vision in front of the followed direction will 

be too narrow and concurrent edges away from θf are likely to 

be missed. On the other hand, if τ is set too large, then 

projection values become irrelevant near θf ±90º because of 

prior perpendicular filtering. Likewise, if R is too small, the 

PAP will show nothing but noisy patterns, while setting R too 

large will flatten out the PAP to a constant value approaching 

μR. It was observed that τ = 35° and R = 30 led to good results 

for a wide range of radiographs.  

 

4) Peak classification 

At this stage, significant local maxima contained in ρ(θ) 

have all been detected and localized. From now on, these will 

be referred to as “peaks”. For each peak pi located in a given 

PAP, θP,i, θL,i and θR,i, namely, the peak summit angle, the left 

limit angle and the right limit angle of peak pi, have been 

computed (see Fig. 8e). Two more quantities need to be 

computed for each pi. These are the peak relative area Λi (4) 

and the peak angular shift εi, (5) expressed as: 
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fiPi   ,  (5) 

 

For a given PAP, every peak pi provides potential child 

vertices that may be followed in the next edge-following step. 

If more than one peak is detected, it is hazardous to simply 

 

 
 

Fig. 6.  Rib crossing attenuation. (a) Source image showing rib 3R. The 

white arrow indicates an ambiguous crossing between the rib and the right 
clavicle. (b) Regular Sobel filtering emphasizes all edges regardless of their 

orientation. (c) The anisotropic filter in (2) is applied perpendicularly to the 

third rib’s orientation at the crossing point. 

 
Fig. 7.  Multiple-path branching, in which visited image pixels become 

vertices in a tree graph. (a) A close-up of a chest radiograph showing 

progress of the multiple-path edge-following after 55 visited pixels. (b) The 
associated tree graph T. The white arrow shows the first ambiguous pixel 

encountered whereas the black arrow shows the second one. Letters point out 

special vertices. “R” stands for “Root” and “L” for “leaf”. 
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follow the strongest peak (i.e. having the largest area Λi), as it 

may belong to an ambiguous edge from any overlapping 

structure. Neither is it efficient to follow all the peaks at every 

step for obvious reasons of memory usage and computational 

load. In fact, if n is chosen too large at every step, the 

associated detection tree will be too broad and the maximum 

number N of total vertices will be reached before getting to the 

end of the rib edge of interest. On the other hand, if n is 

chosen too small at every step, the detection tree will be too 

narrow and only a few edges will be explored thoroughly, thus 

incurring the risk of missing the rib edge of interest. 

 
Therefore, what is needed is a measure of the ambiguity at 

any specific pixel along the way. Such a measure will allow us 

to adaptively set n, choosing fewer or more child vertices to 

follow at each step, thus maximizing the chances of correctly 

detecting the edge of interest before reaching N visited 

vertices. Here, we developed a classification model to predict 

which peaks to follow depending on selected characteristics. 

Potential peaks pi were modeled as two-value attribute 

vectors (x1, x2). The chosen peaks’ attributes are the ones 

presented in (5), that is: 

 

).,( iii x  (6) 

To train the classifier, 18 radiographic ribs were selected 

from 6 different chest radiographs. Of those 18 ribs, 6 were 

free of any significant ambiguous edge crossings, 6 crossed 

significant edges fewer than five times from beginning until 

end, and 6 had more than five significant edge crossings along 

the way. Our edge-following algorithm was run on both the 

inner and outer edges of all 18 chosen rib borders, except that 

at each step of the edge-following process, the next followed 

orientation θf was manually selected by a user, clicking the 

correct peak inside the PAP displayed on screen. All the 

selected peaks were given class ω1 (i.e. “good” peaks) 

whereas all the rejected peaks were given class ω2 (i.e. “bad” 

peaks). Moreover, in cases of ambiguity, the user could click a 

“skip” button in order to exclude all peaks in the current PAP. 

