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SUMMARY 

 

In this thesis, we focus on two important research problems in next generation 

optical networks with wavelength-division multiplexing (WDM) circuit switching (flow 

switching) technologies: (1) scalability of network management and control, and (2) 

resilience/reliability of networks upon faults and attacks. Our main technical approaches 

are decision theory and probabilistic graphical models.  

As optical networks grow in size and complexity, there is a need for inter-domain 

light-path assessment using partial management information. Therefore, to understand 

scalable network management of flow switching, we investigate the scalability of 

network management information for inter-domain light-path assessment.  Using the 

framework of decision theory and probabilistic graphical models, we formulate the light-

path assessment as a decision problem.  We show that partial information available can 

indeed provide the desired performance, i.e., a small percentage of erroneous decisions 

can be traded off to achieve a large saving in the amount of management information.  

A second consequence of the large network size and great network complexity is that: 

networks face an increasingly adverse environment with more frequent faults and 

malicious attacks. To understand network resilience under malicious attacks, we study 

the resilience of all-optical networks under in-band crosstalk attacks using probabilistic 

graphical models. Graphical models provide an explicit view of the spatial dependencies 

and interactions between the physical layer and the network layer, as well as 

computationally efficient approaches, e.g., sum-product algorithm, for studying network 

resilience. Based on the proposed cross-layer model of attack propagation, we investigate 



 xii

key factors that affect the resilience of the network under in-band cross-talk attacks from 

both the physical layer and the network layer. In addition, we obtain analytical results on 

network resilience for typical topologies including ring, star, and mesh-torus networks.  

To understand network performance upon failures, we systematically investigate 

traffic-based network reliability. We first adopt a uniform deterministic traffic at the 

network layer. This allows us to focus on the impacts of network topology, failure 

dependency, and failure protection on network reliability, and to obtain analytical results 

on the network reliabilities of typical network topologies. We then apply a random 

network layer traffic model with Poisson arrivals to further investigate the effect of 

network layer traffic distributions on network reliability. We study the interaction 

between the network reliability and the connection arrival rate, and obtain asymptotic 

results of network reliability metrics with respect to arrival rate for typical network 

topologies under heavy load regime.   

The main contributions of this thesis include: (1) fundamental understandings of 

scalable management and resilience of next-generation optical networks with WDM flow 

switching; and (2) the innovative application of probabilistic graphical models, an 

emerging approach in machine learning, to the research of communication networks. 

 



 

1 

 

CHAPTER 1 

INTRODUCTION 

1.1  Motivation 

Despite the seemingly abundant investments in optical fibers by network carriers, the 

deployment of optical networks is still at its infancy. To better exploit the capabilities of 

optical technologies for high-bandwidth communication, there is a need for next 

generation optical networks, which ideally could provide high-speed network access and 

bandwidth-on-demand at reduced costs. One promising technique to achieve the goal is 

wavelength-division multiplexing (WDM) circuit switching (flow switching), where 

optical circuits, i.e., light-paths, are dynamically established at a short time scale (~10’s 

ms) [1][2]. Such a fast provisioning of light-paths would use the available network 

resources efficiently by adjusting to the rapidly changing needs of end users, thus reduce 

the cost. In addition, it could serve as a platform for new services and applications. In 

such a paradigm of next generation optical networks, two problems in networking 

community appear to be rather challenging: (1) scalability of network management and 

control, and (2) resilience of networks under faults and attacks.  

A scalable network management system should have the property that its complexity 

grows gracefully with the size of the networks whereas provides efficient control. As 

optical networks grow in size and complexity, a light-path may traverse multiple network 

domains with each domain consists of hundreds of network nodes. Thus it creates the 

need for inter-domain light-path assessment using partial management information.  
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 As the network grows in scale, it faces an increasingly adverse environment and 

network faults and malicious attacks are more frequent. For instance, the Internet 

Infrastructure has a large scale and is accessed by hundreds of millions of users with 

different interests. It constantly faces the threat of component failures, human operational 

errors, spreading of software virus, and malicious attacks [3]. Because of the high-

bandwidth supported by optical networks, a small period of service disruption may result 

in huge amount of data loss. Therefore, it is important to have a good understanding of 

the resilience/reliability of optical networks under faults and attacks when optical 

networks are still at early stage of implementation. Hence, the objective of this research is 

to contribute to fundamental understanding of scalable and resilient next-generation 

optical networks using WDM circuit switching technologies. 

1.2  Problem Description 

In this thesis, to understand scalable network management and control of WDM flow 

switching, we investigate the scalability of network management information for inter-

domain light-path assessment. A framework based on probabilistic graphical models is 

proposed to study whether it is feasible to use partial management information to achieve 

a desired performance for inter-domain light-path assessment.   

To understand network resilience under malicious attacks, we study the resilience of 

all-optical networks under in-band crosstalk attacks. Crosstalk attack propagation 

depends on both optical devices at the physical layer and wavelength usage at the 

network layer. This motivates us to apply probabilistic graphical models to model attack 

propagation. Graphical models provide an explicit view of the spatial dependencies and 

interactions between the physical layer and the network layer, as well as computationally 
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efficient approaches, e.g., sum-product algorithm, for studying network resilience. Based 

on the cross-layer model of attack propagation, we investigate key factors that affect the 

resilience of the network under in-band cross-talk attacks from both the physical layer 

and the network layer.  

To understand network performance upon failure events, we systematically 

investigate traffic-based network reliability. We first adopt a uniform deterministic traffic 

at the network layer, which allows us to focus on the impacts of network topology, failure 

dependency, and failure protection on network reliability and to obtain analytical results 

on the network reliabilities of ring, star and mesh-torus networks. We then apply a 

random network layer traffic model with Poisson arrivals to further investigate the effect 

of network layer traffic distributions on network reliability. We study the interaction 

between the network reliability and the connection arrival rate, and obtain asymptotic 

results of network reliability metrics with respect to arrival rate for typical network 

topologies under heavy load regime.   

1.3  Thesis Outline 

The thesis is organized as follows. In Chapter 2, we pose light-path assessment as a 

decision problem, and define the performance as the Bayes probability of an erroneous 

decision. We then characterize the scalability of management information as its growth 

rate with respect to the total resources of the network to achieve a desired performance. 

Scalability is achieved if the management information needed is only a negligible fraction 

of the total network resources. Specifically, we consider one type of partial information 

that grows only logarithmically with the number of wavelengths supported per link. We 

derive an upper bound for the Bayes error in terms of the blocking probability when a 
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new call is presented at the entrance of the network. We evaluate the upper bound using 

both independent and dependent models of wavelength usage for intra- and inter-domain 

calls. Our study shows that there exists a “threshold effect”: The Bayes error decreases to 

zero exponentially with respect to the load when the load is either below or above a 

threshold value; and is non-negligible when the load is in a small duration around the 

threshold. This suggests that the partial information considered can indeed provide the 

desired performance, and a small percentage of erroneous decisions can be traded off to 

achieve a large saving in the amount of management information.  

In Chapter 3, we use probabilistic graphical models to study the resilience of all-

optical networks under in-band crosstalk attacks. At the network layer, we use an 

undirected probabilistic graph to represent the probability distribution of active 

connections in the network. The cross-layer model is obtained by combining the 

physical- and the network-layer models into a factor graph representation. Graphical 

models provide an explicit representation of interactions between the physical- and the 

network layer. Furthermore, graphical models facilitate derivations of analytical results 

on resilience with respect to physical-layer vulnerability, physical topology, and network 

load. Specifically, we derive bounds on the network resilience for regular topologies. We 

show that for ring, star, and mesh-torus networks with link-shortest path routing and all-

to-all traffic, the average network resilience loss grows linearly with respect to the 

network load when the network load is small, and grows polynomially with respect to the 

probability of attack propagation from node to node along the attacker’s route. In 

addition, numerical results suggest that the sum-product algorithm based on the factor 
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graph representation can be used for computationally efficient evaluation of network 

resilience for irregular/large topologies. 

In Chapter 4, we systematically investigate different factors that affect traffic-based 

network reliability. We first assume a uniform deterministic traffic at the network layer, 

which allows us to focus on the impacts of the first three factors on network reliability. 

We then adopt a random network layer traffic model with Poisson arrivals to further 

investigate the effect of network layer traffic distributions on network reliability. To 

obtain analytical results on network reliability, we apply the approach of Erlang Fixed 

Point Approximation (EFPA). To represent the dependencies among network failures and 

physical layer failures, we make use of probabilistic graphical models, which provides 

graphical representation of the dependencies and a potential numerical approach for 

evaluation of network reliability when the network layer traffic is random.  

In Chapter 5, we conclude the thesis with a discussion about the contribution of this 

work and directions for future research.  
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CHAPTER 2 

SCALABILITY OF NETWORK MANAGEMENT INFORMATION 

FOR INTER-DOMAIN LIGHT-PATH ASSESSMENT 

 2.1 Introduction of Chapter 2 

Dynamically assessing the quality of light-paths is important to many applications in 

wavelength-routed optical networks such as on-demand light-path provisioning, 

protection and restoration. As the light-path quality is a complex measure [4], this work 

considers a simple quality, which is the wavelength availability on a candidate light-path. 

The assessment then boils down to determine availability of wavelengths for incoming 

call requests based on given management information.  

Complete or partial network management information can be used to assess the 

wavelength availability on a light-path.  Complete information corresponds to the 

detailed states of wavelength usage, i.e. “which wavelengths are used at which links of a 

network”, when there are no wavelength converters in the network. Wavelength 

converters can reduce state information due to their ability to relax the wavelength 

continuity constraint. However, it is expected that wavelength converters remain 

expensive and are thus used mostly on the boundaries of sub-networks [5]. Therefore, 

generally complete state information involves the detailed wavelength occupancy within 

a subnet. Partial information includes aggregated load and topology information at each 

subnet, and local states, e.g., the total number of wavelengths used at wavelength 

converters. 

Providing state information is a basic functionality of network management. 

Traditional network management systems intend to obtain as complete state information 
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as possible [6]. But future IP-WDM networks may have hundreds of links with each link 

supporting hundreds of wavelengths [7]. This would result in a huge amount of state 

information for networks without wavelength converters. For instance, let H be the 

number of links within each subnet, F be the number of wavelengths supported per link at 

each subnet, and L be the number of subnets. The total amount of information about 

wavelength usage is in the order of FHL . When 200F = , 250H = and 10L = , the 

number of states is about half a million. Storing and updating even a fraction of such a 

large number of states may result in an undesirably large amount of management traffic. 

Therefore, it would be prohibitive to manage a large network using complete state 

information. 

Using partial management information is also a requirement of multi-vendor services. 

A light-path may traverse multiple administrative domains (sub-networks) run by 

different service providers. A service provider may prefer to exchange only minimal 

information to other network domains rather than share the complete state information of 

its own. In fact, it has been the experience today in the Internet that network managers of 

different administrative domains are extremely reluctant to and rarely share detailed 

network state information of their subnets with others. Therefore, inter-domain subnets 

are like unknown network clouds to a service provider [8].  Light-path assessment may 

have to use partial information on network clouds since it is infeasible to obtain complete 

management information across domain boundaries. 

Therefore, a fundamental issue in light-path assessment is what performance can 

possibly be achieved given the partial information. Specifically, the related questions are: 

(1) what is the best performance of light-path assessments with the partial information? 
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(2) What is the trade-off between the performance and the amount of management 

information maintained for light-path assessments?  

We formulate the light-path assessment as a decision problem, and define the 

performance as the probability of an erroneous assessment. An error occurs when an 

assessment decision differs from the ground truth (in terms of availability of wavelengths 

on a given path). The value of the error probability measures the deviation from the 

optimal performance (with zero error) when the complete information is available, and 

thus quantifies the sufficiency/insufficiency of the partial management information.  

With a large amount of management information, a good performance, i.e., a small 

error probability, could be achieved but at the cost of management complexity such as 

signaling and memory overhead. With a small amount of management information, the 

performance may degrade but with a gain of management simplicity. Thus a trade-off can 

be made between the performance and the network management information.  

The amount of management information needed varies with respect to the size, and 

the resource of the network. The size can be characterized by the number of links in a 

subnet and the number of subnets. The resource corresponds to the total number of 

wavelengths, which is related to the number of users (flows) supportable by a network.  

Future optical networks may have hundreds of links, each of which supports hundreds of 

wavelengths. Therefore, the growth rate with respect to those parameters is an important 

measure of the amount of management information used. In particular, a desirable growth 

rate should be slower than that of the total resource to be managed in a network.  

Combining the performance and the growth rate, we define the scalability of network 

management information for light-path assessment. Assuming that a given performance 
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is satisfied, i.e., a small probability of error can be achieved; we consider the needed 

management information as scalable, if it grows at a slower rate than the total network 

resource; and as non-scalable, otherwise. Therefore, the scalability requires that the 

amount of information used is only a negligible fraction of the total wavelength resources 

within the network. Hence scalability/non-scalability provides a systematic way to 

investigate the tradeoff between performance and the management information.  

In this work, we study one type of “strongly’’ scalable management information, 

which is only logarithmic ( (log  )O F ) in the number of wavelength supported per link in 

the network. We investigate a simple network of bus topology  to study the scalability of 

the partial management information. Wavelength converters are only located at the 

boundaries of, but not within, each subnet. The partial information we consider includes 

(a) aggregated information on network load and topology within subnets, and (b) local 

state information at wavelength converters. The aggregated information serves as model 

parameters of wavelength usage, and the local information corresponds to random states 

or observations obtained locally at domain boundaries. For a bus topology with F 

available wavelengths at each link and L subnets, the total amount of the partial 

information is ( log  ).O L F  This is indeed much less than the total amount of resources 

availabe in the network (FHL). Therefore, the partial information will introduce much 

less management complexity than complete information.  

To evaluate the achievable performance using the partial information, we consider the 

Bayes decision rule. The Bayes rule results in the best performance achievable given the 

partial information, which is the Bayes probability of error. We show that the Bayes error 

is bounded by min  { ,  1- },b bP P  where bP  is the blocking probability of a light-path. This 
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links the Bayes error with bP , a metric commonly used for WDM networks [9][10][11]. 

The (Bayes) probability of error can then be investigated through the blocking probability 

based on different traffic models. We first adopt an independent model that corresponds 

to local calls. We then extend the independent model to a dependent model to include 

inter-domain calls. One important characteristic of the best performance using the partial 

information is a “threshold effect’’, i.e., there exists a threshold for the load. When the 

load is close to the threshold value, the blocking probability makes a sharp transition 

from 0 to 1. The corresponding probability of error remains close to zero for most of the 

load conditions. This suggests that the partial information could provide desirable 

performance for light-path assessment. Hence the partial information is scalable and a 

small loss in performance may be traded off with a large saving in network management 

information.  

The rest of Chapter 2 is organized as follows. Section 2.2 summarizes the prior work. 

Section 2.3 provides the problem formulation. Section 2.4 presents Bayes decision 

theory, and an upper bound of the best performance (the Bayes error) that can be 

achieved given the partial information. Sections 2.5 and 2.6 investigate the best 

performance using an independent model and a dependent model respectively. 

Simulation results are presented in section 2.7. Section 2.8 concludes Chapter 2.  

2.2 Related Work 

Various schemes have been proposed for managing IP-WDM networks based on 

different amount of management information. Complete state information has been used 

to establish connections [12]. This approach, as discussed earlier, may not be feasible for 

dynamically setting up inter-domain connections for large networks. In contrast to using 
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complete information, another method is to manage sub-networks as separate entities 

[13]. The corresponding performance (i.e., the correctness of an assessment) can be poor 

due to lack of information. An intermediate approach is to use partial information-

exchange among network domains [14]. The idea of using partial information is also 

investigated in other related research problems such as network survivability 

[15][16][17], and wavelength routing [18]. However, these works have a different focus, 

which is mostly on developing approaches to manage networks using partial information. 

They motivate this work to investigate the scalability of management information. 

Probing methods have been proposed to obtain information from network clouds [20]. 

Probing, however, is intrusive, and may be impractical for inter-domain light-path 

assessment because of security reasons.  

Wavelength converters (optical or electronic) have been considered in designing 

WDM networks to improve wavelength utilization [21]. Sparsely-allocated wavelength 

converters are found to be sufficient to achieve a desired utilization gain sometimes [22]. 

The use of wavelength converters has also been conjectured to result in simplified 

network management systems due to their ability to reduce the state information [21]. 

This motivates us to consider a natural network architecture where wavelength converters 

are located at the boundaries of subnets (administrative domains). 

   There have also been a lot of standardization activities for next-generation optical 

transport networks. Specifically, ITU presents under the framework of Automatic 

Switched Optical Network (ASON); while the IETF adopts the GMPLS paradigm. The 

OIF also provides important inputs to the standardization process [19]. The GMPLS 

standardization activities are very much driven by the requirement of ASON and can be 
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regarded as one candidate set of protocols for ASON. The problem of light-path 

assessment can be considered as call admission control specified under the ASON 

framework, where it has been widely agreed that what information should be exchanged 

among network controllers and the scalability of management information is one of the 

major issues. 

Prior investigations in other related areas are also beneficial to this research. In 

particular, inaccurate or aggregated information has been investigated in the context of 

QoS routing for IP networks [23]. Commonly used aggregated information is topology 

aggregation [24][25] that can be regarded as a summarized characterization of a subnet. 

Local information is considered in [26] for QoS routing in IP networks. However, the 

main focus of aforementioned work is on managing existing (IP) rather than IP-WDM 

networks. 

Therefore, the tradeoff between performance and the amount of management 

information has not been investigated quantitatively. In our prior work [27][28], we 

formulated the problem of network management information for light-path assessment 

based on independent and dependent models of wavelength usage. This work extends the 

prior work to a more comprehensive setting. We formally define the scalability of 

management information for light-path assessment, and use both analysis and simulations 

to investigate the scalability of the information.  

2.3 Problem Formulation 

2.3.1 Network Architecture 

We consider assessing wavelength availability for an end-to-end call request from source 

border node S to destination border node D as shown in Figure 2.1. Wavelength 
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converters are located at the boundaries of one-dimensional subnets, and there are L 

subnets on a given path. Here for simplicity, we assume that border nodes with 

wavelength converters connect two adjacent network domains. Each subnet has H hops 

and each link supports F wavelengths. Such network architecture, although simple, 

captures the important characteristic of multi-domain network topologies.  

 

: Border nodes with wavlength converters 

Subnet C Subnet A Subnet B 

: Internal nodes within a subnet 

S D 

 

Figure 2.1 Network architecture 
 

2.3.2 Partial Management Information 

The partial information we consider consists of aggregated information and local states. 

The aggregated information characterizes the average behavior of each network domain 

so that detailed network states within each subnet do not need to be exchanged across 

domains. The aggregated information is denoted as 1 2( , ,..., ),LA A A A=  where Ai is the 

aggregated information on subnet i and ( , , , ).i i i i iA F H ρ π=  iF  and iH are the number of 

wavelengths per link and the number of links at subnet i  respectively. iρ  is the 

probability that a wavelength is used on a link in domain ,i  which is the load information 

aggregated over all detailed states about wavelength usage within the subnet. iπ  is a 

parameter related to wavelength usage. For example, iπ  could be the parameter that 
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characterizes how wavelengths at each link are used, i.e., the percentage of occupied 

wavelengths used for inter-domain connections. For simplicity of analysis, we assume 

that each subnet has the same aggregated information. Then we have ( , , , )iA F H ρ π=  

for all .i  

In practice, the aggregated information can be estimated through measurements, 

which may deviate from true parameters, and thus introduce additional information loss. 

For simplicity, we consider aggregated parameters as accurate. These parameters may 

also change with time but at a much larger time scale than the connection dynamics, and 

could thus be regarded as nearly static. 

The local information corresponds to the number of wavelengths used at the first hop 

of each subnet, which is readily available at the wavelength converters. Specifically, the 

local information corresponding to observations (states) at the wavelength converters is 

given as 1 2( , ,..., ),LX N N N=  where iN is the number of wavelengths used at the ith 

wavelength converters, i.e., the number of wavelengths used at the first link of domain .i  

Such local information is changing with setup and teardown of connections, and can thus 

be considered as random variables. 

The local information is informative due to the wavelength continuity constraint 

within a subnet. For instance, if nearly all wavelengths are used at the first hop of a 

subnet, we can infer that the load is high and there may not be any wavelength available 

within the subnet to support an additional end-end call. Likewise, the aggregated 

information is informative since it characterizes the average load in a subnet. But the 

aggregated and local information is incomplete in determining network states, resulting in 

possibly erroneous wavelength assessments. 
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2.3.3 Decision Problem and Performance 

We pose the light-path assessment as a decision problem. A decision variable ω  is 

defined as follows: 1ω =  if there is one end-to-end wavelength continuous path across 

subnets for the connection request; and 0ω =  otherwise. The problem of light-path 

assessment is to decide on ω  given the partial information. Then the performance of 

light-path assessment can be defined as the probability of erroneous decisions. 

Definition 2.1 The probability of error eP  is defined as the probability that the 

assessment decision is different from the ground truth (in terms of availability of 

wavelengths on a given path). 

Let D be the decision region on the management information X for 1;ω =  and D  be 

the decision region for 0.ω =  In other word, if the observation X falls in D or ,D  the 

decision should be 1ω =  or 0ω =  respectively. We then have the probability of error 

                   ( , 0) ( , 1).eP P X D P X Dω ω= ∈ = + ∈ =        (2.1) 

eP  characterizes the average performance given the partial information. The validity of 

such a performance measure can be understood through Figure 2.2. When the complete 

information is available, no error is made in assessing wavelength availability, and the 

performance is the best (i.e., zero error). When no information is available, decisions can 

only be made based on random guessing, and the performance is the worst (i.e., 50% 

error). eP  measures the deviation from the optimal performance (zero error) when the 

complete information is available, and quantifies the sufficiency/insufficiency of the 

management information available. A question is whether it is possible to use partial 

management information at the cost of a small number of incorrect decisions. 
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Figure 2.2 Performance vs. management information 
 

2.3.4 Scalability of Management Information 

We investigate this problem in the context of scalable network management information. 

