155 research outputs found

    Wavelet Fault Diagnosis of Induction Motor

    Get PDF

    Diagnosis of induction motor faults via gabor analysis of the current in transient regime

    Full text link
    © 2011 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Time-frequency analysis of the transient current in induction motors (IMs) is the basis of the transient motor current signature analysis diagnosis method. IM faults can be accurately identified by detecting the characteristic pattern that each type of fault produces in the time-frequency plane during a speed transient. Diverse transforms have been proposed to generate a 2-D time-frequency representation of the current, such as the short time Fourier transform (FT), the wavelet transform, or the Wigner-Ville distribution. However, a fine tuning of their parameters is needed in order to obtain a high-resolution image of the fault in the time-frequency domain, and they also require a much higher processing effort than traditional diagnosis techniques, such as the FT. The new method proposed in this paper addresses both problems using the Gabor analysis of the current via the chirp z-transform, which can be easily adapted to generate high-resolution time-frequency stamps of different types of faults. In this paper, it is used to diagnose broken bars and mixed eccentricity faults of an IM using the current during a startup transient. This new approach is theoretically introduced and experimentally validated with a 1.1-kW commercial motor in faulty and healthy conditions. © 2012 IEEE.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in the framework of the VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011. (Programa Nacional de proyectos de Investigacion Fundamental, project reference DPI2011-23740). The Associate Editor coordinating the review process for this paper was Dr. Subhas Mukhopadhyay.Riera-Guasp, M.; Pineda-Sanchez, M.; Pérez-Cruz, J.; Puche-Panadero, R.; Roger-Folch, J.; Antonino-Daviu, J. (2012). Diagnosis of induction motor faults via gabor analysis of the current in transient regime. IEEE Transactions on Instrumentation and Measurement. 61(6):1583-1596. doi:10.1109/TIM.2012.2186650S1583159661

    Broken bar fault diagnosis for induction machines under load variation condition using discrete Wavelet transform

    Get PDF
    The paper presents a new approach for detection of broken rotor bar fault in squirrel cage induction motors operating under varying load conditions. A mathematical model used in the presented method was developed using winding function approach to provide indication references for induction motor parameters under load variation. The model shows a strong relationship between broken rotor bar fault and stator current. The method is based on analysis of stator current using discrete wavelet transform. To verify the proposed method a squirrel cage induction motor with 1, 2 and 3 broken bars at no-load, half- and full-load conditions was investigated. Obtained experimental results confirmed the validity of the proposed approach

    Toward condition monitoring of damper windings in synchronous motors via EMD analysis

    Full text link
    (c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Failures in damper windings of synchronous machines operating in real facilities have been recently reported by several authors and companies. These windings are crucial elements of synchronous motors and generators, playing an important role in the asynchronous startup of these machines as well as in their stability during load transients. However, the diagnosis of failures in such elements has barely been studied in the literature. This paper presents a method to diagnose the condition of damper bars in synchronous motors. It is based on the capture of the stator current of the machine during a direct startup and its further analysis in order to track the characteristic transient evolution of a particular fault-related component in the time-frequency map. The fact that the damper only carries significant current during the startup and little or no current, when the machine operates in steady state, makes this transient-based approach specially suited for the detection of such failure. The Hilbert-Huang transform (based on the empirical mode decomposition method) is proposed as a signal-processing tool. Simulation and experimental results on laboratory synchronous machines prove the validity of the approach for condition monitoring of such windings. © 2012 IEEE.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in the framework of the VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011. (Programa Nacional de proyectos de Investigacion Fundamental, project reference DPI2011-23740). Paper no. TEC-00443-2011.Antonino-Daviu, J.; Riera-Guasp, M.; Pons Llinares, J.; Roger-Folch, J.; Perez, R.; Charlton-Perez, C. (2012). Toward condition monitoring of damper windings in synchronous motors via EMD analysis. IEEE Transactions on Energy Conversion. 27(2):432-439. https://doi.org/10.1109/TEC.2012.2190292S43243927

    Failure Diagnosis of Squirrel-Cage Induction Motor with Broken Rotor Bars and End Rings

    Get PDF
    This chapter investigates the diagnosis of not only broken bar but also broken end ring faults in an induction motor. The difference between the broken bars and broken end ring segments is experimentally clarified by the Fourier analysis of the stator current. This difference is verified by two-dimensional finite element (FE) analysis that takes into consideration the voltage equation and the end ring. The electromagnetic field in the undamaged motor and the motor with broken bars and broken end ring segments is analyzed. The effect of the number of broken bars and broken end ring segments on the motor performance is clarified. Moreover, transient response is analyzed by the wavelet analysis