In that manner, only non-ambiguous, well-defined edges were 

sampled within the training set. Fig. 9 shows the distribution 

of the sampled peaks in attribute space. Each dot represents a 

peak pi located at (Λi, εi) within the two-variable attribute 

space. The horizontal axis represents the relative area from 0 

to 1, whereas the vertical axis represents the absolute angular 

shift in degrees about the center of the PAP. 

 
Looking at Fig. 9, it can be seen that good peaks (class ω1, 

bottom right) are generally centered in their PAPs and have 

large relative areas, whereas bad peaks (class ω2, top left) are 

offset from f by 35° on average and have smaller areas. The 

Parzen windows classification method [23] was used to obtain 

a non-parametric model of peak density pn(x) for classes ω1 

and ω2, as shown in Fig. 10a. This density can be seen as a 

measure of the probability, for a peak x, to belong to class ω1 

or ω2. However, this does not tell us anything about peak 

ambiguity. For that, let us assume that an ambiguous peak is 

one for which it is not certain whether it is good or bad. Thus, 

any peak x falling to low density levels in both classes can be 

considered ambiguous. To implement this aspect of our 

model, an extra class ω3 (ambiguous peaks) was created by 

setting a low density threshold at pn = ξ, as shown in Fig. 10b. 

In this manner, one obtains a classification map of ω1, ω2 or 

ω3 labels for any peak x = (Λi, εi) (see Fig. 10b). The choice of 

ξ directly relates to n, the number of followed child vertices at 

each edge-following step. Experimentally, it was observed that 

ξ = 0.15 led to good results. 

 

 

 
 

Fig. 8.  Oriented filtering and partial angular projection (PAP). (a) Edge-

following has already progressed and is now located at an ambiguous pixel 

(larger white dot) with current edge-followed orientation θf. (b) 


g , the 

filtered image using (2) with θ = θf + 90°, δ = 2 and γ = 6. (c) Angular scan at 
work. R pixels are summed along each line oriented from θf - τ to θf + τ in 


g . Scan lines are separated by one-degree angles. (d) Plot of the associated 

partial angular projection (PAP). (e) Local maxima detection in PAP. The 

first derivative of the PAP in (d) is computed here using finite differences 

and directions  θL,1,θR,1,θP,1 and θL,2,θR,2,θP,2 are found (circled). 

 

 
 
Fig. 9.  Scattergram of peaks distribution. Class ω1 (good peaks) is 

represented by squares (lower right) and class ω2 (bad peaks) is represented 

by circles (upper left). 
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5) Multiple branching 

 
The last element we need in our multiple-path branching is 

a set of decision rules linking peak selection to probability 

pn(x). Fig. 11 depicts the decision rules strategy that was 

chosen. The idea behind it was to translate the statistical 

ambiguity brought by our model into a machine-friendly set of 

rules based on easily calculated probabilities. If there is no 

ambiguous peak in a given PAP, then we follow the strongest 

‘good’ peak. However, if there is no ‘good’ peak, then we 

perform multiple-path branching by following every 

‘ambiguous’ peaks in parallel. Many different strategies were 

tested but this one was empirically retained because it led to 

the best results. Also, it can be seen that a ‘broken edge 

recovery’ step occurs when the current PAP does not contain 

any significant peaks. In other words, a recovery strategy is 

used when the followed edge is lost and consists of 

reconnecting the edge λ pixels away in the currently followed 

direction since rib curves are assumed to be smooth. 

E. Perceptual parallelism 

Once all four detection trees Tib, Tob, Tie and Toe have been 

obtained from their associated starting points and duplicate 

paths have been removed, all distinct root-to-leaf paths P in 

those four trees are extracted. A root-to-leaf (RTL) path P is a 

set of M detected vertices (xk,yk), starting at the root vertex and 

ending at any leaf vertex, and has the following form: 

 

  ],1[   ,),( Mkkk yxP  . (7) 

 

 Thus, 
ibT

P , 
ieT

P , 
obT

P and 
oeT

P are now defined as the four 

sets of all RTL paths P extracted from detection trees Tib, Tie, 

Tob and Toe, respectively. We refer to a specific RTL path 

within any of these four sets by an index (m or n 

interchangeably). For example, 
ibTn

P , refers to the nth RTL path 

in tree Tib wheras 
oeTm

P ,  refers to the mth RTL path in tree Toe. 

