598 research outputs found

    Neural-network-aided automatic modulation classification

    Get PDF
    Automatic modulation classification (AMC) is a pattern matching problem which significantly impacts divers telecommunication systems, with significant applications in military and civilian contexts alike. Although its appearance in the literature is far from novel, recent developments in machine learning technologies have triggered an increased interest in this area of research. In the first part of this thesis, an AMC system is studied where, in addition to the typical point-to-point setup of one receiver and one transmitter, a second transmitter is also present, which is considered an interfering device. A convolutional neural network (CNN) is used for classification. In addition to studying the effect of interference strength, we propose a modification attempting to leverage some of the debilitating results of interference, and also study the effect of signal quantisation upon classification performance. Consequently, we assess a cooperative setting of AMC, namely one where the receiver features multiple antennas, and receives different versions of the same signal from the single-antenna transmitter. Through the combination of data from different antennas, it is evidenced that this cooperative approach leads to notable performance improvements over the established baseline. Finally, the cooperative scenario is expanded to a more complicated setting, where a realistic geographic distribution of four receiving nodes is modelled, and furthermore, the decision-making mechanism with regard to the identity of a signal resides in a fusion centre independent of the receivers, connected to them over finite-bandwidth backhaul links. In addition to the common concerns over classification accuracy and inference time, data reduction methods of various types (including “trained” lossy compression) are implemented with the objective of minimising the data load placed upon the backhaul links.Open Acces

    Automatic modulation classification of communication signals

    Get PDF
    The automatic modulation recognition (AMR) plays an important role in various civilian and military applications. Most of the existing AMR algorithms assume that the input signal is only of analog modulation or is only of digital modulation. In blind environments, however, it is impossible to know in advance if the received communication signal is analogue modulated or digitally modulated. Furthermore, it is noted that the applications of the currently existing AMR algorithms designed for handling both analog and digital communication signals are rather restricted in practice. Motivated by this, an AMR algorithm that is able to discriminate between analog communication signals and digital communication signals is developed in this dissertation. The proposed algorithm is able to recognize the concrete modulation type if the input is an analog communication signal and to estimate the number of modulation levels and the frequency deviation if the input is an exponentially modulated digital communication signal. For linearly modulated digital communication signals, the proposed classifier will classify them into one of several nonoverlapping sets of modulation types. In addition, in M-ary FSK (MFSK) signal classification, two classifiers have also been developed. These two classifiers are also capable of providing good estimate of the frequency deviation of a received MFSK signal. For further classification of linearly modulated digital communication signals, it is often necessary to blindly equalize the received signal before performing modulation recognition. This doing generally requires knowing the carrier frequency and symbol rate of the input signal. For this purpose, a blind carrier frequency estimation algorithm and a blind symbol rate estimation algorithm have been developed. The carrier frequency estimator is based on the phases of the autocorrelation functions of the received signal. Unlike the cyclic correlation based estimators, it does not require the transmitted symbols being non-circularly distributed. The symbol rate estimator is based on digital communication signals\u27 cyclostationarity related to the symbol rate. In order to adapt to the unknown symbol rate as well as the unknown excess bandwidth, the received signal is first filtered by using a bank of filters. Symbol rate candidates and their associated confident measurements are extracted from the fourth order cyclic moments of the filtered outputs, and the final estimate of symbol rate is made based on weighted majority voting. A thorough evaluation of some well-known feature based AMR algorithms is also presented in this dissertation

    An M-QAM Signal Modulation Recognition Algorithm in AWGN Channel

    Full text link
    Computing the distinct features from input data, before the classification, is a part of complexity to the methods of Automatic Modulation Classification (AMC) which deals with modulation classification was a pattern recognition problem. Although the algorithms that focus on MultiLevel Quadrature Amplitude Modulation (M-QAM) which underneath different channel scenarios was well detailed. A search of the literature revealed indicates that few studies were done on the classification of high order M-QAM modulation schemes like128-QAM, 256-QAM, 512-QAM and1024-QAM. This work is focusing on the investigation of the powerful capability of the natural logarithmic properties and the possibility of extracting Higher-Order Cumulant's (HOC) features from input data received raw. The HOC signals were extracted under Additive White Gaussian Noise (AWGN) channel with four effective parameters which were defined to distinguished the types of modulation from the set; 4-QAM~1024-QAM. This approach makes the recognizer more intelligent and improves the success rate of classification. From simulation results, which was achieved under statistical models for noisy channels, manifest that recognized algorithm executes was recognizing in M-QAM, furthermore, most results were promising and showed that the logarithmic classifier works well over both AWGN and different fading channels, as well as it can achieve a reliable recognition rate even at a lower signal-to-noise ratio (less than zero), it can be considered as an Integrated Automatic Modulation Classification (AMC) system in order to identify high order of M-QAM signals that applied a unique logarithmic classifier, to represents higher versatility, hence it has a superior performance via all previous works in automatic modulation identification systemComment: 18 page