Intuitively, there are two important aspects of the scalability: The amount of management 

information should be sufficiently large to satisfy a given performance, i.e., a small 

probability of error. Meanwhile, the amount of management information should be small 

enough to keep network management simple. For instance, it is preferred that the 

management information needed is just a negligible fraction of the total network 

resource, e.g. the total number of wavelengths supported in the network. Since the 

resource varies with respect to the size of a network and the number of wavelengths 

supported per link, it would be meaningful to characterize the amount of management 

information required as its growth rate with respect to those quantities. Combining the 

performance and the growth rate, we formally define the scalability of management 

information as follows.  

Definition 2.2 Let PQ  be the amount of management information used for light-path 

assessment.  Let RQ  be the total amount of wavelength resources within the network. If 

PQ  grows at a slower rate than RQ  with respect to the number of wavelengths per link 
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(F) and the size (HL) of a network, and the corresponding performance of light-path 

assessment is acceptable under most load conditions, the network management 

information is scalable; and non-scalable otherwise.  

This definition essentially means that asymptotically (for large networks with many 

links and wavelengths each link), the scalable management information is a negligible 

fraction of the total network resource. That is, / (1) P RQ Q o= when F and HL are large. 

Consider the network shown in Figure 2.1. The number of bits is used to quantify the 

management information. The detailed states within each subnet are “which wavelengths 

are used at which link”. The total number of possible (binary) states is 2FH  for each 

subnet, and 2FHL  for L subnets. Therefore, complete information satisfies 

                              ( )   .P RQ complete Q FHL= =        (2.2) 

Clearly, it is non-scalable to use complete management information according to 

Definition 2 even though it will always result in zero probability of error. 

The partial management information considered in this work satisfies 

                         ( ) log( ) ,P AQ partial L F Q= +        (2.3) 

where AQ  is the number of bits needed to store the aggregated information, which is 

indexed with A. AQ  is generally small, and changes slowly with time. log( )F  is the total 

number of bits needed to characterize local states at one subnet. Then the amount of 

partial information is in the order of log( ),F  which is much less than that of the complete 

management information, especially when the number of wavelengths is large. Such 

partial information can be maintained easily even for a large network.  
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2.4 Optimal Performance Using Bayes Rule 

We now evaluate the best performance of the partial management information to see 

whether it can provide the desired performance. 

2.4.1 Bayes Error 

With partial management information, assessment schemes based on Bayes decision rule 

[29] achieve the best performance. Given a set of local states 1 2( , ,..., ),LX N N N=  the 

Bayes rule is to decide 

1, ( 1 )) ( 0 ) ,
0, ,

if P X x P X x
otherwise

ω ω ω
ω
 = = = ≥ = =


=
 

where ( 1| )P X xω = =  and ( 0 | )P X xω = =  is a posteriori probability given observation 

.X x=  The equality ( 1| ) ( 0 | )P X x P X xω ω= = = = =  corresponds to the decision 

boundary, which divides the space (X) into two regions, D to decide 1ω =  and D  to 

decide 0.ω =  The Bayes error is the average probability of error as given in (2.1). 

2.4.2  Centralized Light-path Assessment 

Such a Bayes rule essentially corresponds to an optimal centralized assessment scheme. 

Imagine a fictitious central manager, collecting partial information from all subnets. At a 

relatively larger time-scale than the flow dynamics, the central manager could poll the 

aggregated information from each subnet. The central manager then could collect the 

local observation X at a smaller time scale, and perform the Bayes rule to assess 

wavelength availability. 

This centralized scheme is only conceptual, and used in this work for analysis rather 

than a practical solution. Centralized assessment may not be feasible for large optical 
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networks because each subnet could belong to different administrative entities. Thus a 

distributed light-path assessment scheme may be a necessity. However, distributed 

assessment schemes result in further information loss due to decentralization. Therefore 

there is a need to understand the best performance achievable using the partial 

information. Such best performance would then serve as a basis for assessing the 

performance of sub-optimal yet practical schemes. 

2.4.3  Bayes Error and Blocking Probability 

Although the Bayes error characterizes the optimal performance, it is difficult to evaluate 

because the decision regions and the corresponding probabilities are hard to obtain. 

Therefore, we derive an upper bound for the Bayes error. Our goal is to relate such a 

bound with a commonly used network measure such as blocking probability. Such a 

relation may provide intuition on how error decisions are related to the load ( ρ ) and 

wavelength per link (F) of each subnet. For clarity, we describe the blocking probability 

based on [9].  

Definition 2.3 The blocking probability bP is defined as the probability that there does 

not exist a wavelength continuous path in each network domain to support an end-to-end 

inter-domain connection. 

A relation between the Bayes error eP  and the blocking probability bP  can then be 

derived. 

Theorem 2.1 0 min{ ,(1 )}.e b bP P P≤ ≤ −  
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The proof of the theorem is given in Appendix A. Intuitively, the upper bound 

min{ , (1 )}b bP P−  can be understood as follows. Consider the following decision rule: If 

the blocking probability of the network is 1/ 2bP > , one can reject all connection requests. 

If <1/ 2bP , one can simply accept all connection requests. This decision rule will have 

min{ , (1 )}.e b bP P P= −  Since Bayes rule uses local observation X as the additional 

information for light-path assessment in an optimal fashion; a better performance should 

be achieved. That is, the Bayes error should be bounded by min{ , (1 )}b bP P− . The upper 

bound shows that the probability of error is small if the blocking probability is close to 1 

or 0. 

This theorem suggests an analytically feasible way to estimate the Bayes error, which 

is through the blocking probability. In addition, the bound is independent of a specific 

model of the blocking probability. The analysis can then be conducted using different 

models.  

2.5 Independent Model 

2.5.1 Independent Model 

We first assume independent wavelength usage on different network links and among 

wavelengths. Such an assumption is equivalent to that all connections within the network 

are local calls as shown in Figure 2.3. Then the corresponding aggregated information is 

( , , , ),A F H Lρ=  where ρ  is the probability that wavelength is used on one link. The 

local observation is 1 2( , ,..., )LX N N N=  as defined in Section 2.3.  Due to the 

independent assumption, all the iN ’s are independent random variables. 
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Figure 2.3 Local calls in independent Model 

2.5.2 Bayes Error 

Under the independent model, the a posteriori probability is  

                 1 2( ) ( 1| ( , ,..., ))Lf X P X N N Nω= = =  

                           ( )1

1

(1 (1 (1 ) ) ),i

L
F NH

i

ρ −−

=

= − − −∏          (2.4)  

where 1,2,..., .i L=  This expression means that if iN  wavelengths are used at the first hop 

of subnet i, one only needs to decide whether there is a wavelength continuous path at the 

next 1H −  hops from iF N−  candidate wavelengths. Then ( )11 (1 (1 ) ) iF NHρ −−− − −  is the 

probability that there is a wavelength continuous path at the ith subnet given ,iN  and the 

product is the probability that the connection request for an end-to-end call to be 

supported. The Bayes error is: 

         ( ( ) 0.5, 0) ( ( ) 0.5, 1).eP P f X P f Xω ω= ≥ = + < =                  (2.5)       

Equation (2.5) does not have a close form; and we turn to evaluate the upper bound of eP  

using the blocking probability of the independent model. 
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2.5.3 Numerical Analysis      

Under the independent assumption, the probability that there is one end-to-end 

wavelength continuous path can be obtained using a model in [9]:  

                                  (1 (1 (1 ) ) ) ,H F L
aiP ρ= − − −            (2.6) 

where the sub-index ai means acceptation of a request based on independent model. 

Therefore, the corresponding blocking probability for an end-to-end call is,    

                             1 (1 (1 (1 ) ) ) .H F L
biP ρ= − − − −                                (2.7) 

Figure 2.4 plots the blocking probability ( biP ), vs. the load ( ρ ) for 

 10,  40,  120,  5,  3. F H L= = = One observation is that there is a threshold effect on .biP  

When ρ  is below the threshold value (e.g. about at 0.6ρ =  for 120F = ), biP  remains 

close to 0. When ρ  is around the threshold value, biP  increases to 1 rapidly with respect 

to ρ . With a larger F, the value of the threshold increases, and the transition of biP  from 

0 to 1 gets sharper. 

 

Figure 2.4 Load ( ρ ) vs. blocking probability ( biP ): F=10, 40, 120, H=5, L=3 
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This shows that under most load conditions, we either have a small or a large 

blocking probability, both of which result in a small probability of error.  Therefore, 

based on Theorem 1, we can conclude that under most load conditions the probability of 

error for light-path assessment using partial information is small under independent 

model. Figure 2.5 confirms this by plotting the upper bound of eP  for 

 10,  40,  120,  5,  3.F H L= = =  We can see that when the load is close to the threshold, 

the value of eP  increases to the maximum value exponentially; and eP  is small otherwise. 

 

Figure 2.5 Load ( ρ ) vs. upper bound of eP : F=10, 40, 120, H=5, L=3 
 

2.5.4 Special cases 

To quantify the decay rate of the upper bound for large F, we consider special cases of 

low and high load, which correspond to two parts of biP  below and above the threshold. 

We can find that: 

(i) When the load is light, i.e., 1 ,
(1 )HF

ρ
>>

−
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                                 0 2 [1 (1 ) ] .H F
eP L ρ≤ ≤ − −           (2.8)  

(ii)When the load is heavy, i.e., 1 ,
(1 )HF

ρ
<<

−
 

                                 0 2 (1 ) .FH
eP L ρ≤ ≤ −          (2.9) 

These results suggest that the performance trade-off is a small probability of error that 

decreases exponentially with respect to the number of wavelengths per link (F) under low 

and high network load. 

2.6 Dependent Model 

The above independent model fails to capture the inter-domain calls, which extend 

beyond one subnet. In future optical networks, a significant percentage of the traffic may 

be inter-domain flows passing through subnets. Therefore, it is important to take the load 

correlation among subnets into consideration when estimating the performance. In this 

section, we investigate the probability of error by considering both intra- and inter-

domain calls. 

2.6.1 Dependent Model   

Dependent models in a bus have been investigated in [9][10][11]. However, the study in 

[9] is restricted to having wavelength converters installed at each node, while the network 

architecture as shown in Figure 2.1 is with sparsely-allocated wavelength converters. 

More accurate dependent models for the blocking probability on such a topology can be 

found in [10][11]. However, both models are complex. Here we extend the dependent 

model in [9] to obtain a relatively accurate and tractable dependent model for analyzing 

the probability of error. 
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To capture the dependence on traffic flows among subnets, we assume that there are 

two types of calls supported by the network. One corresponds to local calls as assumed in 

the independent model. The other type of calls corresponds to inter-domain calls (Figure 

2.6). Generally, inter-domain calls can originate and/or terminate anywhere at a network. 

But for simplicity of analysis, we impose the following assumptions: 

(i) The inter-domain calls originate and exit only at edge wavelength converters.  

(ii) If a wavelength is not used for an inter-domain call in one subnet, it is used for inter-

domain call in the next subnet with probability .nP  

(iii) If a wavelength is used for one inter-domain call in one subnet, this inter-domain call 

will exit the current subnet with probability ,lP  and will continue to the next subnet with 

probability 1- .lP  

(iv) If a wavelength is used for an inter-domain call in one subnet and is released at the 

edge OXC of this subnet, it is used for inter-domain calls with probability nP  in the next 

subnet. 

(v) If an inter-domain call continues to the next subnet, it will use the same wavelength.  

(vi) In each subnet, a wavelength is used for a local call in a link with probability 1ρ , and 

used for an inter-domain call with probability 2ρ . The probability that a wavelength is 

used for either a local or an inter-domain call is 1 2.ρ ρ ρ= +   
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Figure 2.6 Inter-domain calls and local calls 
 

 

The dependent model captures the link load correlation across subnets due to inter-

domain calls, and is thus more accurate than the independent model. We are aware that it 

is limited to assume that the inter-domain calls can only enter or exit at the domain 

boundaries. However, such a model provides understanding of how inter-domain calls 

contribute to the performance and management information trade-off.  

2.6.2 Bayes Error 

We begin evaluating the performance by considering the probability of error. Again, we 

assume that all subnets have identical aggregated information. Under the dependent 

model, the aggregated information A is 1 2( , , , , , ).lA P F H Lρ ρ=  Local information is 

the same as that used for independent model, which is 1 2( , ,..., ).LX N N N=  Then the a 

posteriori probability used in Bayes rule is: 

             1 2( ) ( 1| ( , ,..., ))Lf X P X N N Nω= = =     

                                 ( )1

1

(1 (1 (1 ) ) ),i

L
F NH

c
k

ρ −−

=

= − − −∏      (2.10) 
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Where 1 2(1 ).cρ ρ ρ= −  cρ  is defined as the probability that a wavelength is used for 

local calls given that it is not used for inter-domain calls. Such a posterior probability has 

a similar form to that of the independent case in (2.4).  

The probability of error thus is the same as in (2.5). But due to inter-domain calls, the 

local observations ( iN ’s) at wavelength converters are now dependent random variables. 

Therefore, the Bayes error is difficult to derive, we turn to study the upper bound based 

on the blocking probability .bP  

2.6.3 Blocking Probability 

To derive the blocking probability under the dependent model, we define 2 ,α ρ ρ=  

which characterizes the percentage of occupied wavelengths used for inter-domain calls. 

Then the independent model is just one special case of the dependent model with 

20( 0 )α ρ= = . From assumptions in Section 2.6.1, we have, 

(i) P (wavelength wj is used for inter-domain call in subnet i| wj is not used for inter-

domain call in subnet i-1) = ,nP  

(ii) P (wavelength wj is used for inter-domain call in subnet i| wj is used for inter-domain 

in subnet i-1) = (1- ).n l lP P P+  Therefore,  

                         2 2 2(1 ) [ (1 )].n n l lP P P Pρ ρ ρ= − + + −      (2.11) 

It follows that 

                                        2

2

.
1 (1 )

l
n

l

PP
P

ρ
ρ

=
− −

      (2.12) 

Define 1 iI = if there is one wavelength continuous path within subnet i; and 0,iI =  

otherwise.  Then a decision that there are wavelengths available for an end-to-end call 
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( 1ω = ) is equivalent to 1 iI =  for all i. Let iM  be the number of inter-domain 

connections in subnet i. Then the blocking probability under the dependent model can be 

expressed as: 

1, 2,

1 2 1 2 1 2
...

1 { ( 1, 1,..., 1 , ,..., ) ( , ,..., )}
L

bd L L L
M M M

P P I I I M M M P M M M= − = = =∑

1, 2

1 1 1 2 2 2 1
,...

1 { ( 1 ) ( ) ( 1 ) ( )
LM M M

P I M P M P I M P M M= − = =∑ 1( 1 ) ( )},L L L LP I M P M M −=   

             (2.13) 

where ( )( 1 ) 1 [1 (1 ) ] .iF MH
i i cP I M ρ −= = − − −      

Let 1iM  be the number of inter-domain calls in the thi subnet that continue to the next 

subnet. We have 

          
{ }1

1 1

min ,

1 1 1 1 1 1 1
0

( ) ( ) ( ),
i i

i

m m

i i i i i i i i
M

P M m M m P M M P M M
−

−

− − − − −
=

= = = ∑               (2.14) 

where  

( ) ( )
1 1 1( ) (1 ) ,k mk m
i i m ll

P M m M k P P−
− −= = = −            for 0 ,m k F≤ ≤ ≤                        (2.15) 

and 

( ) ( ) ( )
1 1( ) (1 ) ,h mF m F h

i i h m nn
P M h M m P P−− −

− −= = = −      for 0 .m h F≤ ≤ ≤                        (2.16) 

From  (2.13) - (2.16), bdP  can be computed efficiently using the forward part of the 

forward-backward algorithm [30].  

2.6.4 Numerical Analysis 

The blocking probability does not have a close-form expression either, but can be 

evaluated numerically. Figure 2.7 plots bdP  vs. ρ  for 120,F =  5,H =  

3,L = 0,  0.6,  0.9,α =  0.2.lP =  It could be found that ρ  has a similar “threshold effect” 



 29

on the value of bdP  to that in the independent model. In addition, the threshold is 

increasing with ,α  which is defined as the percentage of working wavelengths used for 

inter-domain calls. This, intuitively, is because of the fact that the dependence of 

wavelength usage introduced by inter-domain calls reduces the blocking probability for a 

given load .ρ  When 0α = , the dependent model is reduced to the independent model, 

and the threshold has the lowest value. 

Figure 2.8 plots bdP  vs. ρ  for 20,  40,  120,F = 5,H =  3,L = 0.6,α = 0.2lP = . We 

can find that the threshold is increasing with the number of wavelengths F. This is due to 

the fact that the more wavelengths, the smaller the blocking probability for a given load. 

The sharpness of the transition also increases with respect to F, suggesting an asymptotic 

behavior of the blocking probability for a large F. 

Figure 2.9 plots the upper bound for the probability of error from Figure 2.7 using 

Theorem 1. It shows that the value of  eP  is small under most load conditions. 

  

 
Figure 2.7 Load ( ρ ) vs. blocking probability ( bdP ): F=120, H=5, L=3, 0, 0.6,0.9,α = 0.2lP =  
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Figure 2.8 Load ( ρ ) vs. blocking Probability ( bdP ): F=20, 40, 120, H=5, L=3, 0.6,α = 0.2lP =  
 
 

 

Figure 2.9 Load ( ρ ) vs. upper bound of :eP  F=120, H=5, L=3, 0,0.6,0.9,α = 0.2lP =  
 

 

2.6.5 Special Cases 

A question rises why the threshold effect persists for both independent and dependent 

models. We investigate this question by considering special cases when the number of 

wavelengths is large, and all the sub-networks are weakly-connected ( lP  is large). Under 

these conditions, analytical form of the blocking probability can be derived. 
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2.6.5.1 Gaussian Approximation 

An important step to obtain a close form expression for the blocking probability is to 

approximate the joint probability of the local states ( iN ’s) at wavelength converters. 

When the number of wavelengths F is large (and L is small), local states at wavelength 

converters, 1 2  ( ,  , ,  ),  LX N N N= are joint Gaussian random variables with probability 

1 ( )LO
F

− [31]. Such a Gaussian distribution can be completely characterized by the 

means, variances, and covariance of iN ’s. Specifically, all iN ’s are random variables 

with the same mean µ  and variance 2σ , where 

                                                      ,Fµ ρ=         (2.17) 

and  

2 (1 ).Fσ ρ ρ= −       (2.18) 

The covariance ijC  between iN  and jN  for i j≠ characterizes the dependence 

between two subnets, where 

                                              2[ ] .ij i jC E N N µ= −       (2.19) 

Such dependence can be further characterized through partitioning iN  and jN  into 

different components,     

                                    ,i ii iN N M= +                                           (2.20) 

and                     

                                       ,j jj jN N M= +       (2.21) 

where  
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iiN  is the number of wavelengths occupied by local calls at the first hop of the i-th 

subnet; 

jjN  is the number of wavelengths occupied by local calls at the first hop of the j-th 

subnet; 

iM  is the number of wavelengths in the i-th subnet occupied by inter-domain calls; 

jM  is the number of wavelengths in the j-th subnet occupied by inter-domain calls. 

Define gρ  as the correlation coefficient between iN  and 1.iN +  Then iN  and 1iN +  

have a bivariate normal distribution: 2 2
1( , ) ~ ( , , , , ).i i gP N N Normal µ µ σ σ ρ+  Since 

1 2, ,..., LN N N  form a Gaussian Markov Chain, the joint probability distribution of 

1 2  ( ,  ,...,  ) LX N N N=  is  

              1 2( , ,..., ) ~ ( , ),LP N N N Normal µ ∑      (2.22) 

where  

1( ) ( )
2

1 2 1 22

1( , , , ) ,
(2 )

TX X

L L
P N N N e

µ µ

π

−− − ∑ −

=
∑

…        (2.23) 

[ ]1, ,..., ,
L

F F Fµ ρ ρ ρ
×

=                          (2.24)       

and 

11 12

12 22 23
1

32 33

1 1 1

1

0 0 0
0 0

0 ,

0 0 0
L L L L

L L L L L L

a a
a a a

a a
a a
a a

−

− − −

− ×

 
 
 
 ∑ =
 
 
  

       (2.25) 

with 
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2 2

2

2 2

1 , 1 ,
(1 )

1
, ,

(1 )

g

ii
g

g

for i or i L

a
otherwise

ρ σ

ρ
ρ σ

 = = −= 
+

 −

 

and 

2 2
, .