Now, the problem of detecting the final rib border is 

equivalent to finding the most parallel pair of paths between 

the detected paths for the rib’s inner edge and those for its 

outer edge.  

But before finding the most parallel pair of paths, complete 

paths must be obtained, i.e. complete inner rib edges or outer 

rib edges going from rib beginning (B) to rib end (E). These 

complete paths will thus begin at some tree root vertex and 

finish at the opposite tree root vertex. Therefore, they will be 

called root-to-root (RTR) paths. For an RTR path to be 

identified, there must exist an intersection point I between 

ibTm
PP ,1

  and 
ieTn

PP ,2
 , (or equivalently between

obTm
PP ,1

  

and 
oeTn

PP ,2
 ), as in: 

 

2)()(|),( 2

2,1,

2

2,1,  jiji yyxxjiI . (8) 

where 11,1, ),( Pyx kk   and 22,2, ),( Pyx kk  , for any k. 

Recall that λ is the edge-following step parameter. A complete 

RTR path Q, of the same form as (7), contains K detected 

pixels or vertices (xk,yk) and is expressed in the following 

manner: 

    ),(|...2...11 jiIPPQ Mjkik   , (9) 

 

with
1P ,

2P  being any two inner intersecting RTL paths from 

ibT
P  and 

ieT
P respectively, or any two outer intersecting RTL 

paths from 
obT

P and 
oeT

P respectively. Then, QI and QO are the 

two sets of all intersecting paths between 
ibT

P  and 
ieT

P , and 

between 
obT

P and 
oeT

P , respectively.  

All that remains to do is to evaluate the perceptual 

parallelism for each pair of RTR paths taken from QI and QO. 

Now let again Qu be any specific RTR path taken from QI  and 

Qv any RTR path from QO, with Qu being shorter or equal in 

length than Qv. Then the rib width function Γ for pair Qu Qv, is 

defined as: 

 

  vlklk
l

Qlyyxxk  ,)()(min)( 2

2,1,

2

2,1,
, (10) 

 

 
 

Fig. 11.  Decision rules for selection of children after peak classification. 

 

 
 
Fig. 10. Peak classification model using Parzen windows. In both graphs, the 

left hump is class ω2 (bad peaks) and the right hump is class ω1 (good peaks). 

(a) Model with only classes ω1 and ω2. (b) Same model with the additional 
class ω3 (ambiguous peaks) created by adding a horizontal plane at the low 

probability threshold of ξ = 0.15. 
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where xk,1 is the x coordinate of the kth point in Qv, and 

similarly for xl,2, yk,1 and yl,2. The width function support 

is ],1[ Kk  . Fig. 14 depicts Γ(k) for two specific RTR paths 

Qu and Qv. 

 
With the width functions computed for every possible pair 

QI QO, it is then possible to compute every pair’s perceptual 

parallelism criterion (PPC) in order to find the final rib border 

solution. Interesting methods for detecting perceptually 

parallel curves are detailed in [24,25,26], but when tested in 

our application, these proved to be too slow. Thus, a 

somewhat simpler parallel curves detection algorithm had to 

be developed to ensure acceptable computing times. The key 

idea behind our method is to realize that truly perceptually 

parallel edges should produce a totally flat width function, i.e. 

