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Abstract. The trend towards large-scale studies including population
imaging poses new challenges in terms of quality control (QC). This is a
particular issue when automatic processing tools such as image segmenta-
tion methods are employed to derive quantitative measures or biomarkers
for further analyses. Manual inspection and visual QC of each segmen-
tation result is not feasible at large scale. However, it is important to
be able to detect when an automatic method fails to avoid inclusion
of wrong measurements into subsequent analyses which could otherwise
lead to incorrect conclusions. To overcome this challenge, we explore
an approach for predicting segmentation quality based on reverse clas-
sification accuracy, which enables us to discriminate between successful
and failed cases. We validate this approach on a large cohort of cardiac
MRI for which manual QC scores were available. Our results on 7,425
cases demonstrate the potential for fully automatic QC in the context of
large-scale population imaging such as the UK Biobank Imaging Study.

1 Introduction

Biomedical image data are increasingly processed with automated image analysis
pipelines which employ a variety of tools to extract clinically useful information.
It is important to understand the limitations of such pipelines and assess the
quality of the results being reported. This is a particular issue when we consider
large-scale population imaging databases comprising thousands of images, e.g.,
as done in the UK Biobank (UKBB) Imaging Study [1]. There are often many
modules in automated pipelines [2] where each may contribute to inaccuracies
in the final output and reduce the overall quality of the analysis, e.g., inten-
sity normalisation, segmentation, registration and feature extraction. On a large
scale, it is infeasible to perform a manual, visual inspection of all outputs, and
even more difficult to perform quality control (QC) within the pipeline itself.
We break down this challenge and focus on the automated QC of image segmen-
tation. Many segmentation methods have been developed, from graph cuts to
advanced algorithms involving machine learning [3]. Their performance is tra-
ditionally evaluated on a set of labelled data using an evaluation metric which
computes similarity between the prediction and a reference ‘ground truth’ (GT).
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Popular metrics include volumetric overlap [4], surface distances or other statis-
tical measures [5]. Due to the lack of actual GT, manual expert annotations are
used as reference, despite inter- and intra-rater variability. But such reference
segmentations are not available once a segmentation method is deployed in a
clinical practice. Evaluating the expected average performance of an algorithm
is less important as being able to assess the quality on a per-case basis, and it is
crucial to identify cases where the segmentation has failed. We show that we can
effectively predict the per-case quality of 3D cardiac MRI (CMR) segmentations
which enables fully automated QC in a large-scale population studies.

Related work. We adopt the recently proposed approach of reverse classifica-
tion accuracy (RCA) [6]. RCA is a general framework for predicting the perfor-
mance of a deployed segmentation method on a case-by-case basis when the GT
is unknown. This makes it stand out from other evaluation frameworks such as
reverse validation and reverse testing [7,8], which only provide an estimate of
the average performance. In contrast to other approaches for predicting segmen-
tation quality [9], RCA has the advantage of not requiring a training database
with good and bad segmentations. Image quality assessment (IQA) has previ-
ously been studied on the dataset of 5,000 UKBB cardiac cineMRI [10]. The
value here is in the cardiac specific ontology and derived rules could be used
to reduce variability in qualitative IQA terminology. However, the rudimentary
numerical analysis of segmentations, a score in the range [1 3], does not utilise
image data, nor provide a quantitative evaluation using traditional metrics on a
per-case basis. Further work on automating CMR IQA includes a field-of-view
assessment algorithm [11]. Here, Convolutional Neural Networks were used to
identify missing apical and basal slices in a test set after training on the UKBB
pilot database. A previous study on an unsupervised approach to artefact detec-
tion [10] employs dictionary learning to annotate affected images, but appears
insensitive to artefacts caused by movement. These approaches are not directly
applicable to predicting segmentation quality on a per-case basis.

Contributions are two-fold: 1) a thorough validation of RCA for the applica-
tion of cardiac MR segmentation. Our results indicate highly accurate predic-
tions of segmentation quality across various metrics; 2) Feasibility study of using
RCA for automatic QC in large-scale studies. RCA predictions correlate with
manual QC scores and enable outlier detection in a large set of 7,425 cases.

2 Method & Material

In RCA the idea is to build a classifier based on the test image using its predicted
segmentation as pseudo GT. Assuming that the predicted segmentation is of
good quality, the classifier should be able to segment at least one reference
image with high accuracy. This is a fair assumption in the context of machine
learning, where it is generally assumed that training data is similar to test data.
The advantage of RCA is that it detects whether there is a mismatch between
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Fig.1: Overview of the RCA framework for 3D cardiac MR with single-atlas
registration. In practice, the ground truth (GT) of the test image is unavailable
so ‘real DSC’ is unknown. Reference images with available GT are segmented
using the prediction on the test image. The best score obtained over all references
is used as a proxy for determining the quality of the prediction on the test image.

training and test data. If the predicted segmentation is of poor quality, the
RCA classifier should fail on all reference images. The performance of the RCA
classifier on the reference set is measured with a chosen quality metric (e.g,
Dice similarity coefficient (DSC)), and the highest score determines the quality
estimate for the test segmentation. The RCA classifier could be an Atlas Forest
[12] or, as used in this paper, a registration algorithm [13]. Figure 1 gives an
overview of RCA as applied in our study. More details can be found in [6].

