8,424 research outputs found

    Automatic active acoustic target detection in turbulent aquatic environments

    Get PDF
    This work is funded by the Environment and Food Security theme Ph.D. studentship from the University of Aberdeen, the Natural Environment Research Council (NERC) and Department for Environment, Food, and Rural Affairs (Defra grant NE/J004308/1), and the Marine Collaboration Research Forum (MarCRF). We would like to gratefully acknowledge the support from colleagues at Marine Scotland Science.Peer reviewedPublisher PD

    A fisheries acoustic multi-frequency indicator to inform on large scale spatial patterns of aquatic pelagic ecosystems

    Get PDF
    Fisheries acoustic instruments provide information on four major groups in aquatic ecosystems: fish with and without swim bladder (tertiary and quaternary consumers), fluidlike zooplankton (secondary consumers) and small gas bearing organisms such as larval fish and phytoplankton (predominantly primary producers). We entertain that this information is useable to describe the spatial structure of organism groups in pelagic ecosystems. The proposal we make is based on a multi-frequency indicator that synthesises in a single metric the shape of the acoustic frequency response of different organism groups, i.e. the dependence of received acoustic backscattered energy on emitting echosounder frequency. We demonstrate the development and interpretation of the multi-frequency indicator using simulated data. We then calculate the indicator for acoustic water-column survey data from the Bay of Biscay and use it to create reference maps for the spatial structure of the four scattering groups as well as their small scale spatial variability. These maps provide baselines for monitoring future changes in the structure of the pelagic ecosystem

    In-Suit Doppler Technology Assessment

    Get PDF
    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations

    Turbulent ship wakes and their spatiotemporal extent

    Get PDF
    Shipping activities occur in almost every part of the global oceans and in intensely trafficked shipping lanes there can be up to one ship passage every ten minutes. All these ships impact the marine environment in different ways through pollution or physical disturbance. This thesis is focused on the turbulent ship wake, a physical disturbance from ships and previously overlooked as an environmental impact. When a ship moves through water, the turbulence induced by the propeller and hull, will create a turbulent wake that remains and expands after the ship passage. The turbulence in the wake will govern the spread of contaminants and affect gas exchange in the wake water, physically perturb plankton, and potentially impact local biogeochemistry through increased vertical mixing.To be able to assess the environmental impact of ship-induced turbulence in areas with intense ship traffic, knowledge of the spatiotemporal extent and development of the turbulent wake is necessary. The aim of this thesis is to increase that knowledge, by conducting in situ observations of turbulent ship wakes, which can be used to estimate the spatiotemporal extent of the turbulent wake. By using a collection of methods, the thesis work has resulted in a first estimate of the spatiotemporal extent of the turbulent ship wake, based on more than 200 field observations of different real-size ships in natural conditions. The observed turbulent wakes showed large variation in their spatiotemporal extent, and further studies are needed to fully disentangle how environmental conditions and vessel specifications affect the intensity and extent of the turbulent wake. The results and experiences gained from the in situ observations, give an indication of the complexity entailed in characterising the development of the turbulent wake, and provide valuable input regarding the relevant parameters and spatiotemporal scales to include in future studies. The work of this thesis constitutes the first step in addressing the knowledge gap regarding the environmental impact of ship-induced turbulence and can be used as a road map for further studies within the field

    Fish tracking technology development. Phases 1 and 2, project definition desk study and equipment

    Get PDF
    The document reports on the major findings from a definition study to appraise the options to develop fish tracking equipment, in particular tags and data logging systems, in order to improve the effeciency of the Agency tracking studies and to obtain a greater understanding of fish biology. The definition study was in two parts. The first, Phase 1, collated and evaluated all the known tracking systems that may be suitable for studies of fish which are either produced commercially or have been constructed for specific in-house studies. Phase 2 was an evaluation of all the tracking equipment considered to merit further investigation in Phase 1. The deficiencies between existing and required technologies to improve the efficiency of Agency's tracking studies and to obtain a greater understanding of fish biology are also identified

    Deep learning for deep waters: An expert-in-the-loop machine learning framework for marine sciences

