8 research outputs found

    Automatic quality control of cardiac MRI segmentation in large-scale population imaging

    Get PDF
    The trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to detect when an automatic method fails to avoid inclusion of wrong measurements into subsequent analyses which could otherwise lead to incorrect conclusions. To overcome this challenge, we explore an approach for predicting segmentation quality based on reverse classification accuracy, which enables us to discriminate between successful and failed cases. We validate this approach on a large cohort of cardiac MRI for which manual QC scores were available. Our results on 7,425 cases demonstrate the potential for fully automatic QC in the context of large-scale population imaging such as the UK Biobank Imaging Study

    Deep Learning using K-space Based Data Augmentation for Automated Cardiac MR Motion Artefact Detection

    Get PDF
    Quality assessment of medical images is essential for complete automation of image processing pipelines. For large population studies such as the UK Biobank, artefacts such as those caused by heart motion are problematic and manual identification is tedious and time-consuming. Therefore, there is an urgent need for automatic image quality assessment techniques. In this paper, we propose a method to automatically detect the presence of motion-related artefacts in cardiac magnetic resonance (CMR) images. As this is a highly imbalanced classification problem (due to the high number of good quality images compared to the low number of images with motion artefacts), we propose a novel k-space based training data augmentation approach in order to address this problem. Our method is based on 3D spatio-temporal Convolutional Neural Networks, and is able to detect 2D+time short axis images with motion artefacts in less than 1ms. We test our algorithm on a subset of the UK Biobank dataset consisting of 3465 CMR images and achieve not only high accuracy in detection of motion artefacts, but also high precision and recall. We compare our approach to a range of state-of-the-art quality assessment methods.Comment: Accepted for MICCAI2018 Conferenc

    Quality Control-Driven Image Segmentation Towards Reliable Automatic Image Analysis in Large-Scale Cardiovascular Magnetic Resonance Aortic Cine Imaging

    Get PDF
    “The final authenticated version is available online at https://doi.org/10.1007/978-3-030-32245-8_83.”© 2019, Springer Nature Switzerland AG. Recent progress in fully-automated image segmentation has enabled efficient extraction of clinical parameters in large-scale clinical imaging studies, reducing laborious manual processing. However, the current state-of-the-art automatic image segmentation may still fail, especially when it comes to atypical cases. Visual inspection of segmentation quality is often required, thus diminishing the improvements in efficiency. This drives an increasing need to enhance the overall data processing pipeline with robust automatic quality scoring, especially for clinical applications. We present a novel quality control-driven (QCD) framework to provide reliable segmentation using a set of different neural networks. In contrast to the prior segmentation and quality scoring methods, the proposed framework automatically selects the optimal segmentation on-the-fly from the multiple candidate segmentations available, directly utilizing the inherent Dice similarity coefficient (DSC) predictions. We trained and evaluated the framework on a large-scale cardiovascular magnetic resonance aortic cine image sequences from the UK Biobank Study. The framework achieved segmentation accuracy of mean DSC at 0.966, mean prediction error of DSC within 0.015, and mean error in estimating lumen area ≤17.6 mm2 for both ascending aorta and proximal descending aorta. This novel QCD framework successfully integrates the automatic image segmentation along with detection of critical errors on a per-case basis, paving the way towards reliable fully-automatic extraction of clinical parameters for large-scale imaging studies

    A Fine-Grain Error Map Prediction and Segmentation Quality Assessment Framework for Whole-Heart Segmentation

    Full text link
    When introducing advanced image computing algorithms, e.g., whole-heart segmentation, into clinical practice, a common suspicion is how reliable the automatically computed results are. In fact, it is important to find out the failure cases and identify the misclassified pixels so that they can be excluded or corrected for the subsequent analysis or diagnosis. However, it is not a trivial problem to predict the errors in a segmentation mask when ground truth (usually annotated by experts) is absent. In this work, we attempt to address the pixel-wise error map prediction problem and the per-case mask quality assessment problem using a unified deep learning (DL) framework. Specifically, we first formalize an error map prediction problem, then we convert it to a segmentation problem and build a DL network to tackle it. We also derive a quality indicator (QI) from a predicted error map to measure the overall quality of a segmentation mask. To evaluate the proposed framework, we perform extensive experiments on a public whole-heart segmentation dataset, i.e., MICCAI 2017 MMWHS. By 5-fold cross validation, we obtain an overall Dice score of 0.626 for the error map prediction task, and observe a high Pearson correlation coefficient (PCC) of 0.972 between QI and the actual segmentation accuracy (Acc), as well as a low mean absolute error (MAE) of 0.0048 between them, which evidences the efficacy of our method in both error map prediction and quality assessment.Comment: 9 pages, accepted by MICCAI'1
    corecore