(1 )
g

ij
g

a for i j
ρ
ρ σ

= − ≠
−

 

It can be shown that  

          2

2

( )(1 ) 1( )( ),
(1 ) 1

n n
g

P Pρ ρ ραρρ
ρ ρ ρ ρα
− − −−

= =
− −

     (2.26)  

for all  1,  2,...,  -1. i L= (Detailed derivations can be found in Appendix B). Two 

observations can be made here:  

(i) gρ  is monotonically decreasing when nP  is increasing. Specifically, when 2 ,nPρ =  all 

the inter-domain calls supported by a network domain exit at the current network domain 

( 0gρ = ). When 0,nP =  all the inter-domain calls are end-to-end connections traversing 

all the network domains ( 1
1g

ρρ α
ρα
−

=
−

). Note that we always have 20 .nP ρ≤ ≤  

(ii) gρ  is monotonically increasing with respect to .α  where α  is the percentage of 

inter-domain calls. For instance, when 0,α =  i.e., all the calls supported by the network 

are local calls, we have 0.gρ =  When 1,α =  i.e., all the calls are inter-domain calls, we 

have 1 .n
g

Pρ
ρ

= −  
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2.6.5.2 Weakly-Connected Sub-Networks 

When 0,gρ =  all sub-networks are completely decoupled, i.e., each inter-domain call 

lasts for one subnet ( 1lP = ). The non-blocking probability of decoupled subnets is 

                     { }* 11 [1 (1 )(1 ) ] ,
LH F

ad cP ρ ρ −= − − − −       (2.27) 

where cρ  is the probability that a wavelength is used for local calls given that it is not 

used for inter-domain calls, 1 2(1 ).cρ ρ ρ= −  For the non-blocking probability of the 

independent model, we have in (2.6), 

{ }1 [1 (1 ) ] .
LH F

aiP ρ= − − −  

Equation (2.27) bears a similar form to (2.6), and thus it can be shown that there exists a 

threshold effect in the blocking probability for decoupled subnets similar to that for the 

independent model.  

Of particular interest is when all the sub-networks are weakly connected. When gρ  is 

small, all sub-networks are weakly-connected, i.e., a small percentage of the calls are 

inter-domain calls (α  is small), and/or inter-domain calls exit at current subnet with a 

large probability ( lP  is large). For weakly connected sub-networks, we obtain the 

following theorem through Taylor Expansion: 

Theorem 2.2  For weakly-connected sub-networks, i.e., α  is small and/or lP  is large, 

the non-blocking probability of the dependent model can be expressed as  

* (1 ) ( ),ad ad gP P oη ρ= + +                                 (2.28) 

where *
adP   is the non-blocking probability of the decoupled subnets as given in  (2.27), 

and η  is proportional to gρ (see Appendix C for details). 
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It can be found that:  

(i) When 1lP = , all inter-domain calls last one subnet. Hence all the sub-networks are 

decoupled, and we have  0,η =  * .ad adP P=   

(ii) When lP  is large (e.g., 0.8lP ≥ ), a small percentage of the inter-domain calls last 

more than one subnets. Hence the sub-networks are weakly-connected and 

* (1 )ad adP P η≈ + . The non-blocking probability is just that of the decoupled sub-networks 

plus a small perturbation. Thus we can expect a threshold effect occurs under the weakly-

connected sub-networks. The analysis here further explains why the threshold effect 

persists for both independent and dependent model. 

2.7 Simulation Results 

For more realistic scenarios with dynamic call arrivals and departures, the Bayesian 

approach we use would be applicable conceptually. However, the exact a posterior 

probability would be rather complex. Hence, a question is whether or not the static model 

we use could result in a good approximation. In this section, we investigate this issue 

through simulation of light-path assessment for dynamic call patterns. Of particular 

interest is the performance of the analytical bound on ,  eP  which is derived using the 

static model in a dynamic setting.  

2.7.1 Simulation Setup 

We simulate light-path assessment in a network of bus topology with three network 

domains. Each network domain is assumed to have 5 hops. Connection requests are 

assumed to obey a Poisson Process with unit exponential holding time. Define lλ  as the 

arrival rate of connection requests for local calls at each link, and ijλ  as the arrival rate of 
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connection requests for inter-domain calls from domain i to domain j. Note that the 

connections between two border nodes of domain i are considered as inter-domain calls 

from domain i to domain i. Let the total arrival rate to the network be ,λ  then 

3 3

1

15 l ij
i j i

λ λ λ
= =

= +∑∑ . Furthermore, following the assumptions in Section 2.6.1, we have 
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and 
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≡ = =∑∑      (2.31) 

λ∆  can be considered as the total arrival rate for inter-domain connections at each 

network domain. Solving (27-29), we can obtain the arrival rates for connection requests 

with different sources and destinations as follows: 
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where .
15 (14 2 )lP

λαλ
α∆ = − −
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For a specific network load ,ρ  we adjust the total traffic arrival rate to the network λ  

to be either high or low, so that the probability that a wavelength is used in the network 

remains approximately .ρ   

The simulator is based on discrete event simulation. For each simulation, 10 runs are 

performed where each run consists of 100,000 end-to-end connection requests. Four 

decisions may result from light-path assessment using the partial information discussed 

previously: (i) correct acceptation (CA), (ii) incorrect acceptation (IA), (iii) correct 

rejection (CR), and (iv) incorrect rejection (IR). The probability of error is obtained as the 

percentage of IA and IR out of all the decisions.  

2.7.2 Simulation Results 

Figure 2.10 depicts the probability of error for light-path assessment using aggregated 

information with 40,  F = 0.6,α =  and 0.2lP = . The reason for choosing these 

parameters are: (1) more wavelengths would be used for inter-domain calls than for local 

calls; (2) a large percentage of inter-domain calls supported by one network domain 

would be calls passing through that domain.  

The simulation result confirms the threshold effect that is predicted by the analytical 

model and shows the good performance of the analytical bound. We can find that, using 

Bayesian approach based on only aggregated information and the static model, eP  is 

neglible under most load conditions; and eP  increases to its peak exponentially when the 

load is close to the threshold. Furthermore, the static model predicts the threshold of the 

load accurately. For Figure 2.10, 0.65.thresholdρ ≈  
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Figure 2.11 shows the simulation results for 80,  F = 0.6,α =  and 0.2.lP =  It also 

confirms that the Bayesian approach could give us a small eP  except when the load is in a 

small region close to the threshold. When the load is close to the threshold 

( 0.71thresholdρ ≈  for Figure 2.11), eP  increases to its peak exponentially. Because of its 

static nature, the dependent model used in simulation cannot capture the instantaneous 

blocking probability of the network carrying dynamic traffic with 100% accuracy. 

Therefore, the probability of error exceeds 0.5 when the load is at the threshold. 

However, simulation results confirm that it is possible to achieve a probability of error 

close to 0 using only aggregated information under most load conditions. 

 

 

 
Figure 2.10 Analytical bound and simulated eP : F=40, H=5, L=3, 0.6,α =  0.2lP =  
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Figure 2.11 Analytical bound and simulated eP : F=80, H=5, L=3, 0.6,α =  0.2lP =  
 
 

2.8 Summary of Chapter 2 

In this Chapter, we have investigated network management information for light-path 

assessment across administrative domains (subnets). Our focus has been on studying the 

scalability of management information, which includes aggregated information of each 

subnet, and local information from wavelength converters on network boundaries.  

We have formulated the problem based on decision theory, and defined the 

performance of using partial management information through the Bayes probability of 

error. A bound in terms of blocking probability is derived to estimate such a performance. 

We then defined the scalability of management information as the growth rate with 

respect to network size and resource when a desired performance is achieved.  

A scalable case has been studied where the partial management information grows 

only logarithmically with the number of wavelengths per link. Our study reveals that 

when the number of wavelengths is large, the resulting Bayes error is negligibly small for 
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most of the network load conditions. Therefore, a small loss in performance (the Bayes 

error) may be traded off with a large saving in network management information. In other 

words, the abundant network resource, which is the large number of wavelengths in 

future WDM networks, may make it possible to reduce the amount of network 

management information while achieving a good performance.  
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 CHAPTER 3 

RESILIENCE OF ALL-OPTICAL NETWORKS  

UNDER IN-BAND CROSSTALK ATTACKS: A GRAPHICAL 

MODEL APPROACH 

3.1 Introduction of Chapter 3 

All-optical network (AON) has been considered as a promising technology for next-

generation optical networks.  However, AONs are susceptible to malicious attacks as the 

signals remain in optical domain within the network and are difficult to be monitored 

closely [32]. Due to the high data rate supported by AONs, even attacks of a short 

duration can result in a large amount of data loss. Hence, security of AONs upon attacks 

has become an important issue, where an open question is how to incorporate security 

against attacks in the design and engineering of AON architectures. Investigations of this 

question are important as AONs are still at an early stage of implementation and ground-

up developments of secure all-optical networks are possible [32]. The goal of this work is 

to study how network architecture impacts resilience in the context of in-band crosstalk 

attacks in AONs.  

Crosstalk attacks were first studied in [32]. Crosstalk in AONs is caused by signal 

leakage among different inputs at non-ideal network devices, e.g. optical switches. The 

most detrimental type of crosstalk is in-band crosstalk, where the crosstalk element is 

within the same wavelength as the signal [34]. In-band crosstalk attacks can happen at 

fiber links or network nodes. In this work, we consider the case where an attacker gains 

legitimate access to a network node and inserts a flow with strong signal power into the 
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network [33][34]. Due to the crosstalk effects of wavelength switches, a small fraction of 

the signal from the attack channel may leak into other normal channels in the shared 

switching plane. The leakage superimposed onto normal channels may exceed a 

predetermined threshold for a quality of service requirement, such that those channels are 

considered to be affected by the attack at network nodes.   

AONs are susceptible to crosstalk attacks. Major applications of AONs include 

metropolitan area networks (MANs) and wide area networks (WANs), but MANs and 

WANs are not 100% secure. As AON grows in span and functionality, it has the potential 

to provide services to a wider set of applications in the future, e.g. analog services, novel 

applications that require optical interfaces. Therefore, there is an increasing demand for 

access of the AON from outside parties, i.e., partners and customers of service providers 

may also have limited management access to the network, which poses an increasing 

threat to optical network security [35]. A wider set of users and the increasingly open 

platform of optical networks entail a higher risk of user misue of the network, which is 

evidenced by the security threats such as denial-of-service attack and worm attack in the 

current Internet [34]. The Internet Infrastructure has a large scale and is accessed by 

hundreds of millions of users with different interests. Therefore, it constantly faces the 

threat of human operational errors, spreading of software virus, and malicious attacks [3]. 

It is expected that the risk of crosstalk attacks could be higher when the AON higher 

when the AON paradigm is fully implemented.  

There have been several research activities aiming to mitigate the threats of crosstalk 

attacks in AONs. Attack detection based on node wrappers is studied in [34]. A 

distributed algorithm for attack localization is presented in [36]. Necessary and sufficient 
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conditions for crosstalk attack localization are investigated in [33]. General frameworks 

for managing faults and alarms in AON are discussed in [37][38][39]. All these 

approaches are reactive in nature. Furthermore, certain crosstalk attacks are difficult to 

detect [34]. For instance, sporadic crosstalk attacks may disrupt service but “disappear” 

before it can be detected. Thus, there remains a basic question: How resilient is an AON 

upon crosstalk attacks before the attacks are detected and eliminated from the network? 

This motivates our study of resilient AON architectures against crosstalk attacks. In a 

more general context, using cross-talk attacks as an example, we hope to provide an 

understanding on how network architectures may affect network security in the presence 

of attackers. 

We focus on three components of network architectures against crosstalk attacks: (a) 

physical layer optical devices, (b) physical topology, and (c) wavelength usage at the 

network layer, which is determined by network layer traffic. The goal is to quantify the 

effects of these factors against crosstalk attacks. One major challenge encountered in this 

study is to characterize the interactions of the three factors of network architecture during 

crosstalk attack propagation. For instance, attacks propagate to active wavelength 

channels of the same wavelength as the attacker’s flow. Meanwhile, wavelength usage at 

the network layer is dependent because of the sharing of network links among different 

connections. Therefore, we need an approach that can provide an explicit representation 

of the cross-layer interactions.  

We apply probabilistic graphical models to mode cross-layer attack propagation [40]. 

Probabilistic graphical models include directed probabilistic graphs (Bayesian Belief 

Networks) and undirected probabilistic graphs (Markov Random Fields), and have been 
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widely studied in machine learning and information theory [41][42]. Yet, probabilistic 

graphical models have just begun to see applications in networking (see Section 3.8 for 

detailed discussions). In particular, at the physical layer, we develop a directed 

probabilistic graph to model attack propagation under static network traffic and a given 

source of attack. At the network layer, we apply an undirected probabilistic graph to 

represent the probability distribution of active connections. The physical- and the 

network-layer models together form a cross-layer model that has a factor graph 

representation [43].  

The cross-layer model is developed using a bottom-up approach and provides an 

explicit representation of the complex dependencies between the physical- and the 

network-layer. Furthermore, the graphical models facilitate the analysis of multiple 

factors from network architecture on network resilience. For regular topologies, we 

derive bounds on the network resilience. For irregular/large topologies, the cross-layer 

model provides computationally efficient methods for studying the resilience where the 

analysis is not feasible.  

The remainder of Chapter 3 is organized as follows. Section 3.2 describes the 

problem formulation. Section 3.3 presents the attack propagation model under static 

traffic and a given source of attack based on directed probabilistic graph. Section 3.4 

introduces the network-layer representation using undirected probabilistic graph. Section 

3.5 discusses about the cross-layer model based on factor graph. Section 3.6 investigates 

the impacts of physical layer on network resilience. Section 3.7 studies the effects of the 

network layer on resilience. Section 3.8 briefly reviews graphical models in networking 

research. Section 3.9 concludes the chapter. 



 45

3.2 Problem Formulation 

The topology of an AON is defined as an undirected graph ( , ),V EG  with V  being the 

set of nodes and E  being the set of bi-directional links. Denote iV ~ jV  if there is one bi-

directional link between iV  and jV , ,i jV V ∈V . Let R  be a finite set of routes in the 

network. Assume that there are no wavelength converters in the AON. We define a 

connection on route ,r  r∈R , as a bi-directional light-path on route r  that consists of one 

unidirectional flow in each direction.1  Assume that each wavelength can only be used by 

one active connection on the same network link.  

This work considers single-source in-band crosstalk attacks. That is, crosstalk attack 

is started at the source node of a unidirectional flow on wavelengthλ , and propagates to 

flows that use the same wavelength. As this work focuses on in-band crosstalk attacks, 

“flows”, “connections’’, and “channels” are used in the rest of Chapter 3 without 

referring to their associations with wavelength λ  where no ambiguity occurs.  

The problem we consider consists of three aspects: (a) developing the cross-layer 

model of attack propagation, and (b) using the model to quantify the network resilience 

upon crosstalk attacks. Let iS  be a random variable that denotes the number of active 

channels affected by the in-band crosstalk attack at the switching plane of node iV . 

Vector ( : )i iS V= ∈S V  corresponds to the number of affected channels at each node in 

the network. Let ijN  denote the status of route ijr , where 1ijN =  if there is an active 

                                                 

 
 
1 Each bi-directional link consists of two optical fibers, one for each direction. Throughout Chapter 3, the 
term “connection” is used specifically for bi-directional traffic; the term “flow” is used to refer to uni-
directional traffic.  
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connection on route ijr  between node iV  and jV , for ijr ∈R ; 0ijN = , otherwise. Vector 

( : )ij ijN r= ∈N R  then represents the status of all network routes in R . Denote sdf  as the 

flow starting from node s  and terminating at node d , we need to obtain the following 

quantities to characterize attack propagation:  

(a) ( | , ) :f sdP R f= =S N n The probability of the number of channels affected at each 

network node given the status of network routes n  and the source of attack fR , where 

fR  denotes the unidirectional flow where the attack originates. This probability 

represents attack propagation under static network traffic n  and a given source of attack 

sdf , and is to be characterized through a directed probabilistic graph in Section 3.3.  

(b) ( | ) :f sdP R f=N The probability of the status of network routes given the source of 

attack, which is to be described using an undirected probabilistic graph in Section 3.4.  

(c) ( | )f sdP R f=S : The probability of the number of channels affected at each node 

given the source of attack, which models attack propagation under dynamic traffic. This 

probability combines the physical- and the network-layer models from (a) and (b), and 

shall be described with a factor graph representation in Section 3.5. 

The cross-layer model is then used to study network resilience based on the network 

resilience loss and average network resilience loss defined as follows. 

Definition 3.1 Given that there is a crosstalk attack started on flow sdf , the network 

resilience loss is defined as  

                                            [ ]
sd sdi

f f iV
M E S

∈
=∑ V

,                       (3.1) 
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where [ ] ( | )
sd i

f i i i i f sdS
E S s P S s R f= = =∑  is the expected number of affected channel at 

node iV  given the source of the attack. 
sdfM  denotes the total number of active channels 

affected when the attack starts from a particular flow. 

Definition 3.2 The average network resilience loss of the network is defined as 

[ ],
f sdR fM E M=  where [ ]

fRE  stands for the expectation over the source of the attack 

fR , i.e.,  

                                   ( )
sdsd

f f sdf
M M P R f= =∑ ,                                     (3.2) 

where 

1( ) ( 1)
2 | |f sd sdP R f P N= = =

R
.                              (3.3) 

Here we assume that each network route in R  is equally likely to be an attacker’s route, 

and the attack is started on one of the two unidirectional flows on the attacker’s route 

with an equal probability. 

3.3 Physical-Layer Attack Propagation Model: Directed Probabilistic graph 

We first model attack propagation under static network traffic and a given source of 

attack.  

3.3.1 Background of In-Band Crosstalk Attack 

We focus on in-band crosstalk attacks where an attacker gains legitimate access to the 

network and injects signal of high power into one flow. Due to imperfect switching 

arrays, the attacker’s channel may affect other channels that share the switching plane, 

causing malfunctions at several locations in the network. Figure 3.1 depicts an example 
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of in-band crosstalk attack. At each network node, channels of the same wavelength from 

different input fibers share the same switching plane [44]. Suppose that the crosstalk is 

initiated on flow 1C  using wavelength 1λ  from input fiber 1. All the wavelength channels 

that share a switching plane with 1C , e.g. channel 2C  from input 2, may be 

contaminated by 1C ’s power leakage.  

In particular, we define a network node as being affected by the attack if the amount 

of in-band crosstalk incurred by normal2 channels at the switching plane of that node 

exceeds a predetermined threshold. Clearly, each node along the attacker’s route may be 

affected by the attack due to the high signal power of the attack flow, but the chance for 

nodes that are not on the attacker’s route to be affected by the attack is negligible. That is, 

normal flows affected by the attack flow at one or more network nodes along the 

attacker’s route do not have attacking capability, as its signal power is unlikely to be 

increased by more than half the normal channel power. For instance, consider the 

example in Figure 3.1. Suppose, at one time instant, the attacker’s jamming power is 

20dB higher than the normal channel power and the optical switches have a crosstalk 

ratio of -35 dB. Then the power of flow C2 is increased by around -15dB of the normal 

channel power at node 1. The power of flow C2 at node 2 is in the same order, as in node 

1, whose crosstalk leakage to flow C3 is negligible given the crosstalk ratio of –35dB. 

Currently, optical switches with crosstalk ratios much less than -35dB are commercially 

available [45]. Thus, in this work, we ignore the in-band crosstalk caused by normal 

flows and assume that only nodes along the attacker’s route may be affected by the 

                                                 

 
 
2 Normal channels refer to channels in the network that are not the attacker’s channel.  
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attack. In addition, attack propagates to all the active channels that share the switching 

plane with the attacker’s channel at each affected node. Based on these assumptions, we 

shall describe the probabilistic attack propagation model in the next subsection.  

 

Figure 3.1 Crosstalk attack propagation in AON 

3.3.2 Probabilistic Attack Propagation Model 

Consider a crosstalk attack started at node s  on flow sdf . We index the set of nodes 

traversed by flow sdf  as 1 2{ , ,..., }
sdf kV V V=V , with 1V  and kV  being the source and 

destination node. The attack propagation is characterized by the status of each node in 

sdfV  and the status of wavelength channels at those nodes. We define the status of node 

iV  as a binary variable iX . Specifically, let the signal power of a normal flow at the 

switching plane of each node be nu  when there is no attack in the network.  Let the 

crosstalk ratio of the switches in the network be cl  and let thc  be a predetermined 

constant. Then 1iX =  if the amount of in-band crosstalk incurred by a normal channel at 

the switching plane of node iV  exceeds th nc u ; 0,iX =  otherwise. Furthermore, we denote 

node iV  as being affected by the attack if 1iX = .  
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There are several motivations to define the status of each node under attack as a 

binary variable. First, the amount of in-band crosstalk at each node under attack may 

have a wide range of values. For simplicity, we aggregate it into two levels, which 

corresponds to whether a predetermined threshold is exceeded or not. Second, in network 

fault/attack management, the status of each network component is generally defined as a 

binary variable, i.e., an “up” state, which means that the component is operational, and a 

“down” state, which means that the component can not operate properly. Finally, in very 

often the network information available from attack detection and monitoring is whether 

the predetermined threshold or service guarantee is violated or not due to the attack, 

rather than the exact value of the level of crosstalk.  

Clearly the status of each node in 
sdfV  is determined by the strength of flow sdf ’s 

jamming power at that node. If sdf ’s jamming power has a constant value at node 1V , its 

jamming power at other nodes along the route depends on the characteristics of optical 

devices and remains non-random. Then the status of each node and how far the attack can 

propagate are fixed, which can be characterized using a deterministic model of crosstalk 

attack propagation ([33][38]).  

However, in this work, our focus is to study the impacts of network architectures 

against crosstalk attacks in general, where the attacker’s jamming power at the source of 

attack is unknown and has a wide range of values in different cases. Therefore, we 

assume that the attacker’s jamming power is a random variable following certain 

probability distribution. Consequently, the status of network nodes under crosstalk attack 

becomes random, which leads to a probabilistic model of attack propagation. Intuitively, 

if the attacker’s jamming power has a higher probability of being large; it is more likely 
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the attack propagates to nodes farther away from the source node of the attack [39]. Next 

we derive the probabilistic models of attack propagation.  

