11,959 research outputs found

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ā€˜shotā€™ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ā€˜broadcastā€™ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    TRECVid 2006 experiments at Dublin City University

    Get PDF
    In this paper we describe our retrieval system and experiments performed for the automatic search task in TRECVid 2006. We submitted the following six automatic runs: ā€¢ F A 1 DCU-Base 6: Baseline run using only ASR/MT text features. ā€¢ F A 2 DCU-TextVisual 2: Run using text and visual features. ā€¢ F A 2 DCU-TextVisMotion 5: Run using text, visual, and motion features. ā€¢ F B 2 DCU-Visual-LSCOM 3: Text and visual features combined with concept detectors. ā€¢ F B 2 DCU-LSCOM-Filters 4: Text, visual, and motion features with concept detectors. ā€¢ F B 2 DCU-LSCOM-2 1: Text, visual, motion, and concept detectors with negative concepts. The experiments were designed both to study the addition of motion features and separately constructed models for semantic concepts, to runs using only textual and visual features, as well as to establish a baseline for the manually-assisted search runs performed within the collaborative K-Space project and described in the corresponding TRECVid 2006 notebook paper. The results of the experiments indicate that the performance of automatic search can be improved with suitable concept models. This, however, is very topic-dependent and the questions of when to include such models and which concept models should be included, remain unanswered. Secondly, using motion features did not lead to performance improvement in our experiments. Finally, it was observed that our text features, despite displaying a rather poor performance overall, may still be useful even for generic search topics

    Research in interactive scene analysis

    Get PDF
    An interactive scene interpretation system (ISIS) was developed as a tool for constructing and experimenting with man-machine and automatic scene analysis methods tailored for particular image domains. A recently developed region analysis subsystem based on the paradigm of Brice and Fennema is described. Using this subsystem a series of experiments was conducted to determine good criteria for initially partitioning a scene into atomic regions and for merging these regions into a final partition of the scene along object boundaries. Semantic (problem-dependent) knowledge is essential for complete, correct partitions of complex real-world scenes. An interactive approach to semantic scene segmentation was developed and demonstrated on both landscape and indoor scenes. This approach provides a reasonable methodology for segmenting scenes that cannot be processed completely automatically, and is a promising basis for a future automatic system. A program is described that can automatically generate strategies for finding specific objects in a scene based on manually designated pictorial examples

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning
    • ā€¦
    corecore