    Acoustic Condition Monitoring & Fault Diagnostics for Industrial Systems

    Get PDF
    Condition monitoring and fault diagnostics for industrial systems is required for cost reduction, maintenance scheduling, and reducing system failures. Catastrophic failure usually causes significant damage and may cause injury or fatality, making early and accurate fault diagnostics of paramount importance. Existing diagnostics can be improved by augmenting or replacing with acoustic measurements, which have proven advantages over more traditional vibration measurements including, earlier detection of emerging faults, increased diagnostic accuracy, remote sensors and easier setup and operation. However, industry adoption of acoustics remains in relative infancy due to vested confidence and reliance on existing measurement and, perceived difficulties with noise contamination and diagnostic accuracy. Researched acoustic monitoring examples typically employ specialist surface-mount transducers, signal amplification, and complex feature extraction and machine learning algorithms, focusing on noise rejection and fault classification. Usually, techniques are fine-tuned to maximise diagnostic performance for the given problem. The majority investigate mechanical fault modes, particularly Roller Element Bearings (REBs), owing to the mechanical impacts producing detectable acoustic waves. The first contribution of this project is a suitability study into the use of low-cost consumer-grade acoustic sensors for fault diagnostics of six different REB health conditions, comparing against vibration measurements. Experimental results demonstrate superior acoustic performance throughout but particularly at lower rotational speed and axial load. Additionally, inaccuracies caused by dynamic operational parameters (speed in this case), are minimised by novel multi-Support Vector Machine training. The project then expands on existing work to encompass diagnostics for a previously unreported electrical fault mode present on a Brush-Less Direct Current motor drive system. Commonly studied electrical faults, such as a broken rotor bar or squirrel cage, result from mechanical component damage artificially seeded and not spontaneous. Here, electrical fault modes are differentiated as faults caused by issues with the power supply, control system or software (not requiring mechanical damage or triggering intervention). An example studied here is a transient current instability, generated by non-linear interaction of the motor electrical parameters, parasitic components and digital controller realisation. Experimental trials successfully demonstrate real-time feature extraction and further validate consumer-grade sensors for industrial system diagnostics. Moreover, this marks the first known diagnosis of an electrically-seeded fault mode as defined in this work. Finally, approaching an industry-ready diagnostic system, the newly released PYNQ-Z2 Field Programmable Gate Array is used to implement the first known instance of multiple feature extraction algorithms that operate concurrently in continuous real-time. A proposed deep-learning algorithm can analyse the features to determine the optimum feature extraction combination for ongoing continuous monitoring. The proposed black-box, all-in-one solution, is capable of accurate unsupervised diagnostics on almost any application, maintaining excellent diagnostic performance. This marks a major leap forward from fine-tuned feature extraction performed offline for artificially seeded mechanical defects to multiple real-time feature extraction demonstrated on a spontaneous electrical fault mode with a versatile and adaptable system that is low-cost, readily available, with simple setup and operation. The presented concept represents an industry-ready all-in-one acoustic diagnostic solution, that is hoped to increase adoption of acoustic methods, greatly improving diagnostics and minimising catastrophic failures

    Diagnosis of Induction Motor Faults in Time-Varying Conditions Using the Polynomial-Phase Transform of the Current

    Full text link
    © 2011 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Transient motor current signature analysis is a recently developed technique for motor diagnostics using speed transients. The whole speed range is used to create a unique stamp of each fault harmonic in the time-frequency plane. This greatly increases diagnostic reliability when compared with non-transient analysis, which is based on the detection of fault harmonics at a single speed. But this added functionality comes at a price: well-established signal analysis tools used in the permanent regime, mainly the Fourier transform, cannot be applied to the nonstationary currents of a speed transient. In this paper, a new method is proposed to fill this gap. By applying a polynomial-phase transform to the transient current, a new, stationary signal is generated. This signal contains information regarding the fault components along the different regimes covered by the transient, and can be analyzed using the Fourier transform. The polynomial-phase transform is used in radar, sonar, communications, and power systems fields, but this is the first time, to the best knowledge of the authors, that it has been applied to the diagnosis of induction motor faults. Experimental results obtained with two different commercial motors with broken bars are presented to validate the proposed method.This work was supported by the Spanish "Ministerio de Educacion y Ciencia" in the framework of the "Programa Nacional de Proyectos de Investigacion Fundamental," project reference DPI2008-06583/DPI.Pineda-Sanchez, M.; Riera-Guasp, M.; Roger-Folch, J.; Antonino-Daviu, J.; Pérez-Cruz, J.; Puche-Panadero, R. (2011). Diagnosis of Induction Motor Faults in Time-Varying Conditions Using the Polynomial-Phase Transform of the Current. IEEE Transactions on Industrial Electronics. 58(4):1428-1439. https://doi.org/10.1109/TIE.2010.2050755S1428143958