We consider the attenuation of flow sdf ’s jamming power along its route. Denote the 

signal power of flow sdf  in the switching plane of node iV  as a random variable 

, 1, 2,... .iU i k=  The attenuation of sdf ’s jamming power along its route can be captured 

using deterministic composite functions that depend on the characteristics of optical 

devices. For simplicity of illustration, we consider an example in Figure 3.2.  

 

 

Figure 3.2 Illustration of signal power attenuation: the attacker’s flow 

 

We assume that there are input erbium-doped fiber amplifier (EDFA) and output 

EDFA at each side of a node respectively. Furthermore, we define the following 

parameters:  

,1 :il  Signal loss ratio of node iV  before the flow enters the switching plane, which mainly 

includes signal loss at demultiplexer. 

,2 :il  Signal loss ratio of node iV  after the flow enters the switching plane, which mainly 

includes loss at switching plane and multiplexer. 

,i ja : Signal loss ratio of the fiber span between node iV  and node jV . 
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,1( ) :ig  The gain of the EDFA at the input side of node iV .  

,2 ( )ig : The gain of the EDFA at the output side of node iV .  

For a given network, ,1 ,2 ,, ,i i i jl l a  are constants; ,1( )ig and ,2 ( )ig  are deterministic non-

linear functions of the input power to amplifiers. In this work, we adopt the following 

gain model for EDFAs [46]:   

0

, ,
( )

1 lg , ,
( )

ij input th

ij input sat

input ij input

d if P p
g P p g otherwise

P g P

≤
=  +


      (3.4) 

where, inputP  is the total input power; satp  is the internal saturation power; 0g  is the small 

signal saturated gain; thp  is the input power threshold for successful gain clamping, and 

ijd  is the clamped gain value.  

Assume that the attacker’s flow ( )sdf does not share EDFAs with other flows. This 

corresponds to a conservative view of the jamming power attenuation and a worst-case 

scenario of in-band attack propagation, as all the photons of the EDFAs are used to 

amplify the attacker’s signal. Then, 

           1 1,1 1,1 , 1 ,2 ,2( ( )),i i i i i i i iU l a l Uπ π+ + + +=                   (3.5) 

where , , ( )i j input i j inputP g Pπ =  is the output power of the EDFA with gain , ( )i j inputg P  and 

input power inputP . Then composite function 1, 2, 1 , 1( (... (.) ) )j j j j i iτ τ τ− − − + capture the 

attenuation of the jamming power between node iV  and jV .  

Assume that, when there is no crosstalk attack in the network, amplifiers on each 

fiber operate in the gain clamped regions and make up the signal attenuation between two 

nodes. Furthermore, assume that the attacker’s jamming power at the source node of the 
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attack follows a cumulative distribution function ( )Uη  with minimum power minu , 

min ,th n cu c u l≥  and maximum power maxu . Then, it can be shown that the status of each 

node along the attacker’s route, , 1, 2,..., ,iX i k=  form a Markov Chain. Specifically,  

1( 1) 1P X = = .         (3.6) 

          1 1 2 1( | , ,..., ) ( | ), 1, 2,..., 1.i i i iP X X X X P X X i k+ += = −      (3.7) 

     1( 1| 0) 0.i iP X X+ = = =         (3.8) 

                        1, 11
1

1,

1 ( )( / )( 1| 1) ,
( / ) 1 ( )

ii th c
i i

i th c i

P U c lP X X
P U c l

η δ
η δ

++
+

−>
= = = =

> −
              (3.9) 

where 1, ,1 1,i i kδ ≤ ≤ − corresponds to the minimum value of jamming power at node 1V  

such that attack can propagate to node iV ,  and satisfies   

          1, 2, 1 1, 2 1,( (... ( ) ) ) /i i i i i th n cc u lτ τ τ δ− − − = .      (3.10) 

The derivation of (3.7) to (3.9) can be found in Appendix D.  

Hence, given the non-deterministic nature of flow 'sdf s  jamming power at the source 

node of attack, the status of each network node are random. How likely the crosstalk 

attack may propagate to other nodes along the attacker’s route is represented by the 

Markov chain in  (3.6) to (3.9). Intuitively, the status of each network node along the 

attacker’s route forms a Markov Chain because: (1) the status of each node is defined as a 

binary variable and is determined by the attacker’s jamming power at that node, and (2) 

the attacker’s jamming power at node 1iV +  is a non-increasing function of that at node iV .  

It should be noted that, in this work, the probabilistic model of attack propagation is 

derived to characterize attack propagation in general, when the exact value of the 

jamming power at the source of attack is unknown or random. Given a constant and 
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known jamming power at the source of attack, a deterministic model is sufficient to 

capture attack propagation.  

The conditional probabilities in (3.9) can take different forms depending on ( )Uη . If 

we further assume that the attacker’s jamming power at the source node of the attack is 

uniformly distributed in min max[ , ]u u , (3.9) can be rewritten as 

                    max min 1, 1
1

max min 1,

max{0, max{ , }}
( 1| 1) ,

max{ , }
i

i i
i

u u
P X X

u u
δ

δ
+

+

−
= = =

−
    (3.11) 

where 1, ,1i i kδ ≤ < , is defined in (3.10).  

For simplicity, we denote  

1( 1| 1)i i iP X X α+ = = = ,                (3.12) 

where 1, 1

1,

1 ( )
1 ( )

i
i

i

η δ
α

η δ
+−

=
−

. In the rest of Chapter 3, we assume that 'i sα  are known.  

  Next we consider the number of active channels affected by the attack at the 

switching plane of node iV . Let ijR  be the set of network routes that use link ij . Under 

static traffic, 
uv ij

uvr
n

∈∑ R
corresponds to the number of flows that enter the switching 

plane of node iV  through link ij ; 
ih ij

ihr
n

∈∑ R
 corresponds to the number of flows that are 

locally originated from node iV  and enter the network through link ij . Hence, under 

static network traffic, the total number of affected channels at the switching plane of 

,
sdi i fV V ∈V , is given by  
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~

( | , , )

1, { }& 1,

1& 0,
0, .

i j uv ij ih ij

i i i i f sd

i uv ih iV V r r

i i

P S s X x R f

if s n n x

or
s x
otherwise

∈ ∈

= = = =

 = + =

= 

= =



∑ ∑ ∑R R

N n

            (3.13) 

This means that, when node iV  is affected by the attack, all the active channels at the 

switching plane of  iV  are affected by the attack; otherwise, if node iV  is not affected by 

the crosstalk attack, only one, i.e., only the channel used flow sdf  itself, is affected by the 

attack at the node.  

Combining  (3.12) and (3.13), we have the physical-layer attack propagation model,  

       1

1
1 1

( | , )

( | , ) ( | , , ),

sd

fsd

f f sd

k k

i i f sd i i f sd
i i

P R f

P X X R f P S X R f
−

+
= =

= = =

= = =∑∏ ∏
X

S N n

N n
           (3.14)  

where ( : )
sd sdf i i fS V= ∈S V , and ( : )

sd sdf i i fV= ∈X X V , which is the status of nodes in the 

attacker’s route.  

Therefore, under static network traffic (given =N n ), ( , : )
sdi i i fX S V V∈  forms a 

directed probabilistic graph (Bayesian Belief Network). Each node in the probabilistic 

graph represents either iX  or iS . There is one directed edge from iX  to 1iX +  and one 

directed edge from iX  to iS  respectively. Note that, given =N n  and i iX x= , iS  is 

deterministic, but iS  is included for an explicit graphical representation of attack 

propagation.  

Figure 3.3 shows an example of a simple mesh network where all the routes in R  are 

marked in dashed lines. Suppose that the crosstalk attack is started on flow BD. The 

directed probabilistic graph representation of attack propagation is shown in Figure 3.4.  
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Figure 3.3 A mesh network with 11 routes 

 
BX  CX DX  

BS  CS DS  
 

Figure 3.4 Directed probabilistic graph representation of attack propagation:  
attack started on flow BD; mesh network in Figure 3.3 

 
  

Due to the complexity of modeling AON signal transmission, the physical-layer 

model in this work is developed with stringent assumptions, i.e.: (1) the in-band crosstalk 

due to channels with normal signal power and/or nonlinear effects is ignored; (2) under 

normal operations, the EDFAs work at gain-clamped region and make up for the signal 

losses between two network nodes; (3) the optical switches have the same crosstalk ratio 

and threshold of crosstalk leakage for the definition of node affection.   

Assumption 1 is reasonable because of the low crosstalk ratio of current optical 

switches. If assumption 2 is relaxed so that the EDFAs work at gain-clamped region 
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under normal operations, but may make up for more than the signal losses between two 

network nodes, then the status of nodes along the attacker’s route may still form a 

Markov Chain, however, the order of nodes in the Markov Chain does not necessarily 

follow the sequence of 1 2, ,..., kX X X . The same is true if we relax assumption 3, so that 

optical switches in the network have different crosstalk ratios or the thresholds of 

crosstalk leakage for the definition of node affection are heterogeneous for different 

nodes.  

The physical layer model characterizes attack propagation under static network 

traffic. Under dynamic traffic, however, the status of each network route ,sd sdN r ∈R , is 

random and can be characterized using a network layer model.  

 3.4 Network-Layer Model: Undirected Probabilistic graph 

To obtain the network layer model, we need to obtain ( | )f sdP R f=N , which is the 

probability distribution of  route status given the source of the attack. From (3.3), we 

have 

    ( | ) ( | 1)f sd sdP R f P N= = =N N .      (3.15) 

Then it suffices to find ( )P N , which can be characterized by undirected probabilistic 

graph.  

 3.4.1 Undirected Probabilistic Graph 

An undirected probabilistic graph can be represented as  G = (V, E)  [40], where V  

represents the set of vertices, and E  represents the set of edges. Each node iV ∈V  

represents a random variable. A subset of nodes CV  is said to separate two other subsets 



 58

of nodes AV  and BV  if every path joining every pair of nodes iV ∈ AV  and jV ∈ BV  has at 

least one node from CV  [40].  An undirected probabilistic graph implies a set of 

conditional independence relations. That is, for any disjoint subsets of nodes in the 

undirected graph, AV , BV , and CV , if CV  separates AV  and BV , then AV  and BV  are 

conditional independent given CV . For example, Figure 3.5 shows an undirected 

probabilistic graph with 5 variables. As node 2V  and 3V  separate node 1V  from nodes in 

the rest of the network, 1 2 3 4 5 1 2 3P(V |V ,V ,V ,V )= P(V |V ,V ) . Obviously, a node is 

separated from other nodes in the undirected graph by all its neighbors. 

A clique denotes a subset of V  that contains either a single node or several nodes 

which are all neighbors of one another. Then the joint probability distribution of V  has a 

product form [40]:  

          ( ) ({ : })-1
q i iq C

P Z V Vψ
∈

= ∈∏ qV V ,                      (3.16) 

where Z  is the normalizing constant, ({ : })q i iq C
Z V Vψ

∈
= ∈∑ ∏ qV

V ; qψ  is a non-

negative function defined for clique ∈qV C , and  C  denotes the set of all the cliques in 

the graph G .  

 

V1
*

V4
*

V3
*

V2
*

V5
*

 

Figure 3.5 An undirected probabilistic graph 
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3.4.2 Network-Layer Model  

The network-layer model is formed as follows. Each vertex in the undirected 

probabilistic graph represents the status of a route ,ij ijN r R∈ . Furthermore, the status of 

all network routes that share the same link forms a clique. In [47], it has been shown that 

the steady state distribution of the number of calls in progress in loss networks without 

control form a Markov Random Field (MRF), which is one type of undirected 

probabilistic graph. Here we generalize the MRF representation in [47] to an undirected 

probabilistic graph representation, and include the dependence among different routes 

due to the capacity constraint and the network load explicitly in the undirected graph.  

We revisit the example of mesh network in Figure 3.3, whose network-layer model is 

shown in Figure 3.6. Consider route AC, which traverses two network links: AB and BC. 

Meanwhile, link AB is in route AB and route AF; link BC is in route BC and route BD. 

Since wavelength λ  can only be used by one connection on each network link, route AC 

has a contention of wavelength usage with route AB, AF, BC, and BD. However, once the 

status of route AB, AF, BC and BD is known, the status of route AC can be determined 

without violating the capacity constraints. Hence, routes AB, AF, BC and BD are 

neighbors of route AC and separate route AC from routes in the rest of the network, as 

shown in Figure 3.6. 

Therefore, by defining routes that share the same network link as neighbors, we 

capture the capacity constraint in the undirected probabilistic graph. The probability 

distribution of all network routes can be obtained by specifying proper clique potentials 

based on (3.16). The clique potentials in this work are selected to characterize both the 

dependencies among different network routes and the varying network load.  
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Figure 3.6 Undirected probabilistic graph representation of network routes; 
mesh network in Figure 3.3 

 

In Section 3.2, we denote ijR  as a subset of routes in R  that traverse link ij . A 

clique, denoted as ijC , can then be formed with all the routes in ijR . Then the potential 

function of ijC , denoted as ijψ , is obtained as follows: (1) 0ijψ ≠  if and only if the 

capacity constraint is satisfied, i.e., at most one route in ijR  is active; (2) if the 

wavelength is used on link ij , then ij ijψ γ= ; otherwise, 1ij ijψ γ= − , 0 1ijγ< < . From 

(3.16), the joint probability of all routes satisfies 

(1 )

1( ~ )

1( ) (1 ) ( ),
uvruv ijuvruv ij

uv iji j

NN
ij ij uvrV V

P I N
Z

γ γ ∈
∈

−

∈

∑∑= − ∑∏ R
R

R
N

N    (3.17) 

where 1( ) 1
uv ij

uvr
I N

∈
=∑ R

 if 0
uv ij

uvr
N

∈
=∑ R

 or 1; and  1( ) 0,
uv ij

uvr
I N

∈
=∑ R

otherwise. The 

clique functions are non-zero if and only if 1( ) 1
uv ij

uvr
I N

∈
=∑ R

. Thus (3.17) characterizes 

the dependencies of routes that result from the capacity constraints. Meanwhile, the 

network load, e.g. the probability that wavelength λ  is used in the network, is 

characterized by parameters ijγ ’s. ijγ  can be considered as a “weight” for using a 
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wavelength at link ij ; 1 ijγ−  can be considered as a “weight” for not using a wavelength 

at link ij . When ijγ γ≡ , ~i jV V∀ , we can relate γ  to the network load as follows: 

 Proposition 3.1: Let ρ  denote the network load, ~
( )[ ]

| |

uv ij
i j

uvr
V V

P

N
ρ

∈

=
∑ ∑ R

N E
E . If in (3.17)

, ijγ γ≡ , ~i jV V∀ , then ρ  monotonically increases in γ .    

Detailed proof of Proposition 3.1 can be found in Appendix E. Furthermore, (a) if 

0.5,γ =  the undirected probabilistic graph represents a uniform probability distribution 

on all possible ways of using wavelength λ  without violating the capacity constraint; (b) 

If 1,γ →  ρ   increases toward the maximum value, which is determined by both the 

network topology and the route set R ; and (c) If 0,γ →   ρ  approaches 0.  

For simplicity of analysis, we assume that ijγ γ≡ , ~i jV V∀ , in the rest of Chapter 3. 

From (3.17), it follows that  

          ( | ) ( \ 1).f sd sd sd sdP R f n P N N= ∝ =N N ,                (3.18) 

3.5 Cross-Layer Representation 

The cross-layer model of attack propagation can be obtained by combining the physical- 

and the network-layer model using a factor graph [43], which corresponds to the 

following joint probability, 

   ( , , | ) ( , | , ) ( | ),
sd sd sd sdf f f sd f f f sd f sdP R f P R f P R f= = = =X S N S X N N    (3.19) 

where ( : ) and ( : )
sd sd sd sdf i i f f i i fX V S V= ∈ = ∈X V S V .  
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Factor graph is a bipartite graph showing how a global function can be factorized into 

a product of local functions. Each local function depends on a subset of the variables 

[43]. There are two types of nodes in a factor graph: a variable node for each variable, 

and a factor node for each local function. There is an edge connecting a variable node to a 

factor node if and only if the variable is an argument of the local function.  

Figure 3.7 shows the factor graph representation for the mesh network in Figure 3.3 

when the attack is started from flow BD. The lower portion of the factor graph represents 

attack propagation at the physical layer. As the attack may propagate from node iV  to 

1iV + , 1,
sdi i fV V + ∈V , iX  and 1iX +  are connected to the same factor node 

1( | , )i i f BDP X X R f+ = . Furthermore, the number of affected channels at node iV  is 

determined by iX  and routes that traverses node iV . Therefore, iS , iX , and those routes 

passing through node iV  are connected to the factor node that corresponds to the 

conditional probability in (3.13).  

The upper portion of the factor graph characterizes the dependence at the network 

layer. All the network routes that share a common network link ij  are connected to the 

clique function ijψ  in (3.17). Here, the factor graph provides an explicit representation of 

the dependencies among different network components during attack propagation.  

Factor graphs subsume directed and undirected probabilistic graphical models, and 

provide more explicit representations of the factorization of probability distributions [43]. 

The application of factor graph provides two advantages: (1) It shows the intricate 

dependencies among different network components during a crosstalk attack; (2) it 
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provides computationally efficient algorithms to evaluate the network resilience loss, 

which shall be discussed in Section 3.7.  

 

NCE

SB SDSC

XC XDXB

NBF NAF NAB NAC NCD

NBD = 1

NBC NDE NEG NDG

P(XC|XB)

P(SB|XB, N)

Clique function of
Link AB

 

Figure 3.7 Factor graph representation of mesh network in Figure 3.3; attack started on flow BD.  

3.6 Network Resilience: Impact of Physical Layer  

We now use the cross-layer model to study the network resilience. We begin with the 

physical layer and quantify how the resilience varies with physical topology as well as 

the physical layer vulnerabilities, characterized by iα  in (3.12).  

3.6.1 Impacts of Physical-Layer Vulnerabilities on Network Resilience Loss 

We consider the impact of physical-layer vulnerabilities by considering the lower and 

upper bounds of network resilience loss .
sdfM  The lower bound of 

sdfM  results from the 

best-case scenario of resilience upon attack: there is no active connections on wavelength 
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λ  that traverses link ij ,
sdi fV∀ ∈V , , ~

sdj f i jV V V∉V . In this case, at the switching plane 

of each node along the attacker’s route, only two channels are active that correspond to 

the connection on the attacker’s route. The upper bound result from the worst-case 

scenario of network resilience upon attack: there always exists an active connection 

inserted into the network at node iV  and traverses link ij , 
sdi fV∀ ∈V , , ~

sdj f i jV V V∉V . 

In this case, the number of active channels in the switching plane of node iV  is 

2( 1)id − or 2 id , 
sdi fV∀ ∈V , where id  is the nodal degree of iV .  

For simplicity, in the rest of Chapter 3, we assume ,
sdi i fVα α≡ ∀ ∈V . Then, the 

network resilience loss can be bounded as in the following proposition.  

Proposition 3.2:  The network resilience loss for a given source of attack sdf can be 

bounded as  

                   1 1 1
1

1
2(1 ) (2 3) ,

sd

k
ki k i

f ii
i

k M k dα α α− − −
=

=

+ ≤ ≤ + + + −∑ ∑     (3.20) 

where k  is the total number of nodes in 
sdfV ,  1.k >  

The lower bound in (3.20) characterizes the effect of route-length and α  on attack 

propagation, which increases polynomially with respect toα . Let 1 ,ε α= − then 

          1

1

1 ( ), 0,
2 0.5 ( 1) ( ), 1,

k
i

i

k o as
k

k k k o as
α α α

α
ε ε α

−

=

+ + + →
+ =  − − + →
∑          (3.21) 

which shows that 
sdfM is determined by the length of route sdr . Furthermore, the upper 

bound in (3.20) increases polynomially with α , where, 
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       1 21 1
1

1 2

2 1 (2 3) ( ), 2,
2(1 ) (2 3)

2 1 (2 1) ( ), 2,
kk i

ii

k d d o if k
k d

k d d o if k
α α

α α
α α

− −
=

+ − + − + >
+ + + − =  + − + − + =

∑     

            

       as 0α → ,          (3.22) 

          

1 1
1

1 1

2(1 ) (2 3)

32 (4 2 ) {( 1)(2 ) 2 ( 1)} ( ),
2

kk i
ii

k k
i ii i

k d

d k k k d i o

α α

ε ε

− −
=

= =

+ + + −

= + − − − − + − +

∑

∑ ∑
 

      as 1α → .           (3.23) 

Equations (3.22) and (3.23) show that, when there is always an active connection 

inserted into the network at node iV  using link ij , , , ~ ,
sd sdi f j f i jV V V V∀ ∈ ∉V V  if the 

network vulnerability is low, 
sdfM is determined by the route length and the nodal degree 

of the source node of the attack. If the network vulnerability is high, 
sdfM is determined 

by the total number of network links incidental on nodes along the attacker’s flow, i.e., 

the number of links in set { : }.
sd sdf ij i fe V= ∈E V  In addition,

1
| | (1 )

sd

k
f ii

d k
=

= + −∑E .  

3.6.2 Impact of Physical Topology on Network Resilience Loss 

We use the lower- and upper-bound in (3.20) to study the impact of physical topology on 

sdfM . For clarity, we summarize the asymptotic results on 
sdfM in (3.21) to (3.23) for 

network resilience under various topologies in Table 3.1. Assume that there is one link-

shortest route between each pair of nodes in the network. The asymptotic properties of 

these topologies are summarized in Table 3.2 ([48][49]). Combining the impacts of 

physical-layer vulnerability and physical topology, we find that,  

(a)  If the physical-layer vulnerability is high ( 1α → ),  
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(i) The upper bound of 
sdfM  shows that fully-connected mesh network and star 

network are the least resilient due to the large size of the set
sdfE .  

