209 research outputs found

    Automatic Fault Localization for BIP

    Full text link

    Explainable Automated Debugging via Large Language Model-driven Scientific Debugging

    Full text link
    Automated debugging techniques have the potential to reduce developer effort in debugging, and have matured enough to be adopted by industry. However, one critical issue with existing techniques is that, while developers want rationales for the provided automatic debugging results, existing techniques are ill-suited to provide them, as their deduction process differs significantly from that of human developers. Inspired by the way developers interact with code when debugging, we propose Automated Scientific Debugging (AutoSD), a technique that given buggy code and a bug-revealing test, prompts large language models to automatically generate hypotheses, uses debuggers to actively interact with buggy code, and thus automatically reach conclusions prior to patch generation. By aligning the reasoning of automated debugging more closely with that of human developers, we aim to produce intelligible explanations of how a specific patch has been generated, with the hope that the explanation will lead to more efficient and accurate developer decisions. Our empirical analysis on three program repair benchmarks shows that AutoSD performs competitively with other program repair baselines, and that it can indicate when it is confident in its results. Furthermore, we perform a human study with 20 participants, including six professional developers, to evaluate the utility of explanations from AutoSD. Participants with access to explanations could judge patch correctness in roughly the same time as those without, but their accuracy improved for five out of six real-world bugs studied: 70% of participants answered that they wanted explanations when using repair tools, while 55% answered that they were satisfied with the Scientific Debugging presentation

    MPLS and GMPLS Networking Control and Management Technologies

    Get PDF

    Management and Control of Scalable and Resilient Next-Generation Optical Networks

    Get PDF
    Two research topics in next-generation optical networks with wavelength-division multiplexing (WDM) technologies were investigated: (1) scalability of network management and control, and (2) resilience/reliability of networks upon faults and attacks. In scalable network management, the scalability of management information for inter-domain light-path assessment was studied. The light-path assessment was formulated as a decision problem based on decision theory and probabilistic graphical models. It was found that partial information available can provide the desired performance, i.e., a small percentage of erroneous decisions can be traded off to achieve a large saving in the amount of management information. In network resilience under malicious attacks, the resilience of all-optical networks under in-band crosstalk attacks was investigated with probabilistic graphical models. Graphical models provide an explicit view of the spatial dependencies in attack propagation, as well as computationally efficient approaches, e.g., sum-product algorithm, for studying network resilience. With the proposed cross-layer model of attack propagation, key factors that affect the resilience of the network from the physical layer and the network layer were identified. In addition, analytical results on network resilience were obtained for typical topologies including ring, star, and mesh-torus networks. In network performance upon failures, traffic-based network reliability was systematically studied. First a uniform deterministic traffic at the network layer was adopted to analyze the impacts of network topology, failure dependency, and failure protection on network reliability. Then a random network layer traffic model with Poisson arrivals was applied to further investigate the effect of network layer traffic distributions on network reliability. Finally, asymptotic results of network reliability metrics with respect to arrival rate were obtained for typical network topologies under heavy load regime. The main contributions of the thesis include: (1) fundamental understandings of scalable management and resilience of next-generation optical networks with WDM technologies; and (2) the innovative application of probabilistic graphical models, an emerging approach in machine learning, to the research of communication networks.Ph.D.Committee Chair: Ji, Chuanyi; Committee Member: Chang, Gee-Kung; Committee Member: McLaughlin, Steven; Committee Member: Ralph, Stephen; Committee Member: Zegura, Elle

    Monitoring of dynamic all-optical network.

