6,649 research outputs found

    Joint Multi-Pitch Detection Using Harmonic Envelope Estimation for Polyphonic Music Transcription

    Get PDF
    In this paper, a method for automatic transcription of music signals based on joint multiple-F0 estimation is proposed. As a time-frequency representation, the constant-Q resonator time-frequency image is employed, while a novel noise suppression technique based on pink noise assumption is applied in a preprocessing step. In the multiple-F0 estimation stage, the optimal tuning and inharmonicity parameters are computed and a salience function is proposed in order to select pitch candidates. For each pitch candidate combination, an overlapping partial treatment procedure is used, which is based on a novel spectral envelope estimation procedure for the log-frequency domain, in order to compute the harmonic envelope of candidate pitches. In order to select the optimal pitch combination for each time frame, a score function is proposed which combines spectral and temporal characteristics of the candidate pitches and also aims to suppress harmonic errors. For postprocessing, hidden Markov models (HMMs) and conditional random fields (CRFs) trained on MIDI data are employed, in order to boost transcription accuracy. The system was trained on isolated piano sounds from the MAPS database and was tested on classic and jazz recordings from the RWC database, as well as on recordings from a Disklavier piano. A comparison with several state-of-the-art systems is provided using a variety of error metrics, where encouraging results are indicated

    Evaluating Automatic Polyphonic Music Transcription

    Get PDF
    Automatic Music Transcription (AMT) is an important task in music information retrieval. Prior work has focused on multiple fundamental frequency estimation (multi-pitch detection), the conversion of an audio signal into a timefrequency representation such as a MIDI file. It is less common to annotate this output with musical features such as voicing information, metrical structure, and harmonic information, though these are important aspects of a complete transcription. Evaluation of these features is most often performed separately and independent of multi-pitch detection; however, these features are non-independent. We therefore introduce M V 2H, a quantitative, automatic, joint evaluation metric based on musicological principles, and show its effectiveness through the use of specific examples. The metric is modularised in such a way that it can still be used with partially performed annotation— for example, when the transcription process has been applied to some transduced format such as MIDI (which may itself be the result of multi-pitch detection). The code for the evaluation metric described here is available at https://www.github.com/apmcleod/MV2H

    POLYPHONIC PIANO TRANSCRIPTION USING NON-NEGATIVE MATRIX FACTORISATION WITH GROUP SPARSITY

    Get PDF
    (c)2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published in: Proc IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 5-9 May 2014. pp.3136-3140

    Polyphonic music transcription using note onset and offset detection

    Get PDF
    In this paper, an approach for polyphonic music transcription based on joint multiple-F0 estimation and note onset/offset detection is proposed. For preprocessing, the resonator time-frequency image of the input music signal is extracted and noise suppression is performed. A pitch salience function is extracted for each frame along with tuning and inharmonicity parameters. For onset detection, late fusion is employed by combining a novel spectral flux-based feature which incorporates pitch tuning information and a novel salience function-based descriptor. For each segment defined by two onsets, an overlapping partial treatment procedure is used and a pitch set score function is proposed. A note offset detection procedure is also proposed using HMMs trained on MIDI data. The system was trained on piano chords and tested on classic and jazz recordings from the RWC database. Improved transcription results are reported compared to state-of-the-art approaches
    corecore