172 research outputs found

    A survey, review, and future trends of skin lesion segmentation and classification

    Get PDF
    The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis

    A Review on Skin Disease Classification and Detection Using Deep Learning Techniques

    Get PDF
    Skin cancer ranks among the most dangerous cancers. Skin cancers are commonly referred to as Melanoma. Melanoma is brought on by genetic faults or mutations on the skin, which are caused by Unrepaired Deoxyribonucleic Acid (DNA) in skin cells. It is essential to detect skin cancer in its infancy phase since it is more curable in its initial phases. Skin cancer typically progresses to other regions of the body. Owing to the disease's increased frequency, high mortality rate, and prohibitively high cost of medical treatments, early diagnosis of skin cancer signs is crucial. Due to the fact that how hazardous these disorders are, scholars have developed a number of early-detection techniques for melanoma. Lesion characteristics such as symmetry, colour, size, shape, and others are often utilised to detect skin cancer and distinguish benign skin cancer from melanoma. An in-depth investigation of deep learning techniques for melanoma's early detection is provided in this study. This study discusses the traditional feature extraction-based machine learning approaches for the segmentation and classification of skin lesions. Comparison-oriented research has been conducted to demonstrate the significance of various deep learning-based segmentation and classification approaches

    Step-wise Integration of Deep Class-specific Learning for Dermoscopic Image Segmentation

    Get PDF
    The segmentation of abnormal regions on dermoscopic images is an important step for automated computer aided diagnosis (CAD) of skin lesions. Recent methods based on fully convolutional networks (FCN) have been very successful for dermoscopic image segmentation. However, they tend to overfit to the visual characteristics that are present in the dominant non-melanoma studies and therefore, perform poorly on the complex visual characteristics exhibited by melanoma studies, which usually consists of fuzzy boundaries and heterogeneous textures. In this paper, we propose a new method for automated skin lesion segmentation that overcomes these limitations via a novel deep class-specific learning approach which learns the important visual characteristics of the skin lesions of each individual class (melanoma vs non-melanoma) on an individual basis. We also introduce a new probability-based, step-wise integration to combine complementary segmentation results derived from individual class-specific learning models. We achieved an average Dice coefficient of 85.66% on the ISBI 2017 Skin Lesion Challenge (SLC), 91.77% on the ISBI 2016 SLC and 92.10% on the PH2 datasets with corresponding Jaccard indices of 77.73%, 85.92% and 85.90%, respectively, for the same datasets. Our experiments on three well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation
    corecore