    Transient tracking of low and high-order eccentricity-related components in induction motors via TFD tools

    Full text link
    [EN] The present work is focused on the diagnosis of mixed eccentricity faults in induction motors via the study of currents demanded by the machine. Unlike traditional methods, based on the analysis of stationary currents (Motor Current Signature Analysis (MCSA)), this work provides new findings regarding the diagnosis approach proposed by the authors in recent years, which is mainly focused on the fault diagnosis based on the analysis of transient quantities, such as startup or plug stopping currents (Transient Motor Current Signature Analysis (TMCSA)), using suitable time-frequency decomposition (TFD) tools. The main novelty of this work is to prove the usefulness of tracking the transient evolution of high-order eccentricity-related harmonics in order to diagnose the condition of the machine, complementing the information obtained with the low-order components, whose transient evolution was well characterised in previous works. Tracking of high-order eccentricity-related harmonics during the transient, through their associated patterns in the time-frequency plane, may significantly increase the reliability of the diagnosis, since the set of fault-related patterns arising after application of the corresponding TFD tool is very unlikely to be caused by other faults or phenomena. Although there are different TFD tools which could be suitable for the transient extraction of these harmonics, this paper makes use of a WignerVille distribution (WVD)-based algorithm in order to carry out the time-frequency decomposition of the startup current signal, since this is a tool showing an excellent trade-off between frequency resolution at both high and low frequencies. Several simulation results obtained with a finite element-based model and experimental results show the validity of this fault diagnosis approach under several faulty and operating conditions. Also, additional signals corresponding to the coexistence of the eccentricity and other non-fault related phenomena making difficult the diagnosis (fluctuating load torque) are included in the paper. Finally, a comparison with an alternative TFD tool the discrete wavelet transform (DWT) applied in previous papers, is also carried out in the contribution. The results are promising regarding the usefulness of the methodology for the reliable diagnosis of eccentricities and for their discrimination against other phenomena. © 2010 Elsevier Ltd.All rights reserved.This work was supported by the Spanish 'Ministerio de Educacion y Ciencia', in the framework of the 'Programa Nacional de proyectos de Investigacion Fundamental', project reference DP12008-06583/DPI.Climente Alarcón, V.; Antonino-Daviu, J.; Riera-Guasp, M.; Pons Llinares, J.; Roger-Folch, J.; Jover-Rodriguez, P.; Arkkio, A. (2011). Transient tracking of low and high-order eccentricity-related components in induction motors via TFD tools. Mechanical Systems and Signal Processing. 25(2):667-679. https://doi.org/10.1016/j.ymssp.2010.08.008S66767925

    Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current's FFT

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The discrete wavelet transform (DWT) has attracted a rising interest in recent years to monitor the condition of rotating electrical machines in transient regime, because it can reveal the time-frequency behavior of the current's components associated to fault conditions. Nevertheless, the implementation of the wavelet transform (WT), especially on embedded or low-power devices, faces practical problems, such as the election of the mother wavelet, the tuning of its parameters, the coordination between the sampling frequency and the levels of the transform, and the construction of the bank of wavelet filters, with highly different bandwidths that constitute the core of the DWT. In this paper, a diagnostic system using the harmonic WT is proposed, which can alleviate these practical problems because it is built using a single fast Fourier transform of one phase's current. The harmonic wavelet was conceived to perform musical analysis, hence its name, and it has spread into many fields, but, to the best of the authors' knowledge, it has not been applied before to perform fault diagnosis of rotating electrical machines in transient regime using the stator current. The simplicity and performance of the proposed approach are assessed by comparison with other types of WTs, and it has been validated with the experimental diagnosis of a 3.15-MW induction motor with broken bars.This work was supported by the Spanish Ministerio de Ciencia e Innovacion through the Programa Nacional de Proyectos de Investigacion Fundamental under Project DPI2011-23740. The Associate Editor coordinating the review process was Dr. Ruqiang Yan.Sapena-Bano, A.; Pineda-Sanchez, M.; Puche-Panadero, R.; Martinez-Roman, J.; Matic, D. (2015). Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current's FFT. IEEE Transactions on Instrumentation and Measurement. 64(11):3137-3146. https://doi.org/10.1109/TIM.2015.2444240S31373146641
    • …
    corecore