We validate RCA for the purpose of predicting cardiac image segmentation
using carefully segmented atlases. Each atlas contains a short-axis end-diastolic
3D MRI, its manual segmentation and 6 anatomical landmarks. The images
have a pixel-resolution of 1.25 x 1.25 x 2.0 mm and span 256 x 256 x 56 voxels.
Landmarks are located at the apex, base and four extremes of the left-ventricular
(LV) cavity in the central slice. Each manual labelmap identifies voxels belonging
to the LV cavity (class 1), LV myocardium (class 2) and right-ventricular (RV)
cavity (class 4). These separate the heart from the background class, labelled 0.
Class 3 corresponds to papillary muscles, not considered in this paper.

For the RCA reference images, we use a set Ry = {Rll, ey R}L} of n = 20 car-
diac atlases with reference segmentations Rg = {Ré, e ,Rg}. For validation,
we use set Ty = {T{,--- , Ty} of another m = 80 atlases with reference seg-

mentations Tqg = {T é, e ,Tgl}. We then employ an automatic segmentation
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method to obtain predicted segmentations Tg = {Tsl, e ,Tg”} for each image
in Ty. Using RCA we estimate the quality of those predicted segmentations and
compare the estimates to the real quality w.r.t. reference GT.

In order to validate that RCA is able to accurately predict segmentation
performance, we generate automatic segmentations with varying quality. To this
end, we employ Random Forests (RFs) with 7' = 500 and a maximum depth
of D = 40 trained on the set of 20 reference images {Ry,Rg}. RFs allow us
to produce a variety of test segmentations with degraded segmentation quality
by limiting the depth of the trees during test time. We obtain sets of 80 ‘poor’,
‘average’ and ‘good’ segmentations by using depths of 5, 10 and 40 respectively.
Thus, a total of 240 segmentations are used in our validation study.

To apply RCA, all reference images and their segmentations {Ry, R} are
first registered to the i*® test image T} by performing a rigid registration. We then
perform non-linear registration of T} to each reference image in Ry to get warped
segmentations VV‘S For each segmentation pair in {Rg, W‘S} we evaluate DSC,
mean surface distance (MSD), root-mean-square error (RMS) and Hausdorff
distance (HD). The smallest of these values (or the largest in the case of DSC)
over all pairs is taken to be the predictor of segmentation accuracy for Tg. For
each test image, we report the evaluation metrics for each class label: 1, 2 and
4. We also report the average of each metric by evaluating the segmentation as
a whole rather than calculating a mean across the classes.

To identify individual cases where segmentation has failed, we incorporate a
classification strategy similar to [6]. We consider a 2-group classification where
DSC scores in the range [0.0 0.7) are considered ‘poor’ and in range [0.7 1.0] are
‘good’. These boundaries are somewhat arbitrary and would be adjusted for a
particular use-case. Other strategies could be employed on a task-specific basis,
e.g., formulation as outlier detection with further statistical measures.

3 Results

We perform RCA validation on all 240 3D segmentations using a reference set
of 20 atlases. A summary of the results is shown in Table 1. We obtain low
mean absolute error (MAE) across all evaluation metrics and all class labels.
The scatter plots in Fig. 2 on real and predicted scores illustrate the very good
performance of RCA in predicting segmentation scores. We also find that from
the 240 test segmentations, RCA is able to classify ‘good’ (DSC € [0.7 1.0]) and
‘poor’ (DSC € [0.1 0.7)) segmentations with an accuracy of 83%. For all eval-
uation metrics, there is a strong, positive linear relationship between predicted
and real values with » € [0.86 0.94] and p < 0.001. This analysis shows RCA’s
ability to correctly identify segmentations of poor quality - one of the primary
motivations of this work. When employed in an automated QC framework, we
would be less interested in the actual quality scores but would hope to be able
to flag up failed cases and select high quality results for further analyses. The
threshold could be chosen depending on the application’s requirements for what
qualifies as a ‘good’ segmentation. Failed segmentations could be re-segmented
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Table 1: Evaluation metrics for 240 segmentations. Accuracy is for the binary
classification case of ‘poor’ DSC € [0.0 0.7) and ‘good’ DSC € [0.7 1.0]. Mean
absolute error (MAE) reported between real and predicted scores for DSC, MSD,
RMS and HD. ‘All’ is the calculation on whole segmentations. Confusion matrix
(right) for the ‘All’ case is equivalent to shaded regions in Fig. 2.
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Fig. 2: Scatter plots of predicted and real scores for 240 segmentations generated
with Random Forests of depths 5 (black), 10 (blue) and 40 (red). Metrics are (left
to right) Dice similarity coefficient (DSC), mean surface distance (MSD), root-
mean-square error (RMS) and Hausdorff distance (HD). Mean absolute error is
reported. Correlation coefficients are r = 0.9, p < 0.001 for all metrics. Threshold
of 0.7 shown on DSC for classification accuracy.

with different parameters, regenerated with alternative methods, sent to a user
for manual inspection, or discarded from further analyses. The RCA validation
process was carried out on 8-core Intel i7 3.6 GHz machines. The whole process
- including segmentation, registration with reference images and metric evalua-
tions for a single test image took 7-10 minutes making it suitable for background
processing in large-scale studies and clinical workflows.