    Get PDF
    Driven by the unprecedented availability of data, machine learning has become a pervasive and transformative technology across industry and science. Its importance to marine science has been codified as one goal of the UN Ocean Decade. While increasing amounts of, for example, acoustic marine data are collected for research and monitoring purposes, and machine learning methods can achieve automatic processing and analysis of acoustic data, they require large training datasets annotated or labelled by experts. Consequently, addressing the relative scarcity of labelled data is, besides increasing data analysis and processing capacities, one of the main thrust areas. One approach to address label scarcity is the expert-in-the-loop approach which allows analysis of limited and unbalanced data efficiently. Its advantages are demonstrated with our novel deep learning-based expert-in-the-loop framework for automatic detection of turbulent wake signatures in echo sounder data. Using machine learning algorithms, such as the one presented in this study, greatly increases the capacity to analyse large amounts of acoustic data. It would be a first step in realising the full potential of the increasing amount of acoustic data in marine sciences

    Offshore oil seepage visible from space : a Synthetic Aperture Radar (SAR) based automatic detection, mapping and quantification system

    Get PDF
    Offshore oil seepage is believed to be the largest source of marine oil, yet very few of their locations and seepage fluxes have been discovered and reported. Natural oil seep sites are important as they serve as potential energy sources and because they are hosts to a very varied marine ecosystem. These seeps can also be associated with gas hydrates and methane emissions and hence, locating natural oil seeps can provide locations where the sources of greenhouse gases could be studied and quantified. A quantification of the amount of crude oil released from natural oil seeps is important as it can be used to set a background against which the excess anthropogenic sources of marine oil can be checked. This will provide an estimate of the 'contamination' of marine waters from anthropogenic sources. Until the onset of remote sensing techniques, field measurements and techniques like hydroacoustic measurements or piston core analysis were used to obtain knowledge about the geological settings of the seeps. The remote sensing techniques either involved manual or semi-automatic image analysis. An automatic algorithm that could quantitatively and qualitatively estimate the locations of oil seeps around the world would reduce the time and costs involved by a considerable margin. Synthetic Aperture Radar (SAR) sensors provide an illumination and weather independent source of ocean images that can be used to detect offshore oil seeps. Oil slicks on the ocean surface dampen the small wind driven waves present on the ocean surface and appear darker against the brighter ocean surface. They can, hence, be detected in SAR image. With the launch of the latest Sentinel-1 satellite aimed at providing free SAR data, an algorithm that detects oil slicks and estimates seep location is very beneficial. The global data coverage and the reduction of processing times for the large amounts of SAR data would be unmatchable. The aim of this thesis was to create such an algorithm that could automatically detect oil slicks in SAR images, map the location of the estimated oil seeps and quantify their seepage fluxes. The thesis consists of three studies that are compiled into one of more manuscripts that are published, accepted for publication or ready for submission. The first study of this thesis involves the creation of the Automatic Seep Location Estimator (ASLE) which detects oil slicks in marine SAR images and estimates offshore oil seepage sites. This, the first fully automatic oil seep location estimation algorithm, has been implemented in the programming language Python and has been tested and validated on ENVISAT images of the Black Sea. The second study reported in this thesis focuses on the optimisation of the created ASLE and comparison of the ASLE with other existing algorithms. It also describes the efficiency of the ASLE with respect to other existing algorithms and the results show that the ASLE can successfully detect seeps of active seepages. The third study aimed to provide the status of the offshore seepage in the southern Gulf of Mexico estimated from the ASLE using SAR images from ENVISAT and RADARSAT-1. The ASLE was used to detect natural oil slicks from SAR images and estimate the locations of feeding seeps. The estimated seep locations and the slicks contributing to these estimations were then analysed to quantify their seepage fluxes and rates. The three case studies illustrate that an automatic offshore seepage detection and estimation system such as the Automatic Seep Location Estimator (ASLE) is very beneficial in order to locate global oil seeps and estimate global seepage fluxes. It provides a technique to detect offshore seeps and their seepage fluxes in a fast and highly efficient manner by using Synthetic Aperture Radar images. This allows global accessibility of offshore oil seepage sites. The availability of large amounts of historic SAR datasets, the presence of 5 active SAR satellites and the latest launch of the European Space Agency satellite Sentinel-1, which provides free data, shows that there is no shortage in the availability of SAR data. The result of the work done in this thesis provides a means to utilise this large SAR dataset for the purpose of offshore oil seepage detection and offshore seepage related geophysical applications. The created system will be an important tool in the future not just to estimate offshore seepage in local seas but in global oceans that are otherwise challenging for field analysis