Γ(k) = w, with w being the rib width. So what is needed is a 

measure that tells us how close a given width function is to a 

constant value. We chose to use a least-squares linear fitting 

between the rib width values and a horizontal line at w to carry 

out this task. Unfortunately, w is unknown. Contrary to 

conventional rib detection methods, we strived to stay as 

general as possible and avoided making morphological 

assumptions such as fixing the rib width. Hence, w is assumed 

to be variable and different for all the ribs, which implies that 

the current rib’s width must be estimated. Using the rib width 

function Γ(k) alone, a few choices for setting w are made 

available by descriptive statistics. The mode Mo of Γ(k) was 

chosen to approximate w because of its stability in the 

presence of outliers. The proposed perceptual parallelism 

criterion σ can then be defined as: 

 

 





N

k

k
1

2
Mo )(

1
 . (11) 

 

Using (11), one could find the single most parallel pair of 

paths and simply use it as the final rib border solution. But that 

is not quite sufficient. Indeed, it is recalled here that our rib 

width function Γ(k), defined in (10), was deliberately chosen 

to be very simple for computational reasons. It is an 

approximation of the real rib width. Moreover, the PPC 

proposed in (11) lacks robustness in cases of ribs having 

variable width from beginning to end. Hence, this limits the 

ability of the algorithm to tell truly parallel paths from other 

parallel paths. 

To get around this problem, we do not simply keep the most 

parallel pair of paths, but instead, we keep a cluster of the 

most parallel pairs of paths, expecting that the true solution is 

contained in that cluster of solutions. The K-means algorithm 

is used on the σ parameter (PPC) to select this cluster. Finally, 

the final rib border is selected as being the single smoothest 

pair of paths in the cluster. The smoothness is computed using 

the internal energy Eint defined in [26]; the chosen pair of 

paths is thus the one with the least internal energy. The final 

rib border solution is then obtained by fitting a natural cubic 

spline with a centripetal model [27] through all of its detected 

pixels for each of its borders. 

F. Validation of the method 

Using an image editing software package, a technician in 

radiology was asked to manually delineate each rib’s border in 

all 44 radiographs in our test set. Using a technique very 

similar to the width function computation in (10), a script was 

then devised to obtain the perpendicular vector at every 

detected rib pixel and automatically compute the error (signed 

distance in pixels) for each detected pixel compared to its 

reference rib border pixel taken from the validation image. 

More specifically, for any single detected edge pixel, its 

reference pixel is the one from the corresponding rib border in 

the validation image that is closest to a line drawn 

perpendicularly to a segment joining the current and previous 

detected pixels.  

It is important here to emphasize the fact that our reference 

rib borders were traced by hand in a discrete space. Thus, the 

reference’s accuracy is comparable to that which our method 

is capable of attaining. The expression “detection error”, as 

used in the discussion section, is therefore not meant to refer 

to an error made compared to a gold standard, but rather to the 

distance (in pixels) between detected and reference pixels. 

This error can be positive or negative. Furthermore, when 

referring to the unsigned distance in pixels between the 

detected and reference rib edge points, the term “absolute 

distance” will be used to avoid confusion.  

The proposed rib detection method was run on all 44 

radiographs in the test set, for every rib that had previously 

provided starting points. The method was implemented in 

plain non-optimized Matlab language and run on Intel 

Pentium D 3.40GHz machines with 1GB of RAM. A total of 

994 scoliotic ribs were processed. Validation was carried out 

by running the validation script on the detected ribs and, as 

shown in Table I, a total of 778,320 pixels were compared 

against their reference locations (846 pixels per rib, ranging 

from 102 to 1,479, depending on rib length). 

To address the issue of inter-technician variability, we have 

conducted an additional detection experiment with 3 new 

 

 
 
Fig. 14.  Simple width function. a) Radiographic rib on which lines show the 

computed distances to form the rib width function. b) The associated rib 

width function Г(k). 
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users on a reduced test set. 15 radiographs (5 good, 5 regular 

and 5 poor quality images) were randomly picked from the 

original set of 44 and were given to each of the 3 users. As in 

the original study, these users were asked to input 4 starting 

points per rib on all 24 ribs in their 15-radiograph set. These 

users were not radiology technicians, but were briefed on how 

to perform the manual selections. Detection results and inter-

technician variability will be presented and discussed below. 

