271 research outputs found

    Detection-aided medical image segmentation using deep learning

    Get PDF
    The details of the work will be defined once the student reaches the destination institution.A fully automatic technique for segmenting the liver and localizing its unhealthy tissues is a convenient tool in order to diagnose hepatic diseases and also to assess the response to the according treatments. In this thesis we propose a method to segment the liver and its lesions from Computed Tomography (CT) scans, as well as other anatomical structures and organs of the human body. We have used Convolutional Neural Networks (CNNs), that have proven good results in a variety of tasks, including medical imaging. The network to segment the lesions consists of a cascaded architecture, which first focuses on the liver region in order to segment the lesion. Moreover, we train a detector to localize the lesions and just keep those pixels from the output of the segmentation network where a lesion is detected. The segmentation architecture is based on DRIU (Maninis, 2016), a Fully Convolutional Network (FCN) with side outputs that work at feature maps of different resolutions, to finally benefit from the multi-scale information learned by different stages of the network. Our pipeline is 2.5D, as the input of the network is a stack of consecutive slices of the CT scans. We also study different methods to benefit from the liver segmentation in order to delineate the lesion. The main focus of this work is to use the detector to localize the lesions, as we demonstrate that it helps to remove false positives triggered by the segmentation network. The benefits of using a detector on top of the segmentation is that the detector acquires a more global insight of the healthiness of a liver tissue compared to the segmentation network, whose final output is pixel-wise and is not forced to take a global decision over a whole liver patch. We show experiments with the LiTS dataset for the lesion and liver segmentation. In order to prove the generality of the segmentation network, we also segment several anatomical structures from the Visceral dataset

    Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural Networks

    Full text link
    A cascade of fully convolutional neural networks is proposed to segment multi-modal Magnetic Resonance (MR) images with brain tumor into background and three hierarchical regions: whole tumor, tumor core and enhancing tumor core. The cascade is designed to decompose the multi-class segmentation problem into a sequence of three binary segmentation problems according to the subregion hierarchy. The whole tumor is segmented in the first step and the bounding box of the result is used for the tumor core segmentation in the second step. The enhancing tumor core is then segmented based on the bounding box of the tumor core segmentation result. Our networks consist of multiple layers of anisotropic and dilated convolution filters, and they are combined with multi-view fusion to reduce false positives. Residual connections and multi-scale predictions are employed in these networks to boost the segmentation performance. Experiments with BraTS 2017 validation set show that the proposed method achieved average Dice scores of 0.7859, 0.9050, 0.8378 for enhancing tumor core, whole tumor and tumor core, respectively. The corresponding values for BraTS 2017 testing set were 0.7831, 0.8739, and 0.7748, respectively.Comment: 12 pages, 5 figures. MICCAI Brats Challenge 201

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Modeling the Intra-class Variability for Liver Lesion Detection using a Multi-class Patch-based CNN

    Full text link
    Automatic detection of liver lesions in CT images poses a great challenge for researchers. In this work we present a deep learning approach that models explicitly the variability within the non-lesion class, based on prior knowledge of the data, to support an automated lesion detection system. A multi-class convolutional neural network (CNN) is proposed to categorize input image patches into sub-categories of boundary and interior patches, the decisions of which are fused to reach a binary lesion vs non-lesion decision. For validation of our system, we use CT images of 132 livers and 498 lesions. Our approach shows highly improved detection results that outperform the state-of-the-art fully convolutional network. Automated computerized tools, as shown in this work, have the potential in the future to support the radiologists towards improved detection.Comment: To be presented at PatchMI: 3rd International Workshop on Patch-based Techniques in Medical Imaging, MICCAI 201
    • …
    corecore