    Characterising turbulent ship wakes from an environmental impact perspective

    Get PDF
    The world’s oceans, especially coastal areas, are intensively trafficked by ships. All these ships exert pressure on the marine environment, through emission to the atmosphere, discharges of pollutants to the water, and physical disturbance through energy input. Of these impacts, energy pollution from shipping has received the least attention. Especially the impact of ship-induced turbulence in the wake, which is induced by the hull friction and propeller, and remains for up to 15 minutes. The turbulent wake can impact the spread of contaminants, affect air-sea gas exchange, physically disturb plankton, and potentially impact local biogeochemistry through increased entrainment and vertical mixing. To assess these impacts, an understanding of the turbulent wake development and interaction with surface ocean stratification, is essential. However, characterisation of the turbulent wake development in time and space, especially in stratified conditions, is challenging and requires an interdisciplinary approach.\ua0\ua0 The aim of this thesis is to advance the understanding of turbulent wake development from an environmental impact perspective. The intensity and spatiotemporal extent of the turbulent wake, and its impact, have been investigated through a combination of in situ and ex situ observations, and Computational Fluid Dynamic (CFD) modelling of ships in full-scale. The unique dataset of several hundred in situ turbulent wake observations, showed large variation in spatiotemporal extent and intensity. Wake depths can reach down to 30 m, and the turbulent intensities in the near wake are 1–3 orders of magnitude higher than generally observed in the upper ocean surface layer. In addition, during stratified conditions ship-induced turbulence entrain water from below the pycnocline, with implications for local nutrient input and primary production in the ocean surface layer. In addition, ship-passages were observed to frequently trigger large methane emissions in an estuarine shipping lane. The results highlight the importance of addressing ship-induced turbulence in marine environmental management. Intensively trafficked coastal areas should be considered anthropogenically impacted, even unnatural, with respect to turbulence. The interdisciplinary approach applied in this thesis, is a first step towards a holistic assessment of the environmental impact of the turbulent wake

    Otkrivanje i mapiranje uljnih mrlja pomoću SAR snimaka na Jadranu

    Get PDF
    This study provides a new perspective on the hydrocarbon seeps in the Adriatic Sea, supporting both the environmental issues and eventual oil and gas exploration. Remote sensing techniques, particularly synthetic aperture radar (SAR) images are used to detect oil slicks on the sea surface. In such a way two groups of oil slicks have been detected in the Northern and Central Adriatic Sea on the SAR images acquired by the European Sentinel-1A and Sentinel-1B satellites in 2017-2018. Analysis of SAR images together with bathymetry, geological and geophysical data in geographic information system (GIS) have shown that these oil slicks, visible on the sea surface have natural origin, i.e. are seepage phenomena, associated to existing marine hydrocarbon systems. These oil slicks were concentrated over the shallow shelf, and repeatedly or episodically occur in the areas of interest, and are related to local oil-and-gas bearing sediments. Findings of the seeps and seep candidates that passed unnoticed from public attention indicate the effectiveness of the approach used. Finally, it is concluded that the frequent SAR imagery is an excellent tool for monitoring of seepage phenomena, and the results indicate that the use of remote sensing methods can be considered as a good approach to support oil and gas exploration in the Adriatic Basin.Ovaj rad daje novu prespektivu problemu istjecanja ugljikovodika iz podmorja na Jadranu, podržavajući pitanja zaštite morskog okoliša kao i eventualno istraživanje nafte i plina. Tehnike daljinskog otkrivanja, osobito snimci “synthetic aperture” radara (SAR) korištene su za otkrivanje uljnih mrlja na površini mora. Na taj su način na sjevernom i na srednjem Jadranu otkrivene dvije grupe mrlja na SAR snimcima dobivenim od europskih satelita Sentinel-1A i Sentinel-1B u razdoblju 2017-2018. Analiza SAR snimaka uz batimetriju, geološke i geofizičke podatke kroz geografski informacijski sustav (GIS) pokazala je da nađene uljne mrlje, vidljive na površini mora, imaju prirodno porijeklo, t.j. da pripadaju fenomenu podmorskih istjecanja, povezanih s postojećim ležištima ugljikovodika. Ove su uljne mrlje koncentrirane na plitkom šelfu i opetovano ili povremeno se pojavljuju u istraživanom području, a u vezi su sa sedimentima koji sadrže naftu ili plin. Nalaženje takvih izvora ili kandidata za izvore, koji su prošli neopaženi od javnosti, ukazuje na učinkovitost ovog pristupa. Konačno, zaključeno je kako su česti SAR snimci odličan alat za monitoring feno-mena curenja iz podmorja, a rezultati pokazuju kako se korištenje daljinskih metoda može smatrati dobrim pristupom za istraživanje nafte i plina u jadranskom bazenu

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 128, May 1974

    Get PDF
    This special bibliography lists 282 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1974
    corecore