(ii) The lower bound of 
sdfM shows that network with a ring topology is generally the 

least resilient because of the large route length in a ring network. 

(b)  If the physical-layer vulnerability is low ( 0α → ),  

(i) The upper bound of 
sdfM shows that the fully-connected mesh topology is the 

least resilient since each node in the network has nodal degree 1m − .  

(ii) The lower bound of 
sdfM shows that the ring network is generally the least 

resilient due to the large route length.  

(c) Chord networks exhibit good resilience whose resilience loss 
sdfM  increases 

logarithmically with respect to the number of nodes in the network in the worst case. 

Note that in addition to the resilience measure considered in this work, there exists other 

performance metrics for network resilience, e.g. two-terminal connectivity [50], and 

flexibility in route selection [48]. Therefore, different performance metrics of network 

resilience need to be considered simultaneously when choosing a resilient network 

design. Overall, a chord network offers excellent resilience upon crosstalk attacks and 

good route selection flexibility. 

Table 3.1 Bounds of network resilience loss 
sdfM   

    bounds     
 α  Upper bound of  

sdfM  Lower bound  of 
sdfM  

1α →  1
2 (4 2 ) (1 )k

ii
d k O α

=
+ − − −∑ 2 (1 )k O α− −  

0α →  12 1 ( )k d O α+ − +  1 ( )k O α+ +  
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Topology Ave. nodal 
degree 

Ave. route 
length 

Ave. size of  
sdfE  

Star 1 2 m 

Ring 2 4
m  

4
m  

n-ary Tree m+1 O( logn m ) O( logn m ) 
Mesh-Torus 4 ( )O m  ( )O m  

Fully-Connected 
Mesh m 1 m 

Chord [23] 2log m  O(
2log m ) O(

2log m ) 

Table 3.2 Asymptotic properties of different network topologies with m nodes 

 

3.7 Network Resilience: Impact of Network Layer 

We now study the impact of network layer on the resilience in terms of network load. In 

particular, we are interested in quantifying how the network resilience varies jointly with 

the load, and the physical-layer vulnerability α .  

3.7.1 Impact of Network Load on Network Resilience 

We first consider the impact of network load ρ  on
sdfM . From (3.1), 

E [ ]
sd sdi fsd

f f iV
M S

∈
=∑ V

,                (3.24) 

where E [ ]
sdf iS  is the mean number of channels affected by the attack at the switching 

plane of node , .
sdi i fV V ∈V  Furthermore,  

1

~ ,
[ ] 1 {1 { [ ] [ ]}},

sd sd sd

i j j f uv ij ih ijsd

i
f i f uv f ih

V V V r r
E S E N E Nα −

∉ ∈ ∈

= + + +∑ ∑ ∑
V R R

  ,
sdi fV∀ ∈V   

  (3.25) 

where  [ ]
sd

ih ij

f ih
r

E N
∈
∑

R
is the mean number of active channels that are locally inserted into 

the network at node iV  and leave node iV  through link ij , and  [ ]
sd

uv ij

f uv
r

E N
∈
∑

R
 is the mean 
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number of active flows that enter node iV  through link ji , given that the attack starts 

from flow sdf .  

A basic question arises: does the network resilience loss 
sdfM  always increase with 

ρ  for arbitrary network with arbitrary route? The answer is no. For a detailed 

counterexample, please refer to [51]. Nevertheless, when practical route sets are 

considered, 
sdfM indeed increases with ρ  for several typical network topologies. 

Specially, we have the following theorems.  

Theorem 3.1 For a ring network, assume the route set R  consists of the two-link disjoint 

routes between each pair of nodes in the network. Let k  be the number of nodes 

traversed by the attacker’s flow sdf . Then, 
sdfM  monotonically increases in ρ . In 

particular, 
sdfM  satisfies 

            1 1
1 12(1 ) 2(1 )

sd

k k
fv M vα γ α ρ− −+ + ≤ ≤ + + ,                  (3.26) 

where 1
1 1

2 k i
i

v k α −
=

= + ∑ . Furthermore, for 0 1ρ< << , ( )oρ γ ρ= + , and the upper and 

the lower bounds meet  

          1
1 2(1 ) ( )

sd

k
fM v oα ρ ρ−= + + + .        (3.27) 

Detailed proof of Theorem 3.1 can be found in Appendix F.  

Theorem 3.2 For a star network, assume that the route set R  consists of the routes 

between each pair of nodes in the network. Let m , 1m > , be the number of nodes in the 

network. Let the hub node be denoted as mV . Then, 
sdfM  monotonically increases in ρ . 

In particular, 
sdfM  satisfies 
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2

3 ( 2) , , 1,..., 1,

3 ( 2) , , 1,..., 1,

4 ( 3) , ,

i m

sd m i

sd A A

f sd A A

m if f f i m

M m if f f i m

m otherwise

α αγ

α γ

α α αγ

 + + − = = −


≥ + + − = = −


+ + + −

                     (3.28) 

            
2

3 2( 2) , , 1,..., 1,

3 2( 2) , , 1,..., 1,

4 2( 3) , .

i m

sd m i

sd A A

f sd A A

m if f f i m

M m if f f i m

m otherwise

α αρ

α ρ

α α αρ

 + + − = = −


≤ + + − = = −


+ + + −

                  (3.29) 

Furthermore, for 0 1ρ< << , the bounds are tight, and 

         
2

3 2( 2) ( ), , 1,..., 1,

3 2( 2) ( ), , 1,..., 1,

4 2( 3) ( ), .

i m

sd m i

sd A A

f sd A A

m o if f f i m

M m o if f f i m

m o otherwise

α αρ ρ

α ρ ρ

α α αρ ρ

 + + − + = = −


= + + − + = = −


+ + + − +

            (3.30) 

Proofs of Theorem 3.2 can be found in Appendix G. 
sdfM  generally consists of the sum 

of two terms: the first term, e.g. ( 3 α+ ) in (3.30), corresponds to the number of affected 

wavelength channels that are used by flows on the attacker’s route; and the second term, 

e.g. ( 2( 2) ( )m oαρ ρ− + ) in (3.30), corresponds to the number of affected wavelength 

channels that are used by flows not on the attacker’s route.  

 We also compare 
sdfM  for ring and star networks. In both cases, 

sdfM  is linearly 

increasing in ρ  for 0 1ρ< << . However, for ring network, 
sdfM is polynomially 

increasing in α ; whereas for star network, 
sdfM  is generally linearly increasing in α . 

For ring networks, 
sdfM  is linearly increasing in k  (the number of nodes in

sdfV ). In 

contrast, for star networks, 
sdfM  is linearly increasing in m (the number of nodes in the 

network). 
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3.7.2 Impact of Network Load on Average Resilience Loss 

We now focus on the impact of network load ρ  on the average network resilience loss 

( M ), which is the mean value of network resilience loss over all possible source of 

attacks.  

Consider a ring network with m , 1,m > nodes, 1 2, ,..., mV V V , and a route set R  that 

includes all the two link-disjoint paths between each pair of nodes in the network. Then, 

we have the following theorem, 

Theorem 3.3 
1 1

1

1

1
1 i

m
ring,m i fi

M a M
m +

−

=
=

− ∑ ,                       (3.31) 

where 1 1( 1)i ia P N += =  is the probability that a connection with i  links between two 

terminal nodes, 1V  and 1iV + , is active, and 
1 1ifM
+

 is the network resilience loss when the 

attack is started from flow 1 1if + . Furthermore,  

1
i

i m i ma f gθ − += ,            (3.32) 
(1 ),θ γ γ= −             (3.33) 

2 2 2 2
1 1

2 2

1 4 1 1 2 1 4 1 4 1 1 2 1 4( ) ( ) ,
2 22 1 4 2 1 4

m m
mf

θ θ θ θ λ θ
θ θ

− −+ + + + + + − + − +
= +

+ +
   

             (3.34) 
1

1
1

,
m

j
m m m j

j
g f j fθ

−

+ −
=

= +∑  1m > .                     (3.35) 

Detailed proof of Theorem 3.3 can be found in Appendix H. In addition, using Theorem 

3.1, we have the following bounds 

1

1 0

1 { ( 1 2(1 ) )},
( 1)

m i j i
ring,m ii j

M a i
m

α α γ−

= =
≥ + + + +

− ∑ ∑                (3.36) 

1

1 0

1 { ( 1 2(1 ) )}.
( 1)

m i j i
ring,m ii j

M a i
m

α α ρ−

= =
≤ + + + +

− ∑ ∑        (3.37) 
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The difference between the upper and the lower bound of  ring,mM  is (( ) )O mρ γ− . 

Furthermore, (3.31) can be simplified as 

    
1 2

( 1) ( )
A Aring,m fM M m oρ ρ= − + , as 0ρ → .     (3.38) 

     
1 1

1
11

1 ( 1)
2 A Ai

m
ring,m fmi

M M m
+

−

+=
= −∑ , as 1, .mρ → →∞          (3.39) 

Then, we have 

(3 ) ( 1) ( )ring,mM m oρ α ρ= + − + , as 0ρ → ,     (3.40) 

which shows that  

(i) When the network load is low, ring,mM  increases almost linearly with ρ  and α ; and is 

in the order of ( )O mρ .  

(ii) When the network load is high,  

1
, 1 0

1 1{ ( 1 2(1 )}
1 2

m i j i
ring m ii j

M i
m

α α−

= =
= + + + +

− ∑ ∑ , as 1,mρ → →∞ .     (3.41) 

Furthermore, if 1α = , (3.41) can be simplified as 

, 1

1 5(6 )
1 2ring m m

mM
m −

+
= −

−
      (3.42) 

which shows that ring,mM  is in the order of (1 ).O m  

Next consider a star network with m  nodes, 1 2, ,..., mV V V , where mV  is the hub node of the 

star network; and a route set R  that includes all the link-disjoint paths between each pair 

of nodes in the network. It follows that, 

Theorem 3.4 1 1 1 21 2( ) 2 ( 2)

2( 1)
A A A A A Ak kf f f

star,m

b M M b m M
M

m

+ + −
=

−
, 3m > ,          (3.43) 

where  
11 ( 1)

kA Ab P N= = , 
1 22 ( 1)A Ab P N= = , and 
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1 1m mb t tθ −= ; 2
2 2m mb t tθ −= ; 

1 1t = ;  

2 1t θ= + ;  
2

1 2(1 ) ( 2)i i it t i tθ θ− −= + + − , 2i∀ > .  

 

Detailed proof of Theorem 3.4 can be found in Appendix H. Furthermore, using Theorem 

3.2, we have the following bounds for star,mM , 

      2
1 2

1 { (4 (1 )(2 ( 2) )) 2 ( 2)(4 ( 3) )},
2( 1)star,mM b m b m m

m
α γ α α αγ≥ + + + − + − + + + −

−
 

             (3.44) 

     2
1 2

1 { (4 2(1 )(1 ( 2) )) 2 ( 2)(4 2( 3) )}.
2( 1)star,mM b m b m m

m
α ρ α α αρ≤ + + + − + − + + + −

−
 

             (3.45) 

The difference between the upper and the lower bound of star,mM  is ( (2 ))O α ρ γ−  when 

m  is large, since 2b  is (1 )O m . In addition, when the network load is low,  

(3 ) ( )star,mM m oρ α ρ= + + , as 0ρ → ,     (3.46) 

which shows that  star,mM  is ( )O mρ ; and  increases  linearly with α . When the network 

load is high ( 1)ρ → , we have  

          ( )star,mM O αρ= , as 1ρ → ,                 (3.47) 

which shows that, when the star network is under high load, star,mM  increases linearly 

with α .  

For a general network G(V,E) with a fixed set of route R , we have the following 

upper bound for M :  

 Theorem 3.5  1 max{ } | |
| | sd

sd
ff

M ρ≤ M E
R

,                (3.48) 
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where  | |E  is the cardinality of the set of edges in the network; | |R is the cardinality of 

the route set R.  

The proof of Theorem 3.5 can be found in Appendix I. In (3.48), | | | |ρ E R  

corresponds to the upper bound of the probability that the crosstalk attack occurs in the 

network, and is accurate when the network route set R  only consists of routes with link-

length 1. The bound in (3.48) provides a worst case estimation of M . Furthermore, 

suppose that all the routes in the set R  are of the same link length l . Then the 

probability that an crosstalk attack happens in the network is ( | |) ( | |)lρ E R , and (3.48) 

can be refined as  

1 max{ } | |
| | sd

sd
ff

M M
l

ρ≤ E
R

.                 (3.49) 

When the length of each network route and the network resilience loss 
sdfM are the same 

for each possible source of attack, the equality in (3.49) holds. Theorem 5 suggests the 

upper bound of average network resilience loss is affected by the following factors:  

(1) The network load ( ρ ) in the network. The upper bound in (3.49) increases at least 

linearly with ρ .  

(2) The number of links in the network. The larger the number of links in the network, 

the less resilient the network is. The upper bound in (3.49) increases linearly with the 

number of links in the network.  

(3) The number of routes in the network. The larger the number of routes in the network, 

the more resilient the network is. This is because that the probability for a route to be 

chosen as the attacker’s route is smaller.   
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Next we use (3.48) to study a mesh-torus network with m  nodes and a route set R , 

which includes: (1) the unique link-shortest route between each pair of nodes if 

applicable; and (2) one shortest route between each pair of nodes, which forms the border 

of the sub-grid with the two nodes at the diagonally opposite corners.  

Theorem 3.6  

       

16(1 ) 4, 1,
(1 )max{ }

6 4, .
sd

sd

m

ff

if
M

m otherwise

α α
α

+ −
+ ≠

−≤ 
 +

    (3.50) 

Then, from (3.48), we have 2 max{ },
( 1) sd

sd
ff

mM M
m m

ρ
≤

−torus,m  

1

torus,m

2 6(1 )( 4), 1,
( 1) (1 )

2 (6 4), .
( 1)

m

if
mM

m otherwise
m

ρ α α
α

ρ

+ −
+ ≠

− −≤ 
 + −

    (3.51) 

Furthermore, when 0ρ → , it can be found that 

torus,m (3 ) ( 1) ( )M m oρ α ρ= + − + ,  as 0ρ → .    (3.52) 

Detailed proof of Theorem 3.6 is omitted here.  

We compare the average network resilience loss for ring, star and mesh networks in 

Table 3.3.  It can be observed that: 

(1) When the network load is low (0 1ρ< << ), M is ( )O mρ . This is because when the 

load is close to 0, the network is most likely in either of two states: (a) there is no active 

connection in the network; or (b) there is an active connection of link length 1. 

Specifically, with probability ( )O ρ , the attack is started on a route of link length 1; with 
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probability ( )o ρ , the attack is started on a route of longer lengths. For instance, as each 

route is the attacker’s route with equal probability, the attack starts on routes of link 

length 1 in the mesh-torus network with probability 2 ( 1)mρ −  and (3 ) ( )
sdfM oα ρ= + +  

if 1.ρ <<  

(2) When the network load is high ( 1ρ → ), the star network is the least resilient, with 

M  being ( )O α .  This is because, for the star network, nodes in the set ,
sdf sdr∀ ∈V R , 

has the most number of neighboring links. Ring and mesh-torus networks show good 

network resilience in ( )O mρ .  

Table 3.3 Average network resilience loss (M) 

M 0ρ →  1ρ →  

Ring network (3 ) ( 1)mρ α+ −  (1 )O m  

Star network (3 ) mρ α+  ( )O α  

 
Mesh-torus 

 

 
2 (3 ) ( 1)mρ α+ −

 

(1 (1 ) ), 1,

(1 ), .

O m if

O m otherwise

α α− ≠



 

 

3.7.3 Irregular Topologies 

For networks with irregular topologies, we resort to the sum-product algorithm on the 

factor graph. The sum-product algorithm is then compared with the exact resilience 

calculation through enumerations of all network traffic patterns. Enumeration has the 

computational complexity exponential in the number of routes, and is thus not applicable 

to networks with even a medium number of routes. The computational complexity of the 

sum-product algorithm is exponential in the maximum nodal degree of the factor graph 

for the worst case [43], and is thus much more efficient than enumeration. The sum-
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product algorithm provides exact results when the factor graph has no loops, and provides 

approximate results when the factor graph contains loops [43]. 

When there are a large number routes in the set R, to further reduce the computational 

complexity of the sum-product algorithm, the following intermediate variables can be 

introduced: (1) , {0,1},
uv ij

ij uv ijr
W N W

∈
= ∈∑ R

 which is the number of flows that enter the 

switching plane of node iV  through link ij ; (2) , {0,1}
ih ij

ij ih ijr
H N H

∈
= ∈∑ R

, which is the 

number of flows locally originated at node i and leaves node iV  through link ij .  Then 

the factor graph representation can be transformed accordingly. On the other hand, it is 

also possible to transform a factor graph with loops into a loop-free factor graph, so that 

exact results can be obtained using the sum-product algorithm at the cost of 

computational complexity [43].  

We first consider three networks shown in Figure 3.8. In each network, the route set 

has 21 routes, which corresponds to one link-shortest route between each pair of nodes. 

Using the sum-product algorithm, we first compute the network resilience loss given the 

source of attack 
sdfM  for each sdf .  We then use the sum-product algorithm to find the 

probability of ( 1)sdP N = . Finally, (3.2) is used to compute the average network 

resilience loss. 
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Figure 3.8 Ring, double-ring, and mesh networks 

 

Figure 3.9 depicts the relationship between ρ  and average network resilience loss 

M  for the networks in Figure 3.8 with 0.6α = . It can be observed that:  

(a) M  monotonically increases with ρ , in networks with all-to-all traffic and link-

shortest path routing. Moreover, for low load, M increases linearly with ρ .  

(b) The sum-product algorithm results in an almost exact M  for the mesh and ring 

networks, even though the factor graph representations contain loops. The performance 

of sum-product algorithm is not as accurate yet acceptable for the double-ring network.  

This suggests that the sum-product algorithm can be used for large networks where exact 

calculation of resilience is infeasible.   

Next, we use the sum-product algorithm to study the network resilience for the 

National Science Foundation (NSF) network topology [52]. The NSF network topology 

has 14 network nodes and 21 bi-directional links. Assume that there is one link-shortest 

route between each pair of nodes in the networks. Then, there are 91 routes in R . The 

corresponding factor graph representation contains loops, and thus sum-product 

algorithm provides an approximation for M .  
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Figure 3.10 shows the relationship between ρ  and M for the NSF network topology 

with 0.3, 0.6, 0.9α = . It suggests that, if the set of network routes consists of one link-

shortest route between each pair of nodes in the network, M generally increases with the 

network load. Furthermore, when the network load is low, M  increases linearly with ρ .  
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Figure 3.9 Average network resilience loss vs. network load; 0.6α = , three networks in Figure 3.8 
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Figure 3.10 Average network resilience loss vs. network load; 0.3, 0.6, 0.9α = ; NSF network topology 
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3.8 Related Work in Probabilistic Graphical Models  

Bayesian Belief Network has been used in fault localization and detection (see [53] and 

references therein) in complex communication systems. There the construction of the 

Bayesian Belief Network representation is usually assumed based on the causal 

relationships and the main difficulty then lies in estimation of model parameters, i.e., 

conditional probabilities. In [54], dependency graph is used for IP fault localization, 

where the problem of shared-risk-link-group is formulated using a bipartite graph.  

Markov Random Field (MRF) has been used to study the blocking probability in a 

loss network [47] as discussed in Section 3.4.  This work generalizes the work in [47] by 

using undirected probabilistic graphs to capture the basic dependency among different 

routes due to the capacity constraint, and the network load. In [55], self-localization in 

sensor networks is formulated using MRF with single-node and pair-wise clique 

potentials, and Belief Propagation algorithm is used for self-calibration. In [56], a 

distributed architecture for inference in sensor networks is proposed using graphical 

models, where network nodes form a spanning tree.  

Factor graphs have been applied to the problem of multicast link loss inference in 

sensor networks [57]. The factor graph is constructed based on the concept of link and 

route costs with two fundamental assumptions:  link costs are assumed to mutually 

independent and path flows are assumed to be mutually independent. In this work, we 

maintain the dependence among different flows, and obtain the factor graph through 

decomposition of the joint probability distribution of network nodes, links and 

connections. In [58], factor graph has been used for scalable source/channel decoding in 
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large-scale sensor networks. In this case, factor graph provides a simplified model of the 

correlation among sensor data and enables scalable iterative decoding.  

In [59], a similar bottom-up approach is used to derive a cross-layer model for self-

configuration of ad hoc wireless networks based on probabilistic graphical models.  The 

resulting model is shown to be a Markov Random Field for the physical- and the link 

layer [59]. 

3.9 Summary of Chapter 3 

In this Chapter, we have studied resilience of all-optical networks (AONs) under in-band 

crosstalk attacks. Our goal is to develop a cross-layer model that characterizes attack 

propagation in the network, and to study the resilience of AON architectures from both 

the physical- and the network layer. We have found that probabilistic graphical models 

can serve this goal. In particular, at the physical layer, a directed probabilistic graph can 

model attack propagation when network under static traffic. At the network layer, an 

undirected probabilistic graph can represent the probability distribution of active 

connections. A cross-layer model is then obtained by combining the physical- and 

network-layer models into a factor graph representation.  