III. RESULTS AND DISCUSSION 

 
Out of all 994 scoliotic ribs that were processed, the 

proposed algorithm found border solutions for 920 of them, 

which corresponds to an average detection ratio of 93%. For 

the remaining 74 ribs, the edge-following algorithm could not 

find any solution. Table I summarizes the detection results. 

Two visual detection results, namely for good and poor quality 

radiographs, are presented in Fig. 15a,b (see zoomed areas in 

Fig. 15d,e). Detected borders are delineated in pure white. For 

the complete set of visual results, the reader is invited to visit 

the following web page: 

http://www.polymtl.ca/liv4d/doc/fred_plourde/index.html.  

Fig. 15c shows one particular “missed rib” case, where no 

intersection occurred between paths pob and poe. Path pob chose 

to follow the clavicle because of its greater contrast in 

comparison to the locally faint rib edge (see zoomed area in 

Fig. 15f). Path poe diverged from the current rib edge because 

of a calibration artefact appearing on film as a white dot.  

The average absolute error of 2.64 pixels shown in Table I 

takes into account every single validated pixel from the 994 

detected ribs. However, by inspecting the visual results, we 

noticed that some detected rib border results were very erratic 

and could get as far as 80 pixels away from their reference rib 

borders. In fact, by plotting the histogram of detection errors 

vs location along every single rib, it appears obvious that those 

errors occurred when the edge-following algorithm somehow 

lost track of the followed rib border. Those samples do not 

provide us with information about rib detection accuracy 

itself, but rather give us insight on the probability for the 

algorithm to lose track of the rib border. Thus, in order to 

strictly address results concerning the rib border detection 

accuracy, we excluded from the initial data every rib portion 

that significantly diverged from its followed rib border. As 

shown in Table I, we removed the divergent 

portions from 45 detected ribs, which represented a reduction 

of 16,370 detected pixels (2.1% of all detected pixels from the 

complete dataset). The expression “reduced dataset” will be 

used hereafter to refer to this reduced number of detected 

pixels, whereas the expression “complete dataset” will be used 

to refer to all samples from the initial data. Fig. 16 shows the 

distribution of detection errors for the reduced dataset as well 

as a Gaussian fit applied to it, for which a general Gaussian 

model was used with the non-linear least squares method and 

the least absolute residual (LAR) scheme. This model fitted 

very well (r2 = 0.9912 and RMSE = 0.006115) and the overall 

detection error turned out to be 0.0026 ± 1.21 pixels. The 

pixels’ actual size is 0.33 mm. 

 
For comparison purposes, it is also convenient to present 

the results as absolute distances to reference pixels, as most of 

the previous methods in the literature do. As shown in Table I, 

the average absolute distance to reference pixels for the 

reduced dataset was 1.24 pixels. Analogous results were also 

obtained separately for good, regular and poor image qualities, 

and respective detection errors of 0.0024 ± 1.12 pixels, 0.0015 

± 1.16 pixels, 0.0019 ± 1.22 pixels were obtained using the 

same abovementioned Gaussian model. 

 

Fig. 17 shows the average absolute distance obtained for each 

rib level, for the three image quality level subsets. The 

horizontal axis represents the average absolute distance 

 
 

Fig. 15.  Visual detection results delineated in pure white. (a,b) Two chest 
radiographs of scoliotic patients classified as ‘good’ and ‘poor’. c) Missed rib 

case for rib L4. (d,e) Zooms on details of figures 15a and 15b respectively. f) 

Zoom on details of figure 15c. White rectangles are zoomed areas. 
 

