12,553 research outputs found

    A Geospatial Service Model and Catalog for Discovery and Orchestration

    Get PDF
    The goal of this research is to provide a supporting Web services architecture, consisting of a service model and catalog, to allow discovery and automatic orchestration of geospatial Web services. First, a methodology for supporting geospatial Web services with existing orchestration tools is presented. Geospatial services are automatically translated into SOAP/WSDL services by a portable service wrapper. Their data layers are exposed as atomic functions while WSDL extensions provide syntactic metadata. Compliant services are modeled using the descriptive logic capabilities of the Ontology Language for the Web (OWL). The resulting geospatial service model has a number of functions. It provides a basic taxonomy of geospatial Web services that is useful for templating service compositions. It also contains the necessary annotations to allow discovery of services. Importantly, the model defines a number of logical relationships between its internal concepts which allow inconsistency detection for the model as a whole and for individual service instances as they are added to the catalog. These logical relationships have the additional benefit of supporting automatic classification of geospatial services individuals when they are added to the service catalog. The geospatial service catalog is backed by the descriptive logic model. It supports queries which are more complex that those available using standard relational data models, such as the capability to query using concept hierarchies. An example orchestration system demonstrates the use of the geospatial service catalog for query evaluation in an automatic orchestration system (both fully and semi-automatic orchestration). Computational complexity analysis and experimental performance analysis identify potential performance problems in the geospatial service catalog. Solutions to these performance issues are presented in the form of partitioning service instance realization, low cost pre-filtering of service instances, and pre-processing realization. The resulting model and catalog provide an architecture to support automatic orchestration capable of complementing the multiple service composition algorithms that currently exist. Importantly, the geospatial service model and catalog go beyond simply supporting orchestration systems. By providing a general solution to the modeling and discovery of geospatial Web services they are useful in any geospastial Web service enterprise

    Interactive composition of WSMO based semantic web services in IRS-III

    Get PDF
    The discovery and integration of services in a composition are challenging tasks due to the lack of semantic in the Web services' description. WSMO community is working on developing ontologies and infrastructures to support Semantic Web Services. In this paper, we present a tool that takes into account WSMO descriptions to support a user guided, interactive composition approach whereby Web services are discovered and recommended to the users according to the composition context. The generated composition is orchestrated in IRS-III by our Java API for dataflow orchestration

    Context-adaptive learning designs by using semantic web services

    Get PDF
    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources - whether data or services - within the learning design is done manually at design-time on the basis of the subjective appraisals of a learning designer. Since the actual learning context is known at runtime only, IMS-LD applications cannot adapt to a specific context or learner. Therefore, the reusability is limited and high development costs have to be taken into account to support a variety of contexts. To overcome these issues, we propose a highly dynamic approach based on Semantic Web Services (SWS) technology. Our aim is moving from the current data- and metadata-based to a context-adaptive service-orientated paradigm We introduce semantic descriptions of a learning process in terms of user objectives (learning goals) to abstract from any specific metadata standards and used learning resources. At runtime, learning goals are accomplished by automatically selecting and invoking the services that fit the actual user needs and process contexts. As a result, we obtain a dynamic adaptation to different contexts at runtime. Semantic mappings from our standard-independent process models will enable the automatic development of versatile, reusable IMS-LD applications as well as the reusability across multiple metadata standards. To illustrate our approach, we describe a prototype application based on our principles
    corecore