There are several benefits resulting from the cross-layer model based on graphical 

models. The model provides an explicit representation of the dependencies and 

interactions between the physical- and the network layer. In addition, it facilitates the 

analytical investigation of network resilience for ring, star, and special cases of mesh 

topologies. Finally, the cross-layer model facilitates the implementation of 

computationally efficient approaches, e.g. the sum-product algorithm, for evaluating 

network resilience.  
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Through both analysis and numerical study, we have explored several factors from 

both the physical- and the network layer that affect the resilience. Factors from the 

physical-layer include: (1) the physical-layer vulnerability, parameters in Bayesian Belief 

Network that characterize how likely the attack propagates, and (2) the physical topology. 

Factors from the network layer include active network connections that are characterized 

using network load, i.e., the probability that the wavelength, on which the attack is 

initiated, is used in the network. We show that for all the topologies studied in Chapter 3, 

the average network resilience loss increases linearly with respect to the physical-layer 

vulnerability and light network load under link-shortest routing, and all-to-all traffic. In 

addition, ring and mesh-torus network show good resilience, which are inversely 

proportional to the number of the nodes in the network.  Numerical results also suggest 

that for networks with link-shortest routing and all-to-all traffic, the network resilience 

loss increases at least linearly with respect to the network load.  
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CHAPTER 4  

TRAFFIC-BASED NETWORK RELIABILITY 

4.1 Introduction of Chapter 4 

Network reliability is one of the fundamental problems in networking. In the past decade, 

as network complexity and scale increase dramatically, network failures have become a 

norm rather than an exception [3], which may result from hardware/software faults, 

operator errors, malicious attacks, and natural disasters [68]. Meanwhile, new 

applications, e.g. on-line financial transactions, require a high-level of network reliability 

that has not been observed before. Therefore it is imperative to quantify network 

reliability and service disruption upon failures.  

Reliability has been defined through deterministic and probabilistic reliability metrics 

[50]. Two basic deterministic reliability metrics are the cohesion and connectivity of the 

underlying graph of the network [50][61], which denote the minimum cardinality of the 

an edge cut-set and an edge cut-set respectively. Probabilistic metrics assume that each 

component may fail with a certain probability and can be categorized as “non-traffic-

based” and “traffic-based” [63].  The “non-traffic-based” approaches focus the physical 

network topology, and evaluate the connectivity of the network from the probabilistic 

information on node and link failures.  A common non-traffic-based metric is the k-

terminal reliability, which is defined as the probability that a specific set of k nodes can 

communicate with one another [60]. Non-traffic-based measures put no constraints at the 

network layer, i.e., on link capacity, traffic distribution, and operation schemes upon 

failures. Furthermore, they are not meaningful for well-connected physical topologies, 

where the network connectivity remains high even after failures occur. Hence non-traffic 
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based reliability can access the reliability in terms of physical connectivity but not service 

disruption.  

On the other hand, “traffic-based” metrics take into consideration the amount of 

traffic carried by the network that is related to service disruption. In particular, traffic-

based measures focus on network performance upon failures by considering multiple 

factors such as the physical layer failures, the impact of the failures on the network layer, 

and the network operation schemes (i.e., whether protection is provided by the network). 

In this work, we focus on traffic-based reliability metrics, which include the amount and 

percentage of lost traffic and thus reflect services affected by failures [63].  

There are several challenges in the study of traffic-based network reliability. First, 

Traffic-based reliability metrics combine both the physical layer failure and the network 

layer traffic. Thus, network-layer traffic models need to be considered in studying traffic-

based reliability. Second, there exist dependencies among network layer traffic as well as 

among physical layer failures. Finally, the reliability varies with respect to different 

network operation schemes, e.g. no protection and 1+1 protection [82]. All these factors 

show that traffic-based reliability is network-centric and should be studied across 

network and physical layers.  

Therefore, in this chapter, we systematically investigate different factors that affect 

traffic-based network reliability. Specifically, we focus on the effects of the following 

factors: 

• Physical topologies 

• Dependent failure at the physical layer  

• Network operation schemes upon failures, i.e., with or without failure protection,  
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• Network layer traffic models.   

In our investigation, we first assume a uniform deterministic traffic model at the 

network layer.  This allows us to focus on the impacts of the first three factors on network 

reliability. We then adopt a random network layer traffic model with Poisson arrivals to 

further investigate the effect of network layer traffic. To obtain analytical results on 

network reliability, we apply the approach of Erlang Fixed Point Approximation (EFPA) 

[81]. To represent the dependencies among network traffic and physical layer failures, we 

make use of probabilistic graphical models [40].  We provide the advantages and 

drawbacks of using such a commonly-used traffic, and demonstrate the need of 

considering other traffic models to study service disruption upon failures.  

The rest of Chapter 4 is organized as follows. Section 4.2 discusses related work on 

traffic-based network reliability. Section 4.3 describes the problem formulation. Section 

4.4 investigates the impact of different factors that affect traffic-based network reliability 

under the uniform deterministic traffic model. Section 4.5 discusses the network 

reliability under random traffic model with Poisson arrivals. Section 4.6 summarizes the 

chapter. 

4.2 Related Work 

There has been extensive research in connectivity-based network reliability metrics. The 

problems of computing connectivity-based metrics are generally NP-hard. Therefore, 

different algorithms for evaluating k-terminal reliability have been proposed, e.g. [60]. In 

[77], four algorithms for computing terminal-pair reliability proposed by different authors 

are compared. In addition, a new algorithm is proposed in [77] based on network 

adjacency matrix and breadth-first search.   
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In [63], traffic-based network reliability metrics are defined as the percentage of 

network traffic lost due to failures, which is then used to study the reliabilities of ring 

networks without protection and pre-planed protection. However, the reliability analysis 

in [63] is restricted to independent failures, ring networks, and deterministic network 

layer traffic. A systematic investigation of different factors that affect traffic-based 

network reliability is missing.  

Another closely related research filed is the design of highly reliable networks. In 

[50], the metric of k-terminal reliability is used to investigate high-reliability topological 

architectures for networks under stress, where the network component is assumed to have 

a large probability of failure. The work in [50] considers the effects of physical 

topologies and dependent failures on network reliability. However, as the reliability 

metrics used in [50] are connectivity-based, it ignores the impact of network layer traffic 

and the network operation schemes upon failures (whether the network has failure 

protection). In [50], the model of dependent failures is based on Markov Chain, which is 

simple and tractable for the derivation of analytical results, but is inconsistent due to the 

cyclic nature of physical topology.  

In [73], logical topology design of optical network is considered, where the objective 

is to guarantee that a single failure of one fiber link in the physical layer will not 

disconnect the logical network. In this case, the reliability metric can be considered as 

“all-terminal connectivity” in the logical topology upon single link-failure in the physical 

topology. In [73], it is found that the problem of survivable routing is NP-complete. In 

[74], a technique for fault-tolerant logical topology design in WDM networks with uni-

cast and multicast IP flows is proposed, which uses the dynamic capabilities of IP routing 
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and obtains a different optimal logical topology design for each failure state of the 

physical network. In [72], multi-commodity flow (MF) models for topology design of 

packet-switched networks are considered. MF models have also been used as 

approximations in the design of circuit-switched networks with reliability constraints. In 

[72], it is shown that MF models are different from the actual flows in the network 

obtained from a real-time adaptive call routing algorithm, and MF models can take into 

account network reliability constraint by incorporating each network failure state in the 

optimal design problem.  

In [68], a general framework is proposed to quantify the network survivability upon 

failures. In addition, a composite Markov model is used to study the transient/steady state 

behavior of a point-to-point telecommunication link. The composite Markov model has 

the advantage of representing failure events using a Markov process. However, due to its 

complexity, the framework is not tractable for reliability analysis at the network level 

with dependent network failures. In [68][69], two frameworks to evaluate network 

survivability upon failures are proposed, where the focuses are to definitions of network 

survivability metrics for different types of network failures, e.g., catastrophic/disastrous 

failure, major network failure, and minor network failure.  

Thus, one important open issue in traffic-based network reliability is the systematic 

investigation of different factors that affect the reliability, which include: network 

topology, failure dependencies, network operation schemes upon failures, and network 

traffic models. For comparison, we list the focuses of prior studies and this work in Table 

4.1.  
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4.3 Problem Formulation 

We now formulate network reliability by incorporating the physical-layer topology, 

protection schemes, and network layer traffic. Let ( , )G V E  be a physical-layer topology, 

where V is the set of nodes and E is the set of bi-directional links. Assume fixed routing. 

Let R  be a set of routes used by the network for setting up connections. The route set 

may R  be determined by such factors as traffic demand and operator preference. For 

networks without protection, we assume that R  consists of one link-shortest route 

between each pair of nodes in the network; for networks with 1+1 protection, we assume 

that R  consists of one primary route and one link-disjoint route backup route between 

each pair of nodes in the network. We denote the network layer traffic as a vector 

( : , ),ijD i j= ∈D V  where ijD  is a random variable denoting the number of active 

connections between node i  and j .  

Table 4.1 Comparison of prior study and this work 

 Reliability 
metrics Network topology Dependent failure 

Network 
operation 
schemes 

Network traffic 
model 

[63] Traffic-based 
reliability 

Ring-based 
topologies Not considered 

Without 
protection; 
With 1+1 
protection 

Deterministic 
traffic model 

[50] Connectivity-
based reliability 

Different network 
topologies 

Dependent failure 
model based on 
Markov chains 

Not considered 
Uniform 

deterministic 
traffic model 

[68] 
Definition of 
Traffic-based 

reliability 

A single 
communication link Not considered Not considered Random traffic 

model 

[69][70] 
Definitions of 
Traffic-based 

reliability  
N/A N/A N/A N/A 

This 
work 

Traffic-based 
reliability 

Different network 
topologies 

Dependent failure 
model based on 
Bayesian Belief 

Networks 

Without 
protection; with 
1+1 protection 

Uniform 
deterministic  
traffic model; 

 Uniform 
random traffic 

model 
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Assume that links in E may fail with a certain probability. We can then denote the 

status of link i  as a binary random variable iZ : 1iZ =  if there is a failure at link i ; and 

0iZ =  otherwise. Furthermore, we denote the status of connections between node m  and 

n  as a binary random variable mnS . Specifically, mnS  =1 if the connections are lost due to 

network failure events; and mnS  =0, otherwise.  

For instance, for networks without connection protection upon failures, mnS =1 if there 

is one or more link failures on route mnR ; and mnS =0 otherwise. Specifically, we have  

     ( 0) ( 0)
i Rmn

mn i
e

P S P Z
∈

= = =∑
E

,        (4.1) 

where 
mnRE is the set of links traversed by route mnR .  

For networks with 1+1 dedicated protection, mnS =1 if there are one or more link 

failures at both the primary route and its link-disjoint backup route between node m  and 

n ; and mnS =0, otherwise. Specifically, we have 

, ,

( 0) ( 0 0)
i R i Rmn p mn b

mn i i
e e

P S P Z Z
∈ ∈

= = = ∪ =∑ ∑
E E

,      (4.2) 

where 
,mn pRE and 

,mn bRE  are the set of links traversed by the primary and the backup route 

between node m  and n  respectively. Then, the reliability of the network is measured 

using the two metrics Z  and k following the same idea as in [63], which is defined as 

follows.  

Definition 4.1: Network reliability measure Z  is the expected amount of lost traffic due 

to network  failures, where  

[ ]ij ij ij
ij

E D Sφ=∑Z ,                   (4.3)  
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Where ijφ  is the bandwidth rate of each connection between node i  and node j . In this 

work, we assume that 1ijφ = , which means that each connection carries one unit of 

bandwidth. However, our investigation of traffic-based reliability can be extended to the 

case of heterogeneous bandwidth rate in a straightforward way.  

Definition 4.2: Network reliability measure k  is the percentage of lost traffic due to 

physical link failures, where  

[ ]
.

[ ]

ij ij
ij

ij
ij

E D S

E D
=
∑
∑

k         (4.4) 

In this work, we focus on open-loop analysis of network reliability. This implies that 

traffic allocation upon failures is not considered. Our goal is to gain insights from this 

relatively simple scenario on impacts of multiple factors on network resilience. Under 

such an assumption and let 1ijφ = ,  we have  

          [ ] [ ]ij ij
ij

E D E S=∑Z ,         (4.5) 

where [ ]ijE D  is the expected number of active connection between node i  and j , and 

[ ]ijE S  can be regarded as the service availability for routes between node i  and j . The 

product of expected values in (4.5) shows that, the interaction between network layer 

traffic and physical layer failures is considered in an average sense.    

4.4 Reliability under Uniform Deterministic Traffic 

We begin with a simple network layer model, i.e., uniform deterministic traffic, in order 

to study the effects of physical topologies, network management schemes (with and 

without protection), and dependencies among physical layer failures, which is lacking in 
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prior work as discussed in Section 4.2. Uniform deterministic traffic assumes that there is 

one active connection between each pair of nodes in the network, i.e., 1, ,ijD i j= ∀ ∈V . 

Thus, the network resilience is determined by physical layer and network management 

schemes, and the reliability measures reduce to  

, ,
[ ]ij

i j i j
E S

∈ ≠

= ∑
V

Z ,         (4.6) 

and 

, ,
2 [ ]

,
( 1)

ij
i j i j

E S

k k
∈ ≠=

−

∑
Vk         (4.7) 

where k  is the number of nodes in the network, and there are in total ( 1) 2k k −  

connections under the uniform deterministic traffic model. Since 2
( 1)k k

=
−

Zk , we only 

need to focus on metric k . We assume that route ,ij ijr r ∈R , is the link-shortest route 

between node i  and j  in the rest of Section 4.4.   

4.4.1 Independent Failure and without Protection 

In this subsection, we assume that each link in E  fails independently of each other with 

probability p . Furthermore, each connection in the network has no failure protection, i.e., 

the traffic between i  and j  is lost if there is one or more link failures on route ijr . We 

first consider arbitrary physical topology ( , )G V E . Then focus on typical regular 

topologies including ring, star, and mesh-torus networks.  

4.4.1.1 Arbitrary Physical Topology 

For an arbitrary topology, we have the following theorem on reliability measure k : 
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Theorem 4.1: 
max

min

2 (1 (1 ) ) 1 (1 ) ,
( 1)

l
l h

l
l l

h p p
k k =

= − − ≤ − −
− ∑k            (4.8) 

where lh  is the number of routes in R  with l  links, and h  is the average length of routes 

in R , and 
max

min

2
( 1)

l

l
l l

h lh
k k =

=
− ∑ . 

The proof of Theorem 4.1 is based on Jensen Inequality and the details are omitted here. 

In particular, from Theorem 4.1,  

(1) When the probability of link failure ( p ) is small, we have 

( )hp o p= +k ,  as 0,p →        (4.9) 

which means that, when the network has a small probability of failure, the network 

reliability is determined by the average length of the routes in R.  

(2) When the probability of link failure ( p ) is large, we have 

min min min
2

1 ( )
( 1)

l l lh
o

k k
ε ε= − +

−
k ,  as 1p → ,    (4.10) 

where 1 pε = − . This shows that, when the network has a high probability of failure, e.g. 

the network is working under high stress [50], the network reliability is determined by the 

length of the shortest routes in R.  

Furthermore, from Theorem 4.1, we have the following corollary 

Corollary 4.1: Of all the network topologies with k  nodes, the fully-connected graph is 

the most reliable. In addition, of all the network topologies with the same number nodes 

and the same number of links, the Moore graph is the most reliable if p<<1.  

A Moore graph, if exists, has the minimum average shortest route between each pair of 

nodes, which is given by the Moore bound in [78]. The result in Corollary 4.1 
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complements the findings in [50], where it has been shown that the Moore graph has the 

best all-terminal reliability, when the link failure probability is low with independent 

failure assumptions. 

4.4.1.2 Typical Regular Topologies 

In this subsection, we consider three typical network topologies, ring, star, and mesh-

torus networks with k nodes. Using Theorem 4.1, we have the following corollaries.  

Corollary 4.2: For a ring network with k  nodes, 3k ≥ ,  

1
2

1
2

2 11 {( )(1 (1 ) )}, ,
1

2 11 {( )(1 (1 )(1 ) ), .
1 2

k

ring k

p p k odd
k p

p p p k even
k p

−

−

 −
− − − −= 

− − − − − −

k         (4.11) 

From Corollary 4.2, it can be found that  

(1) When the probability of link failure ( p ) is small,  

2

1 ( ), ,
4

as 0, 1.
( ), ,

4( 1)

ring

k p o p k odd
p kp

k p o p k even
k

+ += → <<
 +
 −

k     (4.12) 

(2) When the probability of link failure ( p ) is large, 

21 ( )
1ring o

k
ε ε= − +

−
k , as 1, 1 .p p ε→ = −      (4.13) 

Corollary 4.3: For star network with k  nodes, 2,k >  

22 ( )star
kp p p

k
−

= + −k .       (4.14) 

Furthermore, from Corollary 4.3, it can be shown that 
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(1) When the probability of link failure ( p ) is small,  

2 , as 0.star
kp p p

k
−

= + →k        (4.15)  

(2) When the probability of link failure ( p ) is large, 

    21 ( ), as 1, 1 .star o p p
k
ε ε ε= − + → = −k     (4.16) 

Corollary 4.4: For a mesh-torus network with k  nodes, k odd and 3k >  

   1 12 2 1
2 2
1 1

11 {1 (1 ) (2 )(1 ) },
( )

m m
torus p p p p

m m p
+ += − − + − − − −

+
k     (4.17) 

where 1
1.

2
km −

=  

Furthermore, from Corollary 4.4, it can be found that 

(1) When the probability of link failure ( p ) is small,  

1 ( ), as 0, 1.
2torus

k p o P p k p−
= + → <<k     (4.18) 

(2) When the probability of link failure ( p ) is large, 

41 ( ), 1, 1 .
( 1)torus o p p
k
ε ε ε= − + → = −
−

ask     (4.19) 

The network reliabilities of the three typical topologies are summarized in Table 4.2. It 

can be found that, with independent link failure and without traffic protection,  

(1) When the probability of link failure ( p ) is small: with the same number of nodes, the 

star network is the most reliable (2p), whereas the ring network is the least reliable 

(O(kp)). Intuitively, that is because of the average shortest routes in the star network. 
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(2) When the probability of link failure ( p ) is large: with the same number of nodes, the 

three networks have similar network reliabilities. That is because the three networks have 

similar number of shortest routes with link length 1.  

Table 4.2 Network reliabilities of ring, star, and mesh-torus networks; 
independent failure and without fault protection 

 0p →  1p →  

Ring ( )O k p  21 (1 )
1

p
k

− −
−

 

Star 
2kp p

k
−

+  21 (1 )p
k

− −  

Mesh-Torus ( )O k p  41 (1 )
1

p
k

− −
−

 

 

4.4.2 Independent Failure and with 1+1 Protection 

We now consider network reliability with independent link failure and 1+1 fault 

protection. With 1+1 protection, the active connection on route ijr   is rerouted to a 

predetermined link-disjoint backup route between node i  and j , if there is one or more 

link failures on route ijr . The traffic is lost if there is one or more link failures at both 

route ijr  and its backup route.  

4.4.2.1 Arbitrary Physical Topology 

For arbitrary physical topology, with independent failures and 1+1 protection, we have 

the following theorem.  

Theorem 4.2: ,1 ,2 ,1 ,2

, ,

21 { (1 ) (1 ) (1 ) },
( 1)

ij ij ij ijl l l l

i j i j

p p p
k k

+

≠ ∈

= − − + − − −
− ∑

V

k     (4.20) 
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where ,1ijl  and ,2ijl  are the lengths of route ijr  and its backup route respectively.  

In particular, from Theorem 4.2,  

(1) When the probability of link failure ( p ) is small,  

1
2 2

,1 ,2
1

1 ( ), as 0.
1

k

i i
i

l l p o p p
k

−

=

= + →
− ∑k      (4.21) 

Comparing (4.21) to (4.9), we can find that fault protection increases the network 

reliability significantly.  

(2) When the probability of link failure ( p ) is large, 

min min min
2

1 ( ), as 1 and 1.
( 1)

l l lh
o p p

k k
ε ε ε= − + = − →

−
k     (4.22) 

The proof of Theorem 4.2 is based on the following,  

,1 ,2 ,1 ,21 (1 ) (1 ) (1 ) ,ij ij ij ijl l l l
ijS p p p += − − + − + −      (4.23) 

which means that, with independent failure and 1+1 protection, the connection between 

node i  and j  is lost if there are failures at both route ijr  and it backup route. Details 

proof of Theorem 4.2 are omitted here.  

4.4.2.2 Typical Regular Topologies 

We now consider the ring and mesh-torus network with independent failures and 1+1 

protections. From Theorem 4.2, we have the following corollaries.  

Corollary 4.5: For ring network with k  nodes, 3k ≥ , 

2 (1 ) (1 )1 (1 ) ( ).
1

k
k

ring
p pp

k p
− − −

= + − −
−

k       (4.24) 

In particular, from (4.21) and (4.22),  

(1) When the probability of link failure ( p ) is small,  



 96

2 2( 1) ( ), as 0.
6ring

k k p o p p+
= + →k      (4.25) 

(2) When the probability of link failure ( p ) is large,  

21 ( ), as 1, 1 .
1ring o p p

k
ε ε ε= − + → = −

−
k     (4.26) 

For mesh-torus network with k  node, 3,k k>  odd, the analytical form of torusk  

with 1+1 protection is rather complicated. However, it can be found that 

(1) When the probability of link failure ( p ) is small,  

1
2 221 (7 6 3) ( ), as 0.

24torus k k p o p p= + − + →k     (4.27) 

(2) When the probability of link failure ( p ) is large,  

41 ( ), as 1, 1 .
1torus o p p

k
ε ε ε= − + → = −

−
k     (4.28) 

The network reliabilities of the three typical regular topologies with independent failures 

are summarized in Table 4.3. It can be found that 

(1) With independent failure and 1+1 protection, the mesh-torus network is more reliable 

than the ring network ( 2( )O kp ). That is because the mesh-torus network generally has 

shorter primary and backup routes than the ring network.  