    Get PDF
    本文提出一种新颖的动态全光网络监控分布式算法,该算法可估计光网络中光纤链路上的误码率,在不需要额外光监控元件的情况下同时监控,检测和定位多处光纤链路损坏。在光网络传输过程中,各个终端结点的接受机可以时时地估计出收到光流的误码率,这些误码率信息可以通过扩展OSPF-TE协议在全网共享。基于这些共享的误码率信息,我们将光纤损坏检测问题抽像成一个线性编程(LP)算法,其中每一个误码率信息代表一个限制条件。我们之后运用一些算法优化技巧将这个问题的维度和复杂度大大地降低,以便可以直接嵌入到每个网络结点可能自带的微处理器单元中进行实时计算运用。本文提出的算法同时适用于没有光波长转换器的光网络和配备光波长转换器的光网络。 通过沿用OSPF协议的分层多域思想,大规模网络可以分化成小的域和连接各域的主干网络,从而可以将一个复杂的大规模网络检错问题转化成一系列简单小网络检错问题。通过将该算法在一个由408 节点组成,支持40波长的大规模GMPLS 网络仿真平台上仿真,算法的有效性得到了验证。为了保证用于仿真的网络流量模型合理且符合实际,本文也对动态全光网络流量模型做了一定研究。在自相似网络流量模型下,我们发现长短光流的不公平性问题可以给动态全光网络带来很大问题,会大大地降低网络的吞吐率。我们运用一种截短长光流的方法可以将这个问题很有效地解决。据我们所知,这是目前唯一的一个能运用于现实中超大规模光网络的低成本可实现且可以作到波长级监控和同时监控多个链路错误的算法。该方法可以不用额外添加昂贵的光监控元件就可实现对动态全光网络的监控,并且该方法同时适用于透明,半透明及配置波长转换器的光网络。A new and efficient distributed algorithm for estimating the bit-error-rate (BER) of links in dynamic optical networks is proposed. The method can be used to monitor, detect and localize multiple soft link-failures without incurring any additional optical monitoring equipment. During the transmission of each optical flow the end node’s receiver can estimate the digital BER information, and the BER information can be shared among the network by extending the Open Shortest Path First-Traffic Engineering Extension (OSPF-TE) protocol easily. We model the faults localization problem as a linear programming (LP) algorithm, where each BER information measured from a flow serves as a constraint. Optimization techniques are applied to significantly simplify the complexity of the LP algorithm in order to make it solvable in real time by an integrated processor attached to the network node. The proposed algorithm is capable of monitoring networks with or without wavelength converters. A large scale network can be divided into several layers according to the OSPF protocol, thus the algorithm can be applied to large networks in the real world similar to OSPF. The monitoring algorithm is demonstrated by network simulations over a 408-node, 40-wavelength network test-bed where up to twenty faulty links are identified.To make sure the traffic generator model is reasonable, the traffic model for dynamic all-optical network is also studied in this work. Under self-similar traffic, we found that the dynamic optical networks suffer from the long flow short flow unfairness problem, which would reduce the throughput as well. So a segmentation strategy is proposed to solve this problem.To the best of our knowledge, this is the first realistic and low-cost framework which can monitor channel level BER changes to identify multi-link-failures efficiently for large scale dynamic all-optical WDM networks, without using expensive optical monitors or additional supervisory channels. The approach proposed is applicable to transparent, translucent and wavelength-converted optical networks.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Li, Huadong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.Includes bibliographical references (leaves 64-66).Abstracts also in Chinese.Chapter Chapter 1 --- Introduction --- p.1Chapter Chapter 2 --- Backgrounds --- p.11Chapter 2.1 --- ROADMs, Dynamic networks --- p.11Chapter 2.1 --- Types of failures considered: --- p.13Chapter 2.2 --- Brief review of OSPF routing protocol --- p.15Chapter Chapter 3 --- Traffic model used --- p.16Chapter 3.1 --- Introduction --- p.16Chapter 3.2 --- LFSF unfairness problem --- p.19Chapter 3.3 --- Flow segmentation strategy --- p.23Chapter 3.4 --- Simulation results --- p.24Chapter 3.5 --- Summary and Conclusion --- p.29Chapter Chapter 4 --- Estimated digital BER monitoring and faults diagnosis algorithm --- p.31Chapter 4.1 --- Intra-domain faults diagnosis algorithm --- p.31Chapter 4.2 --- Hierarchically layering scheme for inter-domain network monitoring --- p.37Chapter Chapter 5 --- Simulation results and analysis --- p.40Chapter 5.1 --- Simulation set up --- p.40Chapter 5.1.1 --- 100Gbps simulation set up --- p.40Chapter 5.1.2 --- 10Gbps simulation set up --- p.42Chapter 5.2 --- Simulation results --- p.44Chapter 5.2.1 --- 100Gbps simulation results: --- p.44Chapter 5.2.2 --- 10Gbps simulation: --- p.51Chapter 5.3 --- Conclusion --- p.61Chapter Chapter 6 --- Conclusion --- p.62Reference --- p.6

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Fundamental Approaches to Software Engineering

    Get PDF
    computer software maintenance; computer software selection and evaluation; formal logic; formal methods; formal specification; programming languages; semantics; software engineering; specifications; verificatio
    corecore