    SplitAMC: Split Learning for Robust Automatic Modulation Classification

    Full text link
    Automatic modulation classification (AMC) is a technology that identifies a modulation scheme without prior signal information and plays a vital role in various applications, including cognitive radio and link adaptation. With the development of deep learning (DL), DL-based AMC methods have emerged, while most of them focus on reducing computational complexity in a centralized structure. This centralized learning-based AMC (CentAMC) violates data privacy in the aspect of direct transmission of client-side raw data. Federated learning-based AMC (FedeAMC) can bypass this issue by exchanging model parameters, but causes large resultant latency and client-side computational load. Moreover, both CentAMC and FedeAMC are vulnerable to large-scale noise occured in the wireless channel between the client and the server. To this end, we develop a novel AMC method based on a split learning (SL) framework, coined SplitAMC, that can achieve high accuracy even in poor channel conditions, while guaranteeing data privacy and low latency. In SplitAMC, each client can benefit from data privacy leakage by exchanging smashed data and its gradient instead of raw data, and has robustness to noise with the help of high scale of smashed data. Numerical evaluations validate that SplitAMC outperforms CentAMC and FedeAMC in terms of accuracy for all SNRs as well as latency.Comment: to be presented at IEEE VTC2023-Sprin

    Automatic Modulation Classification for Adaptive Wireless OFDM Systems

    Get PDF

    Cumulant-Based Automatic Modulation Classification Over Frequency-Selective Channels

    Get PDF
    Automatic modulation classification (AMC), being an integral part of multi-standard communication systems, allows for the identification of modulation schemes of detected signals. The need for this type of blind modulation classification process can be evidently seen in areas such as interference identification and spectrum management. Consequently, AMC has been widely recognized as a key driving technology for military, security, and civilian applications for decades. A major challenge in AMC is the underlying frequency selectivity of the wireless channel, causing an increase in complexity of the classification process. Motivated by this practical concern, we propose the use of k-nearest neighbor (KNN) classifier based on higher-order of statistics (HOS), which are calculated as features to distinguish between different types of modulation types. The channel is assumed to b multipath frequency-selective and the modulation schemes considered are {2, 4, 8} phase-shift keying (PSK) and {16, 64, 256} quadrature amplitude modulation (QAM). The simulation results confirmed the superiority of this approach over existing methods

    Automatic modulation classification based deep learning with mixed feature

    Get PDF
    The automatic modulation classification (AMC) plays an important and necessary role in the truncated wireless signal, which is used in modern communications. The proposed convolution neural network (CNN) for AMC is based on a method of feature expansion by integrating I/Q (time form) with r/Ćź (polar form) in order to take advantage of two things: first, feature expansion helps to increase features; the second is that converting to polar form helps to increase classification accuracy for higher order modulation due to diversity in polar form. CNN consists of six blocks. Each block contains symmetric and asymmetric filters, as well as max and average pooling filters. This paper uses DeepSig: RadioML which is a dataset of 24 modulation classes. The proposed network has outperformed many recent papers in terms of classification accuracy for 24 modulation types, with a classification accuracy of up to 96.06 at an SNR=20 dB

    Automatic Modulation Classification Using Cyclic Features via Compressed Sensing

    Get PDF
    Cognitive Radios (CRs) are designed to operate with minimal interference to the Primary User (PU), the incumbent to a radio spectrum band. To ensure that the interference generated does not exceed a specific level, an estimate of the Signal to Interference plus Noise Ratio (SINR) for the PU’s channel is required. This can be accomplished through determining the modulation scheme in use, as it is directly correlated with the SINR. To this end, an Automatic Modulation Classification (AMC) scheme is developed via cyclic feature detection that is successful even with signal bandwidths that exceed the sampling rate of the CR. In order to accomplish this, Compressed Sensing (CS) is applied, allowing for reconstruction, even with very few samples. The use of CS in spectrum sensing and interpretation is becoming necessary for a growing number of scenarios where the radio spectrum band of interest cannot be fully measured, such as low cost sensor networks, or high bandwidth radio localization services. In order to be able to classify a wide range of modulation types, cumulants were chosen as the feature to use. They are robust to noise and provide adequate discrimination between different types of modulation, even those that are fairly similar, such as 16-QAM and 64-QAM. By fusing cumulants and CS, a novel method of classification was developed which inherited the noise resilience of cumulants, and the low sample requirements of CS. Comparisons are drawn between the proposed method and existing ones, both in terms of accuracy and resource usages. The proposed method is shown to perform similarly when many samples are gathered, and shows improvement over existing methods at lower sample counts. It also uses less resources, and is able to produce an estimate faster than the current systems
    • …
    corecore