(2) Compare the same network topology with and without fault protection, it can be 

found that 1+1 protection increases the network reliability increases significantly when 

the probability of link failure ( p ) is small. Specifically, the percentage of lost traffic due 

to failure decreases by a factor of ( )O k  and ( )O k  for the ring and mesh-torus network 

respectively.  
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Table 4.3 Network reliabilities of ring, star, and mesh-torus networks; independent Failure 

 
 0p→ ; without 
fault protection 

1p→ ; without 
fault protection 

0p→ ; with 
fault protection 

1p→ ; with  
fault protection 

Ring ( )O k p  21 (1 )
1

p
k

− −
−

 2 2( )O k p  
21 (1 )

1
p

k
− −

−
 

Star 
2kp p

k
−

+  21 (1 )p
k

− −  N/A N/A  

Mesh-
Torus ( )O k p  41 (1 )

1
p

k
− −

−
 2( )O k p  41 (1 )

1
p

k
− −

−
 

 

4.4.3 Dependent Failure and without Fault Protection 

4.4.3.1 Dependent Failure Models 

Traditional study of network reliability usually assumes that links in the network fail 

independently, however, in many scenarios, the status of network links are dependent. 

For example, the concept of Shared Risk Link Groups (SRLG) is proposed to define a set 

of network elements that are under the impacts of common risk factors [66]. The concept 

of shared risk factors may include: shared conduit, shared right of way, shared office, and 

geographic proximity [66]. Parameters such as conditional failure probability per SRLG 

are proposed in [66]. For instance, for two links 1L and 2L  that share a common physical 

conduit D, a conditional probability of 50% could mean that link 1L  fails with probability 

50% if link 2L fails because of the failure of conduit D. 

There has been a lot of research about dependent failure models in communication 

networks, which was pioneered by Spragins [64]. In [64], network failures are modeled 

using a birth-death process. The dependencies among failures are included in the model 
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by assuming that the arrival rate of failures varies with the number of existing failures in 

the network. Since then, different approaches have been proposed to study the 

dependencies of network failures. In [50], a Markov model was proposed, which assumes 

a Markov dependency among failures on a sequence of links of interests. A commonly 

used model of dependent failures is based on the work in [65], and can be represented 

using a Bayesian Belief Network [75][76]. Two types of random variables are defined in 

the Bayesian Belief Network representation: (1) variables that correspond to the status of 

each network link; and (2) variables that correspond to the occurrence of network events, 

which may cause one or more links to fail.  Such a representation is more general and can 

be considered as a super set of failure models.  

In this work, we adopt the dependent failure model in [75][65] and represent it using 

Bayesian Belief Network. We assume that incident network links may fail simultaneously 

due to a common risk. This is motivated by the observation that most of the dependent 

link failures are among links that are incident to a common network node. Incident 

networks links normally share common risks of failures, e.g. sharing of network node 

equipments, power. In addition, incident links are located in the same geographic area 

and are subject to the same abnormal event such as earthquakes and hurricanes.  

For instance, we consider the NSF network topology in Figure 4.1, whose dependent 

failure model based on Bayesian Network is depicted in Figure 4.2. There are 21 links in 

the NSF network and the status of each link are denoted as 1 2 21, ,...,Z Z Z : 1iZ =  if link i  

fails; and 0iZ =  otherwise. Each link may fail due to two types of events: 

(1) Events that may only affect the status of link , 1, 2,..., 21i i = , which is denoted as iA . 

In this work, we define random variables iX : 1iX =  if event iA  occurs; and 0iX =  
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otherwise. In addition, we assume that iA  occurs with probability ia  and the occurrence 

of event iA  causes link i  to fail with probability aip . 

(2) Events that may affect the status of all the links incident at a node ,j j∈V , which is 

denoted as ,jB j∈V . Here we define random variables ,jY j∈V  : 1jY =  if event jB  

occurs; and 0jY =  otherwise. In addition, we assume that ,jB j∈V , occurs with 

probability jb  and the occurrence of event jB  may cause link i , which is a link incident 

on node j , to fail with probability ,b ijp . In this case, all the links that are incident on 

node j  form a shared risk link group correspond to common risk factor associated with 

node j .  

 

Figure 4.1NSF network topology 

 

Figure 4.2 Bayesian Belief Network representation of dependent failure models; NSF network 
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Assuming that all the risk events associated with each link cause the link to fail 

independent of each other, we have the following set of conditional probabilities for the 

NSF network based on the dependent failure model in Figure 4.2, 

( 1) , 1 21i iP X a i= = ≤ ≤ ;       (4.29) 

( 1) , 1 14j jP Y b j= = ≤ ≤ ;                (4.30) 

            1 2

1 2 1 2, ,( 1| , , ) 1 (1 ) (1 ) (1 ) , 1 21;i ii Y YX
i i i i ai b i i b i iP Z X Y Y p p p i= = − − − − ≤ ≤          (4.31) 

1 2, 1 ,( 1) 1 (1 )(1 )(1 ), 1 21,i i ai i b i i i b i iP Z a p b p b p i+= = − − − − ≤ ≤     (4.32) 

where  

(1) iX  denotes whether event iA , which can only affect the status of link i , occurs or 

not, e.g. (a) fiber cut or inline amplifiers failures at link i; (b) abnormal events that only 

affect the geographic location of link i. Event  iA  occurs with probability ia , which could 

be in the range of 410−  to 810− depending on various factors, such as the vulnerability of 

the geographic location to natural disasters. The occurrence of event iA causes link i  to 

fail with probability 
iap , which could be in the range of 0 to 1 based on the severance of 

the risk event.   

(2) 
1i

Y  and 
2i

Y  denote the occurrence of the two risk events 
1i

B  and 
2i

B , which may 

affected all the links connected to each of the terminal node of link i  respectively. 

Examples of such events include: (a) failures of the shared network equipments at the 

node; (b) an abnormal event that that may affect the geographical area where the node is 

located such as power failure, natural disasters; (c) intentional/unintentional damage of 

the node. Event 
1i

B  occurs with probability 
1i

b , which could be in the same range of ia , 
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i.e., 410−  to 810− . The occurrence of event 
1i

B  and 
2i

B  causes link i  to fail with 

probability 
1ibp and 

2ibp , which is also in the range of 0 to 1 based on the severance of the 

risk event. For simplicity of analysis, we assume that ,ia a≡  ,ijb b≡ ai ap p≡ , 

and
ijb bp p≡  in the rest of this chapter.  

4.4.3.2Arbitrary Topology 

We first consider network reliability with dependent failure and no failure protection in 

the network. Without loss of generality, we consider the route in R between node m  and 

n . We index the nodes along the route as node 0, 1, 2, …, j,  and denote the status of 

links on the route as 1, 2, ,, ,...,mn mn j mnZ Z Z , where j  is the number of links on the route. For 

simplicity, we omit the subscript mn  in the rest of the section. Then, we have the 

following theorem, 

Theorem 4.3: Let j be the number of links on route mnr , with dependent failures and no 

failure protection,  

2 2 1( 0) (1 ) (1 ) (1 (2 )) ,j j
mn a b b bP S ap bp b p p −= = − − − −           (4.33) 

where 0mnS =  if there is no link failure on route mnr ; and 1mnS =  otherwise. In addition, 

the failure independent assumption overestimates the probability that connections on mnr  

is lost than the failure dependent assumption, i.e. 

          
2 2

1
2 2 2 1

1 2

1 ( 0)
1 (1 ) (1 2 ) 1.

1 ( 0, 0,..., 0) 1 (1 ) (1 2 )(1 2 )

j

j j j
l a b b

j j
j a b b b b

P Z
ap bp b p

P Z Z Z ap bp b p bp bp
=

−

− =
− − − +

= −
− = = = − − − + − +

∏

             (4.34) 
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The proof of Theorem 4.3 can be found in Appendix J. In particular, if 1bp = , which 

means that the occurrence of event ,iB i∈V , causes all the links incident on node i fail 

with probability 1, then  

           1

1 2

1 ( 0)
( 1)

1 ( 0, 0,..., 0) ( 1)

j

i
i

j a

P Z
j b

P Z Z Z jap j b
=

− =
−

=
− = = = + +

∏
,         if 1a <<  and 1b << .   (4.35)    

Clearly, the independent model of failures is a special case of the dependent model 

with 0b =  for all event ,iB i∈V , which means that there is no event that may cause two 

network links fail simultaneously. From (4.35), we can find that the failure independent 

assumption overestimates the percentage of lost traffic by a factor between 0 and 1. The 

lower limit is achieved if all the connections in the network are of link length 1. In this 

case, the failure independent assumption does not affect the evaluation of network 

reliability. The failure independent assumption overestimate the percentage of lost traffic 

by a factor close to 100% if ( ) ora O b a b= << . Furthermore, from Theorem 4.3, we have 

the following corollary 

Corollary 4.6: With failure dependent assumption and without failure protection, of all 

the physical topologies with the same number of nodes in the network, the fully-connected 

graph is the most reliable; Of all the physical topologies with the same number of nodes 

and links in the network, the Moore graph is the most reliable under the condition that 

1a <<  and b<<1.  

The results in Corollary 4.6 are similar to those in Corollary 4.7, and complement the 

findings in [50], where it has been shown that the Moore graph has the best all-terminal 

reliability, when the link failure probability is low with independent failure assumptions.  
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4.4.3.3 Typical Topologies 

We now consider the ring, star, and mesh-torus network with dependent failures and 

without failure protection. From Theorem 4.3, we have the following corollaries.  

Corollary 4.7: For ring network with k  nodes, 3k > , 

        

12
2

2

, 2 1
2

2

2(1 ) 11 {( )(1 (1 ) )}, ,
( 1)(1 2 )

2(1 ) 11 {( )(1 (1 )(1 ) ), ,
( 1)(1 2 ) 2

k
b

b b
dep ring k

b

b b

bp q q k odd
k bp bp q

bp q q q k even
k bp bp q

−

−

 − −
− − − − − += 

− − − − − − − − +

k    (4.36) 

where 21 (1 )(1 2 )a b bq ap bp bp= − − − + . In comparison, the marginal probability of link 

failure 2 21 (1 )(1 2 )a b bp ap bp b p= − − − + . 

In addition, when the probability failure (p) is low, i.e., the probabilities of occurrences 

for event iA  and ijB  , , , ~ ,i j V i j∀ ∈  are small, 

2 2

, 2
2 2

( 1) ( 2 ), ,
4

( 2 ), ,
4( 1)

b a b b

dep ring

b a b b

kbp ap bp bp k odd

kbp ap bp bp k even
k

+ + + −= 
 + + −
 −

k  as , 0a b → .   (4.37) 

Since 2 21 (1 )(1 2 )a b bp ap bp b p= − − − + , (4.12) can be rewritten as 

2

( 1) ( 2 ), ,
4

( 2 ), ,
4( 1)

a b

ring

a b

k ap bp k odd

k ap bp k even
k

+ += 
 +
 −

k   as , 0a b → .     (4.38) 
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Comparing (4.37) and (4.38), we can find that, for large ring networks, independent 

assumption overestimate the percentage of lost traffic by a factor of 
2

22
b

a b b

bp
ap bp bp+ −

. In 

addition, the overestimation is larger for a larger value of b  or bp .  

Corollary 4.7: For star network with k  nodes, 3k ≥ , 

2
2

, 2

(1 )1 {2(1 ) ( 2)(1 ) }
(1 2 )

b
dep star

b b

bp q k q
k bp bp

−
= − − + − −

− +
k ,    (4.39) 

where 21 (1 )(1 2 )a b bq ap bp bp= − − − + .  

In addition, when the probability of failure (p) is small, i.e., the probabilities of 

occurrences for event iA  and ijB  , , , ~ ,i j V i j∀ ∈  are small, 

2
,

2(1 )( 2 )dep star a b b
k ap bp bp

k
−

= + + −k .     (4.40) 

Since (4.14) can be rewritten as 

2(1 )( 2 ), as 0.star a b
k ap bp p

k
−

= + + →k  

Therefore, independent assumption overestimates the percentage of lost traffic by a factor 

of 
2

22
b

a b b

bp
ap bp bp+ −

 for large star networks.  

Corollary 4.8: For mesh-torus network with k  nodes, k >3, k  odd 

       1 1

2
2 2 1

, 2 2 2
1 1

(1 )11 {1 (1 ) (2 )(1 ) },
( ) (1 2 )

m mb
dep torus

b b

bp q q q q
m m q bp bp

+ +−
= − − + − − − −

+ − +
k  

where 2
1

1, 1 (1 )(1 2 )
2 a b b

km q ap bp bp−
= = − − − + . 
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In addition, when the probability of failure (p) is small, i.e., the probabilities of 

occurrences for event iA  and ijB , , , ~ ,i j V i j∀ ∈  is small,  

2 2
,

1 ( 2 ) , as , 0.
2dep torus a b b b

k ap bp bP bp a b−
= + − − →k     (4.41) 

Comparing (4.41) with (4.18), we can find that independent assumption overestimates the 

percentage of lost traffic by a factor of 
2

22
b

a b b

bp
ap bp bp+ −

 for large mesh-torus networks.  

4.4.4 Dependent Failure and 1+1 Fault protection 

4.4.4.1 Arbitrary Topology 

Without loss of generality, we consider an active connection between node m  and n  on 

a route in R with 1j  links. Assume that its backup route has 2j  links. Without loss of 

generality, we assume 1 2j j≤ . Then the probability that the connection is not lost for due 

to failure events for different values of 1 2,j j  are given in Appendix K.  

Theorem 4.4: When the probability of failure (p) is small and 1bp = ,  

2 2 2
1 2 1 2 1 2( 1) 2 (2 ) ( ) ( )mn a aP S b j j a p j j j j abp o a o b= = + + − − + + ,  

as 2 1a <<  and  1b << .   (4.42) 

 The proof of Theorem 4.4 can be found in Appendix K, where 1bp = means that the 

occurrence of type B events at each network node causes all incident links on that node 

fail simultaneously with probability 1.  

With the link failure independent assumption, the probability that the connection 

between node m  and n  is lost due to failures on both its primary and backup route is 

                 2 2 2
1 2 1 24 ( ) ( ).a aj j a p j j abp o a o b+ + +  
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Thus, with fault protection, the failure independent assumption may correspond to an 

optimistic view of network reliability. It may underestimate the probability that the 

connection is lost due to failures significantly. When 1bp = , 2 1a <<  and 1b << , the 

independent assumption under-estimate the percentage of lost traffic due to failures by a 

factor of 
2 2

1 2 1 2 1 2
2 2

1 2 1 2

2 (2 )
4

a a

a a

b j j a p j j j j abp
j j a p j j abp

+ + − −
+

. Thus, with dependent failures, fault 

protection helps the most when the probability of occurrence is small for events that may 

cause several links fail simultaneously.  That is different from the case of independent 

failures, where fault protection can always improves the network reliability significantly.  

4.4.4.2 Typical Topologies 

For the ring and mesh-torus networks, from Theorem 4.4, we have the following 

corollaries. 

Corollary 4.9: For ring network with k  nodes, 2k >  

, 2

( 1) 12 ( 2 ) , ,
6 2

( 1)2 ( 2 ) , ,
6 2( 1)

a a a

dep ring

a a a

k k kb ap ap b abp k odd

k k kb ap ap b abp k even
k

+ + + + −=  + + + −
 −

k      

     21, , 0.bas p a b= →      (4.43) 

which corresponds to the case that the probability of link failure 1.p <<  

Corollary 4.10: For mesh-torus network with k nodes, 3,k >  k  odd 

      ,
7 6 3 12 ( 2 )

24 2dep torus a a a
k k kb ap ap b abp+ − −

= + + −k , 

          21, , 0.bas p a b= →    (4.44)  
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which corresponds to the case that the probability of link failure 1.p <<  

In this section, we adopt a simple network layer model to study the effects of physical 

topologies, network operation schemes (with/without fault protection), and dependencies 

among physical layer failures on network reliability.  Next, we then adopt a random 

network layer traffic model with Poisson arrivals to further investigate the effect of 

network layer traffic distributions on network reliability.  

4.5 Reliability under Uniform Random Traffic 

We now consider a uniform random network-layer traffic model. We denote the network 

as ( , )G V E , with each link j  in E  has capacity C . Assume fixed routing on a set of 

routes R . Without fault protection,  R  consists of one link-shortest route between each 

pair of nodes in the network. With 1+1 protection, R  consists of two link-disjoint routes 

between each pair of nodes in the network, one of which is a link-shortest route.  

We consider in this work a commonly-used model that assumes that connection 

requests between each pair of nodes in the network arrive as a Poisson process with rate 

v  and each connection requires one unit of link capacity. Connection requests are 

blocked if there is no free capacity on the corresponding route. The holding time of each 

accepted connection is an identically and independent distributed (i.i.d) exponential 

random variable with unit mean. Then, it has been shown in [81] that, at the equilibrium 

stage, the stationary distribution of the number of connections in progress in the network 

is: 

1( ) ,
!

,rN

r r

vZ
N

π −

∈

= ∈∏
R

N N S       (4.45) 



 108

where rN  is the number of connections on route r , and ( : )rN r= ∈N R . S  is the set of 

vector N  that satisfies the network link capacity constraint. The stationary distribution in 

(4.45) is intractable due to the difficulty to derive the normalization constant Z . 

Therefore, we use the Erlang Fixed Point Approximation [81] to obtain analytical results 

of network reliability.  

Erlang Fixed Point Approximation (EFPA) has been shown both theoretically and 

empirically to be an effective approximation method to investigate the stationary 

distribution of the network traffic with Poisson arrivals. In particular, for the previously 

discussed network layer model, there always exist a unique fixed point solution and the 

solution has been shown to be asymptotically correct [81]. Empirically, EFPA performs 

well especially for networks with large link capacities and/or networks with non-linear 

structure. In this work, EFPA is adopted to obtain analytical results of traffic-based 

network reliability metrics.  

4.5.1 Independent Failure and Without Fault protection 

When the network has no fault protection, we assume that the route set R  consists of one 

link-shortest route between each pair of nodes in the network and the arrival rate of 

connection requests at each route is v . The traffic-based network reliability metrics 

become 

            [ ] [ ]ij ij
ij

E D E S=∑Z ,      (4.46) 

and  

[ ] [ ]
,

[ ]

ij ij
ij

ij
ij

E D E S

E D
=
∑
∑

k       (4.47) 
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where [ ]ijE D  is the expected number of active connections on each route ijr ∈R  depends 

on the random traffic model, and [ ]ijE S  is the probability that active connections on route 

ijr ∈R  is lost due to failures. From (4.46) and (4.47),  clearly the number of active 

connections on different network routes varies with the random traffic model, thus affect 

the amount and percentage of lost connections due to network failures. Next we study the 

reliability of several typical topologies.  

4.5.1.1 Ring Network 

For a ring network with k nodes, 3,k ≥  it can be found that, 

1
2

1

1
2

2 2

1

{ (1 ) (1 (1 ) )}, if is odd,
,

{ (1 ) (1 (1 ) )} { (1 ) (1 (1 ) )}, if is even,
2

k

l l
ring

l
ring k

k k
l l

ring ring
l

k v B p k

kk v B p v B p k

−

=

−

=


 − − −= 

 − − − + − − −


∑

∑

Z  

             (4.48) 

where ringZ  denotes the average amount of lost traffic due to failures in the ring network.  
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              (4.49) 
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where ringk  denotes the average percentage of lost traffic due to failures in the ring 

network. ringB  in (4.48) and (4.49) can be considered as the link blocking probability 

obtained form Erlang Fixed Point equations, specifically,  

0
( , ) ( )

! !

C iC
ring ring

ring ring
i

B Erlang C
C i
ρ ρ

ρ
=

= = ∑ ,     (4.50) 

and 

  

1
2

( 1)

1

1
2 1( 1) 2

1

{ (1 ) }, if is odd,

{ (1 ) } (1 ) , if is even,
4

k

j
ring

j
ring k

k
j

ring ring
j

jv B k

vjv B B k

ρ

−

−

=

−
−−

=


 −= 

 − + −


∑

∑

.   (4.51) 

In particular, when the network is under heavy load, i.e., Cρ >> , we have the following 

theorem.  

Theorem 4.5: For the k node ring network, under heavy load, ,as v →∞  

               11 ,
1ring

CB
v
−

= −
+

        (4.52) 

  
2

( 1) ( ),ring
C pk C p o

v
= − +Z            (4.53) 

ring p=k .      (4.54)  

The proof of Theorem 4.5 can be found in Appendix L. (4.52) shows that under heavy 

load, the link blocking probability under EFPA approaches 1. Thus almost all the active 

connections are of link length 1. Therefore, the expected number of lost connections due 

to failures approaches ( 1)k C p−  and the expected percentage of lost connections due to 

failures approaches p. 
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4.5.1.2 Star Network 

For star network with k  nodes, 2k > , 

2 20.5( 2)( 1) (1 ) (1 (1 ) ) ( 1) (1 ) ,star star stark k v B p k v B p= − − − − − + − −Z    (4.55) 

2 2

2

(1 ) 0.5( 2)(1 ) (1 (1 ) ) ,
(1 ) 0.5( 2)(1 )

star star
star

star star

B p k B p
B p k B

− + − − − −
=

− + − −
k     (4.56)

where  

3

0
( , ) ( ),

! !

C iC
star

star star
i

B Erlang C
C i
ρ ρρ

=

= = ∑      (4.57) 

( 2)(1 ) .star starv k B vρ = + − −       (4.58) 

Furthermore, we have the following theorem. 

