11,271 research outputs found

    Empirical Bayes conditional density estimation

    Full text link
    The problem of nonparametric estimation of the conditional density of a response, given a vector of explanatory variables, is classical and of prominent importance in many prediction problems since the conditional density provides a more comprehensive description of the association between the response and the predictor than, for instance, does the regression function. The problem has applications across different fields like economy, actuarial sciences and medicine. We investigate empirical Bayes estimation of conditional densities establishing that an automatic data-driven selection of the prior hyper-parameters in infinite mixtures of Gaussian kernels, with predictor-dependent mixing weights, can lead to estimators whose performance is on par with that of frequentist estimators in being minimax-optimal (up to logarithmic factors) rate adaptive over classes of locally H\"older smooth conditional densities and in performing an adaptive dimension reduction if the response is independent of (some of) the explanatory variables which, containing no information about the response, are irrelevant to the purpose of estimating its conditional density

    Outlier robust system identification: a Bayesian kernel-based approach

    Full text link
    In this paper, we propose an outlier-robust regularized kernel-based method for linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. To build robustness to outliers, we model the measurement noise as realizations of independent Laplacian random variables. The identification problem is cast in a Bayesian framework, and solved by a new Markov Chain Monte Carlo (MCMC) scheme. In particular, exploiting the representation of the Laplacian random variables as scale mixtures of Gaussians, we design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods.Comment: 5 figure
    • …
    corecore