Automatic Quality Control on UK Biobank Imaging Study

RCA can predict segmentation quality in the absence of ground truth. This
makes it attractive for automatic QC in large databases such as those acquired in
population imaging. We performed RCA on automatic segmentations of cardiac
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Fig.3: (Top) Comparison of manual, based on LV myocardium, and automatic
QC score using RCA on 7,425 images from the UKBB. Class 2 predictions (y-
axis) of DSC, MSD, RMS and HD shown (left to right). Correlation is evident
between predictions and manual QC scores. (Bottom) A, B, C and D show images
with QC score of 1, 2, 5 and 6 respectively. Note that RCA has correctly flagged
C as a bad segmentation despite its good (but incorrect) manual QC score.

MR images from the UKBB Imaging Study' for which manual QC scores have
been obtained. These images have a resolution of 1.83 x 1.83 x 10.00 mm and
span 192 x 208 pixels per slice. Thus, they are of lower resolution and have a
larger slice thickness than the data in our validation study. The number of slices
per scan varies in the range [414] with the majority (89%) having 9-12 slices.

In total, 7,425 cardiac MR images were available to us through the UKBB
resource. Each image has been automatically segmented using a probabilistic
patch-based multi-atlas approach [13]. As part of a genome-wide association
study (GWAS), each automatic segmentation has been checked manually to
confirm segmentation quality. The manual QC is based on visual inspection of
the basal, mid and apical layers and for each layer a score between 0 and 2 is
assigned based on the quality of the class 2 segmentation, the LV myocardium.
The total QC score is thus between 0 and 6, where a 6 would be considered as
highly accurate segmentation. Where the UKBB images had a poor FOV, the
segmentations were immediately discarded for use in the GWAS study: we have
given these images a score of -1. We expect that despite the poor FOV of these
images, the segmentations itself might still be of good quality. Out of the 7,425
segmented images, 161 have a bad FOV (QC = —1) and 43 have an obviously
poor segmentation (QC = 0). There are 2, 13, 50, 307, 2941 and 3908 images
having QC scores [1 6] respectively. We explored how well RCA based quality
predictions correlate with those manual QC scores.

! UK Biobank Resource under Application Number 12579
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We performed RCA on all 7,425 segmentations using a reference set of 100
cardiac atlases that were earlier used for the validation experiment. The RCA
process took 30-40 minutes per UKBB image including 100 image registrations.
This could be reduced by employing an atlas pre-selection to choose only refer-
ence images that are most similar to the test image. Fig. 3 shows the relationship
between manual QC scores and the predicted DSC, MSD, RMS and HD obtained
from RCA. Note, these predictions are for class 2 and not the overall segmenta-
tion as this class was the focus of the manual QC. There is an evident correlation
between the manual QC score and the RCA predictions. Figure 3 shows a sam-
ple of segmentations from the 1, 2, 5 and 6 manual QC scores. With a score of
1, ‘A’ must have an ‘average’ quality segmentation of class 2 (LV myocardium)
at either the basal, apical or mid slice while the other layers are clearly poor.
Example ‘B’ has highly elongated LV myocardium and cavity leading to high
surface-distance metrics and a low DSC. This segmentation has been given a
score of 2 because the apical slice is well segmented while the rest is not which
is nicely picked up by RCA. In example ‘C’, the segmentation is clearly rotated
with respect to the image indicating failed initialisation for the atlas-based ap-
proach, but class 2 has a good segmentation in all three regions that gives it
its manual QC score of 5. Again, RCA is able to pick up such outliers. For the
majority of segmentations with a manual QC of 6, their RCA predictions also
indicate high quality. These examples demonstrate RCA’s ability to correctly
identify ‘poor’ segmentations when performing assessments over the entire 3D
segmentation. It also demonstrates the limitations of manual QC.

4 Conclusion

Reverse classification accuracy had been shown to effectively predict the accu-
racy of whole-body multi-organ segmentation. We have successfully validated
the RCA framework on 3D cardiac MR, demonstrating the robustness of the
methodology to different anatomy. RCA has been successful in identifying poor-
quality image segmentations with measurements of DSC, MSD, RMS and HD
and has shown excellent MAE against all metrics. RCA has also been successful
in producing a comparable outcome to a manual quality control procedure on a
large database of 7,425 images from the UK Biobank. Predicting segmentation
accuracy in the absence of ground truth is a step towards fully automated QC of
image analysis pipelines. Future work will investigate the use of RCA in adaptive
learning where automatic segmentations with predicted high quality will be used
for augmenting training sets. An attractive application is transfer learning and
domain adaptation where the automatic, high quality segmentations will help to
adjust a learned classifier such as a CNN to a new target domain.
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