 

 
 

Fig. 16.  Distribution of detection errors for the reduced dataset with 
Gaussian fit (r2 = 0.9912 and RMSE = 0.006115). Distribution parameters 

are: = 0.0026 pixels and  = 1.21 pixels. 

 

TABLE I 
DETECTION RESULTS 

Number of ribs 382 good 
408 regular 

204 poor 

Number of detected ribs 
 

 

Overall rib detection ratio (%) 
Number of detected pixels for complete dataset 

361 good 
378 regular 

181 poor 

93 
778,320 

Average absolute error for complete dataset (pixels) 

 
Number of divergent ribs 

Ratio of manually removed pixels (%) 

Corrected number of detected pixels for reduced dataset 
Mean detection error for reduced dataset (pixels) 

 

Average absolute error for reduced dataset (pixels) 

2.64 

 
45 

2.1 

761,950 

μ = 0.0026 

σ  = 1.21 

1.24 
Average time to input 96 starting points per radiograph (s) 348 

 

http://www.polymtl.ca/liv4d/doc/fred_plourde/index.html
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whereas the vertical axis represents the different rib levels, 

with labels indicating both the number and side of each rib. 

When all rib levels are considered together, the average 

absolute distances for the reduced data subsets for good, 

regular and poor image qualities are 1.221, 1.254 and 1.259 

pixels respectively. 

Analyzing these results, it can be seen that the proposed 

method is very well suited for detecting borders of scoliotic 

ribs. The overall 2D detection accuracy of 1.24 pixels (average 

absolute distance) outperforms most of the studies for which 

an average absolute distance in pixels is given in the literature. 

Looking at Fig. 17, the average absolute distance seems to be 

distributed quite uniformly among rib levels. The proposed 

algorithm thus seems robust under many circumstances, 

except perhaps for the first and twelfth rib levels, where 

slightly higher average absolute distances were observed. This 

may be partly explained by the poorer edge contrast that these 

first and last ribs generally present. Another important 

observation from Fig. 17 is that the left ribs are generally less 

accurately detected than the right ribs. This asymmetry in the 

results may be related with structural asymmetries associated 

with the scoliotic deformity itself. In fact, 40 of the 44 

detected chest radiographs contain right thoracic or thoraco-

lumbar curves. Typically, on the convex side (right side) of 

the spinal curve, the ribs are spread out and lie farther from 

each other, whereas on the concave side (left side), the ribs are 

closer to each other and mutual overlapping is greatly 

increased. Since there is obviously a link between structure 

overlapping and edge detection power in computer vision, this 

could explain why our detection results are usually better on 

the right patient side. The asymmetry in the results may also 

be explained by the presence of the heart, which generally 

occupies a significant area in the vicinity of the left lung. This 

could interfere with the detection power, as the ribs’ edge 

contrast tends to diminish in that region. Finally, analyzing the 

method’s robustness under various image quality levels in Fig. 

17, it is notable that the detection accuracy barely decreases as 

image quality goes down. However, when looking at the 

complete dataset, large differences in average absolute 

distance appeared between the good, regular and poor image 

quality subsets. This tends to indicate that radiographic image 

quality does not really influence the rib detection accuracy 

itself, but rather increases the likelihood for the algorithm to 

diverge from the real rib border as image quality deteriorates. 

This behavior tells us that the underlying detection mechanism 

of the proposed method is well suited to follow rib borders 

even under poor contrast, but it also draws attention to the 

limits of our implementation of the edge-following paradigm. 

When comparing our results with previous studies, one of 

the main advantages of the proposed method is its ability to 

detect both dorsal and ventral portions of the ribs, even in the 

presence of scoliotic deformities. In Table I, the average user 

interaction time with our system was 348 seconds per 

radiograph, i.e. less than 6 minutes. So, for a complete 3D 

reconstruction of the ribcage (from the PA-0° and PA-20° 

radiographs), our method is 10 times faster (strictly 

considering the user’s workload, not CPU time) than the 

previous manual technique [1]. For the moment, however, the 

associated mean CPU time is still very long (41 minutes to 

process a complete radiograph), since the method has not been 

implemented in an optimized programming language. A C++ 

implementation would greatly reduce the computation time. 

Robustness and repeatability of the proposed algorithm 

were ascertained by studying inter-technician variability, as 

described in section II-F above. Detection results for this 

additional experiment were gathered on all 1,080 processed 

ribs (3 users x 15 images x 24 ribs per image). The mean 

detection errors were -0.0017 ± 1.75 pixels, 0.00037 ± 1.76 

pixels and 0.00088 ± 1.68 pixels for users 1, 2 and 3 

respectively. Moreover, the overall detection ratios were 

88.6%, 90.6% and 98.5% respectively. Comparing these 

results with the mean detection error of 0.0026 ± 1.21 pixels 

and rib detection ratio of 93% in Table I, we can reasonably 

say that the effect of inter-technician variation on detection 

error is low. The small increase in mean error (from 1.21 to 

1.73 on average for the 3 users) can be ascribed to the fact that 

these users were not as well trained as the radiological 

technician to perform the manual selections. Meanwhile, the 

average detection ratio for the 3 users, 92.6%, is the same as in 

the original results. Therefore, our proposed method can be 

considered robust with respect to variability of manual inputs. 

Finally, a Student t-test revealed that there were no 

statistical differences between the mean errors for the PA-0° 

and PA-20° error distributions. 

IV. CONCLUSION 

We have presented a novel method for semi-automatic 

detection of scoliotic rib borders (dorsal and ventral portions) 

in PA-0° and PA-20° chest radiographs. The method was 

tested on 44 chest radiographs of scoliotic patients. We have 

shown that it is possible to detect actual rib borders (instead of 

rib midlines) at any rib level (1 to 12) with very good 

accuracy, and in a shorter time than is currently needed with 

the manual detection method. 93% of all tested ribs were 

effectively detected with the proposed semi-automatic method. 

The overall detection error and average absolute distance were 

0.0026 ± 1.21 pixels and 1.24 pixels respectively when 

 

 
 

Fig. 17.  Average absolute distance, in pixels, between detected rib border 
pixels and reference rib border pixels for good, regular and poor radiographs 

in the reduced subsets. When all rib levels are considered together, average 

absolute errors of each of these three subsets are: good: 1.221 pixels, regular: 

1.254 pixels, poor: 1.259 pixels. 
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excluding samples associated with cases where the algorithm 

lost track of the rib border. When considering all samples, the 

overall accuracy (average absolute distance) drops to 2.64 

pixels, which is still better than reported results in the 

literature. It was shown that algorithm divergence is an 

important issue and accounts for most of the decrease in 

detection accuracy when considering the complete dataset. 

Besides, no statistical differences were observed between PA-

0º and PA-20º results in terms of detection accuracy. Average 

user interaction time to process both radiographs (PA-0º and 

PA-20º) was slightly under 12 minutes, which is ten times less 

that the two hours required by the existing manual method. 

The CPU time for our method, however, has yet to be 

evaluated using a compiled implementation.  

Even though the present algorithm still requires user 

interaction, the detection of rib borders will allow an 

automatic computation of the rib midlines in each view. 

Therefore, the 3D reconstruction of the rib midlines will not 

depend on the user and the accuracy of the 3D ribcage model 

should improve thanks to an automatic detection and matching 

of the rib midlines between the two views. Furthermore, the 

proposed method will enable the development of a new 3D 

reconstruction technique that could provide more personalized 

3D models of the ribcage, considering that full information 

from rib borders would be used instead of just fitting generic 

rib 3D models onto reconstructed rib midlines. Finally, an 

accurate and personalized 3D reconstruction of the rib cage 

will allow clinicians to take into account the main concern of 

the patient, which is the rib hump that affects his/her external 

appearance, in the clinical assessment of scoliotic deformities.  
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