Theorem 4.6: For the k  node star network, under heavy load, ,as v →∞  

2

( 1) ( ),star
C pk Cp o

v
= − +Z       (4.59) 

,star p=k  as .v →∞         (4.60) 

The proof of Theorem 4.6 is similar to that of Theorem 4.7. Details are omitted. (4.59) 

and (4.60) show that, under heavy load, the expected number of lost connections due to 

failures approaches ( 1)k Cp−  and the expected percentage of lost connections due to 

failures approaches p for the star network. 

4.5.1.3 Mesh-Torus Network 

For mesh-torus network with k  nodes, 3,k >  k  odd 

1 1

1

2
2

1 1
1 1

2(2 1) { (1 ) (1 (1 ) ) (2 1 ) (1 ) (1 (1 ) )},
m m

i i i i
torus torus torus

i i m
m iv B p m i v B p

= = +

= + − − − + + − − − −∑ ∑Z  

             (4.61) 
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where 1
1,

2
km −

= ( , )torus torusB Erlang Cρ= , and 

1 1

1

2
2 1 1

1
1 1

(1 ) (2 1 ) (1 ) .
m m

j j
torus torus torus

j j m
j v B j m j v Bρ − −

= = +

= − + + − −∑ ∑    (4.63) 

In addition, we have the following theorem.  

Theorem 4.7: Under heavy load, for the mesh-torus network under consideration, 

,as v →∞  

    
2

2 ( 1) ( )torus
C pk C p o

v
= − +Z ,     (4.64) 

     torus p=k .       (4.65) 

The proof of Theorem 4.7 is similar to tat of Theorem 4.5. Details are omitted. From 

(4.64) and (4.65), it can be found that: under heavy load, the expected number of lost 

connections due to failures approaches 2 ( 1)k C p−  and the expected percentage of lost 

connections due to failures approaches p in the mesh-torus network. 

4.5.1.4 Other Results on Reliability of Typical Topologies 

We have obtained the following theorems for the network reliabilities of the ring, star, 

and mesh torus network discussed in Section 4.5.2 under the uniform random traffic 

model.  
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Theorem 4.8 The link blocking probability from EFPA monotonically increases with the 

arrival rate, i.e., 0,B
v

∂
>

∂
for the ring, star, and mesh torus networks, with independent 

failure and no fault protection.  

The proof of Theorem 4.8 can be found in Appendix M. Intuitively, Theorem 3.8 results 

from the observation that: as the connection arrival rate increases, the number of free 

capacities on each network link generally decreases, and thus the link-blocking 

probability increases.  

Theorem 4.9 The percentage of lost traffic due to failures is monotonically 

nonincreasing with the arrival rate, i.e., 0
v
∂

≤
∂
k , for the ring, star, and mesh torus 

networks, with independent failure and no fault protection.  

The proof of Theorem 4.9 can be found in Appendix N. Theorem 4.9 can be explained as 

follows. As the connection arrival rate increases, a larger percentage of active 

connections are on short routes. Since the shorter routes are less likely to subject to 

network failures than longer routes, the expected percentage of lost traffic due to failures 

decreases as connection arrival rate decreases.  

Theorem 4.10 Both the amount of lost traffic and the percentage of lost traffic 

monotonically increase with the arrival rate, i.e., 0 and 0
p p

∂ ∂
> >

∂ ∂
Z k , for the ring, star, 

and mesh torus networks, with independent failure and no fault protection.  

The proof of Theorem 4.3 is straightforward, and is omitted. In addition, we can find that, 

the amount of lost traffic does not vary monotonically with the arrival rate. Furthermore, 
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2

0
v p
∂

>
∂ ∂
Z , which means that for a larger link failure probability p , it is more likely that 

the amount of lost traffic increases with the arrival rate.  

4.5.2 Independent Failure and With Fault protection 

In this subsection, we consider network reliability with independent failure and with 1+1 

protection using the uniform random traffic model.  

4.5.2.1 Ring Network 

With 1+1 protection, the capacity needs to be allocated to both the primary and the 

backup route. Therefore, for the ring network, each connection request always requires 

capacity from k  links regardless of the source and destination. Thus,  

,
2 (1 ) (1 )(1 ){1 (1 ) ( )},

1

k
k

ring pro
p pkv B p

k p
− − −

= − + − −
−

Z     (4.66) 

where  ,
( 1)( , )

2ring pro
k kB Elrang v C−

= .  

2 (1 ) (1 )1 (1 ) ( ).
1

k
k

ring
p pp

k p
− − −

= + − −
−

k      (4.67) 

From (4.66) and (4.67), it can be found that, for the ring network, with independent 

failure and 1+1 protection:  

(1) , 0,ring proB
v

∂
>

∂
which means that the link blocking probability obtained from EFPA 

monotonically increases with the arrival rate.  

(2) , 0,ring pro

v
∂

>
∂

Z
 which means that the amount of lost traffic increases monotonically 

with the arrival rate. This is different for the case of ring network without protection.  
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(3) , 0ring pro

v
∂

=
∂

k
, which means that the percentage of lost traffic due to failures does not 

change with respect to arrival rate. This is different from the case of ring network without 

fault protection.  

(4) , ,0 and 0ring pro ring pro

p p
∂ ∂

> >
∂ ∂

Z k
, which means that both the amount of lost traffic and 

the percentage of lost traffic monotonically increase with the arrival rate.  

4.5.2.2 Mesh-Torus Network 

For mesh-torus network with k  nodes, 3k > , k  odd 
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B p p m i B p
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∑
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             (4.68) 
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2(2 1) { [( 1)(1 ) (1 ) ] (2 1 )(1 ) }
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i i m
m v i B B m i B+

= = +
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Z
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             (4.69) 

From (4.68) and (4.69), it can be found that, for the mesh torus network, with 

independent failure and 1+1 protection,  

(1) , 0,torus proB
v

∂
>

∂
which means that the link blocking probability increases with the 

arrival rate.  

(2) The amount of lost traffic does not vary monotonically with the arrival rate. This is 

different from the ring network with fault protection.  
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(3) , 0torus pro

v
∂

<
∂

k
, which means that the percentage of lost traffic due to failures 

monotonically decreases with the arrival rate. This is different from the case of ring 

networks with fault protection.  

(4) , ,0 and 0torus pro torus pro

p p
∂ ∂

> >
∂ ∂

Z k
, which means that both the amount of lost traffic and 

the percentage of lost traffic monotonically increase with the arrival rate.  

4.5.3 Dependent Failure and without Fault protection 

4.5.3.1Numerical Results 

In this subsection, we consider the network reliability with dependent failures and 

without protection. From Theorem 4.3, we can find that the independent failure 

assumption overestimates the amount and percentage of lost traffic due to failures. 

Specifically, for an active connection on a route with j  links, the failure independent 

assumption overestimates its probability of loss due to failures by a factor of 

( 1)
( 1)a

j b
jap j b

−
+ +

 for , 1.a b <<   

For instance, we consider the percentage of lost traffic due to failures for a 14 node 

ring network and the 14 node NSF network using Erlang Fixed Point method.  

Using the NSF network topology as an example, we first revisit the model of 

dependent failures used in this study. We consider an arbitrary network link i. In our 

model, link i may fail due to two types of events:  

(1) Events that may only affect the status of link i , which is denoted as iA . For instance, 

in optical networks, event iA  may include: (a) fiber cut or inline amplifiers failures at 
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link i; (b) abnormal events that may only cause link i to fail such as natural disasters that 

only affect the geographic location of link i; and (c) intentional/unintentional damage of 

the link. We let the probability of occurrence of iA  be ia  and the occurrence of event iA  

causes link i  to fail with probability aip .  

(2) Events that may affect the status of link i  and other network links that share a 

common risk factor with link i . In this work assume that incident network links may fail 

simultaneously due to a common risk. This is because most of the dependent link failures 

are among links that are incident to a common network node, which share common risks 

of failures such as network node equipments, power outages. In addition, incident links 

are located in the same geographic area and are subject to the same abnormal event such 

as earthquakes and hurricanes. In particular, we denote events that may affect the status 

of all the links incident at a node ,j j∈V , as ,jB j∈V . Furthermore, we assume 

that ,jB j∈V , occurs with probability jb  and the occurrence of event jB  may cause link 

i , which is a link incident on node j , to fail with probability ,b ijp .  

For illustration, we consider two sets of parameters for dependent failure models: one 

corresponds to high probability of failure; the other corresponds to small probability of 

failure. Figure 4.3 depicts the percentage of lost traffic vs. the connection arrival rate for 

the 14 node ring and NSF networks. Each network link is assumed to have capacity 20. 

The following parameters are used for dependent failure model: event iA  occurs with 

probability 410a −= ; the occurrence of event iA  cause link i  to fail with probability 

0.5ap = ; event iB  occurs with probability 410b −= ; the occurrence of event iB cause all 
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the links incident on node i  fail with probability 1.0bp = . The corresponding marginal 

probability of link failure is 42.5 10p −= × .  

Figure 4.4 depicts the percentage of lost traffic vs. the connection arrival rate for the 

same two networks. Each network link is assumed to have capacity 20. A different set of 

parameters are used for dependent failure model: event iA  occurs with probability 

610a −= ; the occurrence of event iA  cause link i  to fail with probability 0.5ap = ; event 

iB  occurs with probability 610b −= ; the occurrence of event iB cause all the links 

incident on node i  fail with probability 1.0bp = . The corresponding marginal probability 

of link failure is 62.5 10p −= × .  

It can be found that the failure independent assumption over-estimates the percentage 

of lost traffic due to failures for both networks. Furthermore, the magnitude of the 

overestimation is smaller when the network is under smaller load, i.e., with smaller 

connection arrival rate (45% for the ring network and 25% for the NSF network). The 

magnitude of over-estimation of the percentage of lost traffic approaches 0 when the 

network is under extreme high load.  The reason is, when the network is under extremely 

highly load, most of the connections in the network are of link length 1 due to the high 

link blocking probability. In that case, the failure independent assumption does not 

overestimate the percentage of lost traffic.  

In addition, it can be observed that, as the network load increases, the percentage of 

lost traffic in both networks approaches p (the marginal probability of link failure), 

which confirms our findings in Theorem 4.5.  
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Figure 4.3 Percentage of lost traffic vs. connection arrival rate; 
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        Figure 4.4 Percentage of lost traffic vs. connection arrival rate; 

 14-node ring and NSF networks; 6 610 , 0.5, 10 , 1.0, 20a ba p b p C− −= = = = =  

4.5.3.2. Graphical Representation of Dependencies 

When the link failures are dependent, there are dependencies at both the physical layer 

and the network layer. A visual display of the dependencies can be obtained through a 

factor graph representation [43] of the network layer traffic and the physical layer 

failures.   
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For simplicity of illustration, we consider a 5-node ring network. There are total 10 

routes in R, which corresponds to one link-shortest route between each pair of nodes in 

the network. The factor graph representation of the interaction between the physical layer 

and network layer are shown in Figure 4.5.  

The upper part of the representation in Figure 4.5 correspond to the network layer 

traffic model, where iN , 1, 2,...,10i = , denotes the number of active connections on route 

i . The lower part of the representation correspond to the physical layer dependent failure 

models, where , 1, 2,...,5iZ i =  denotes the status of link i ; , 1, 2,...,5,iX i =  denotes the 

occurrence of event iA  that may only affect link i ; , 1, 2,...,5,iY i =  denotes the 

occurrence of event iB  that may affect both links incident on node i . The green dot in the 

factor graph representation then corresponds to the number of active connections lost due 

to failures at each network route.  

   The graphical representation provides an explicit display of the dependencies among 

link failures at the physical layer and the dependencies among traffic flows at the network 

layer. In addition, it shows potential as a strong approach to consider more sophisticated 

network traffic models and to further investigate the interaction between the physical 

layer failures and network layer traffic.  
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Figure 4.5 Factor graph representation of the network and the physical layer model;  
5-node ring network 

4.6 Summary of Chapter 4 

In this Chapter, we have systematically investigated different factors that affect traffic-

based network reliability. We first adopted a uniform deterministic traffic at the network 

layer, which allows us to focus on the impacts of the first three factors on network 

reliability. We have summarized the network reliabilities of ring, star and mesh-torus 

networks when the probability of link failure is small in Table 4.4. It has been found that: 

(1) The effect of physical topologies 

Networks with the smallest average route length are the most reliable. For instance, 

without protection, the average percentage of lost traffic due to failures for the star 

network is around 2( )a bap bp+  when the probability of link failure is small; whereas the 
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percentage of lost traffic for the ring and mesh-torus network are ( ( ))a bO k ap bp+  and 

( ( ))a bO k ap bp+  respectively.  

 

Table 4.4 Network reliabilities; ring, star, and mesh-torus network; uniform  
      deterministic traffic model; small probability of link failure 

 

 Ring Star Mesh-Torus 

Independent 
failure; without 

failure protection 

( 1) ( 2 )
4 a b

k ap bp+
+  2(1 )( 2 )a b

k ap bp
k
−

+ +  1( 2 )
2 a b

k ap bp−
+  

Dependent 
failure; without 

failure protection 

2 2( 1) ( 2 )
4b a b b

kbp ap bp bp+
+ + − 22(1 )( 2 )a b b

k ap bp bp
k
−

+ + − 2 21( 2 )
2 a b b b

k ap bp bP bp−
+ − −  

Independent 
failure; with 

failure protection 

( 1) ( 2 )
6 a a b

k k ap ap bp+
+  N/A 7 6 3

24
k k+ − ( 2 )a a bap ap bp+  

 

(2) The effect of dependencies among physical layer failures 

The failure independent assumption may have different effect when the network operates 

with or without fault protections. Generally, for networks without protection, failure 

independent assumption overestimates the percentage of lost traffic. Specifically, for an 

active connection on a route with j  links, the failure independent assumption 

overestimates its probability of loss due to failures by a factor of ( 1)
( 1)a

j b
jap j b

−
+ +

 for 

, 1.a b <<  For networks with protection, the failure independent assumption may 

underestimate the percentage of lost traffic significantly by a factor of 

2 2
1 2 1 2 1 2

2 2
1 2 1 2

2 (2 )
4

a a

a a

b j j a p j j j j abp
j j a p j j abp

+ + − −
+

. Thus with failure protection, independent failure 

assumption may overestimate network reliability drastically.  
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 (3) Effect of fault protection 

When the link failures are independent in the network, fault protection can increases 

network reliability significantly, e.g., reduce the percentage of lost traffic by a factor of 

O( 1 p
k

) for the ring network. When the link failures are dependent in the network, to 

increase the effectiveness of fault protection, it is important to reduce the probability of 

occurrence for those events that are common risks of several links.  

Furthermore, we have adopted a random network layer traffic model with Poisson 

arrivals to further investigate the effect of network layer traffic distributions on network 

reliability. We have focused on the interaction between the network reliability measures 

and the connection arrival rate. The findings on several typical topologies are 

summarized in Table 4.5. It can be found that:  

(1) For the ring, star, mesh-torus networks considered, the percentage of lost traffic 

monotonically decreases with connection arrival rate if there is no connection fault 

protection. Based on the metric of percentage of lost connections due to failures, the 

network is more reliable with a larger connection rate.  

(2) The amount of lost traffic upon failure does not vary monotonically with connection 

arrival rate. Furthermore, the interaction may change depending on the physical layer link 

failure probabilities. For instance, whether the network connections have fault protection 

or not changes the interaction between network reliability metrics and connection arrival 

rate, as in the case of ring network.  
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Table 4.5 Network reliabilities; ring, star, and mesh-torus networks; uniform random traffic model 
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∂ ∂
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∂ ∂
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We also obtained the asymptotic results of network reliability metrics with respect to 

arrival rate for typical network topologies under heavy load regime.  It has been shown 

that, under heavy load regime, the percentage of lost traffic due to failures approaches p 

with failure independent assumption. In addition, we provided graphical representation of 

the dependencies among the network layer and the physical layer.  

Our investigation of traffic-based reliability focuses on “open-loop” analysis. Thus 

one future direction of research is to further consider the interaction of network traffic 

and the physical failure models. In addition, our investigation of traffic-based network 

reliability is limited to circuit-switched networks. Another future research direction is to 

extend the study to packet-switched networks.  
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CHAPTER 5 

CONCLUSION 

This final chapter summarizes the contributions of the thesis and discusses about the future 

directions of research.  

5.1 Contributions 

The main contributions of this thesis include: (1) fundamental understanding of scalable 

management and resilience of next-generation optical networks with flow switching; and 

(2) application of probabilistic graphical models, an emerging approach in machine 

learning, to the research of communication networks. 

To understand scalable network management, we have investigated network 

management information for light-path assessment across administrative domains. Our 

technical approach is based on the framework of decision theory and probabilistic 

graphical models. Our focus has been on studying the scalability of management 

information, which includes aggregated information of each subnet, and local information 

from wavelength converters on network boundaries. We have formulated the problem 

based on decision theory, and defined the performance of using partial management 

information through the Bayes probability of error. A bound in terms of blocking 

probability is derived to estimate such a performance. We then defined the scalability of 

management information as the growth rate with respect to network size and resource 

when a desired performance is achieved. A scalable case has been studied where the 

partial management information grows only logarithmically with the number of 

wavelengths per link. Our study reveals that when the number of wavelengths is large, 
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the resulting Bayes error is negligibly small for most of the network load conditions. 

Therefore, a small loss in performance (the Bayes error) may be traded off with a large 

saving in network management information.  

To understand network resilience under malicious attacks, we have studied resilience 

of all-optical networks (AONs) under in-band crosstalk attacks. We have developed a 

cross-layer model of attack propagation based on probabilistic models. The model 

provides an explicit representation of the dependencies and interactions between the 

physical- and the network layer. In addition, it facilitates the analytical investigation of 

network resilience for ring, star, and special cases of mesh topologies, and provides 

computationally efficient approaches, e.g. the sum-product algorithm, for evaluating 

network resilience. Through both analysis and numerical study, we have explored several 

factors from both the physical- and the network layer that affect the resilience. Factors 

from the physical-layer include: (1) the physical-layer vulnerability, parameters in 

Bayesian Belief Network that characterize how likely the attack propagates, and (2) the 

physical topology. Factors from the network layer include active network connections 

that are characterized using network load, i.e., the probability that the wavelength, on 

which the attack is initiated, is used in the network. We have shown that for all the 

topologies studied in this thesis, the average network resilience loss increases linearly 

with respect to the physical-layer vulnerability and light network load under link-shortest 

routing, and all-to-all traffic. In addition, ring and mesh-torus network show good 

resilience, which are inversely proportional to the number of the nodes in the network.  

Numerical results also suggest that for networks with link-shortest routing and all-to-all 
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traffic, the network resilience loss increases at least linearly with respect to the network 

load.  

To understand network performance upon failure events, we systematically 

investigate traffic-based network reliability. We first adopt a uniform deterministic traffic 

at the network layer, which allows us to focus on the impacts of network topology, failure 

dependency, and failure protection on network reliability and obtain analytical results on 

the network reliabilities of ring, star and mesh-torus networks. We then apply a random 

network layer traffic model with Poisson arrivals to further investigate the effect of 

network layer traffic distributions on network reliability. We study the interaction 

between the network reliability and the connection arrival rate, and obtain asymptotic 

results of network reliability metrics with respect to arrival rate for typical network 

topologies under heavy load regime.   

5.2 Future Research Directions 

5.2.1 Management Information for Inter-Domain Light-Path Assessment 

The problem of light-path assessment is related to wavelength routing. One thought 

resulting from this work is to use aggregated information for wavelength routing when it 

is impractical to flood detailed link state information across the whole network. For 

instance, light-path assessment could be done for each candidate route based on 

aggregated information from each network domain and instantaneous measurements from 

a limited number of links. The optimal route can then be chosen accordingly. Detailed 

relationships need to be derived between light-path assessment and wavelength routing, 

which can be one of the extensions to this work. 
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5.2.2 Resilience of All-Optical Networks under In-Band Crosstalk Attacks 

The cross-layer model of crosstalk attack propagation is developed under stringent 

assumptions. Therefore, one future research direction is to develop more general 

physical-layer models of attack propagation under less stringent conditions. Another 

research direction is to consider the effect of dynamic network resource allocation 

algorithms on attack propagation. Finally, the technique of probabilistic graphical models 

may also apply to other faults/attacks problems in all-optical networks.  

5.2.3 Traffic-Based Network Reliability 

Our investigation of traffic-based reliability focuses on “open-loop” analysis. Thus one 

future direction of research is to further consider the interaction of network traffic and the 

physical failure models. In addition, our investigation of traffic-based network reliability 

is limited to circuit-switched networks. Another future research direction is to extend the 

study to packet-switched networks.  
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APPENDIX A 

PROOF OF THEOREM 2.1 

Proof: Consider the following a posterior probability:  

( ) ( 1 ).f x P X xω= = =      (A.1) 

The Bayes rule decides  

1 ( ) 1/ 2,
0 .

if f x
otherwise

ω
ω
= ≥

 =
 

Therefore,  

| ( )e e X x
X

P P P X x== =∑  

                 ( ) min{ ( ), (1 ( ))}
X

P X x f x f x= = −∑  

     min{ ( ) ( ), ( )(1 ( ))}.
X X

P X x f x P X x f x≤ = = −∑ ∑       (A.2) 

Since 1 ( ) ( ),b
X

P P X x f x= − =∑  we have  

0 min{ ,(1 )}.e b bP P P≤ ≤ −  
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APPENDIX B 

DERIVATION OF THE CORRELATION COEFFICIENT IN (2.26) 

Let 1miW =  if wavelength m is used for an inter-domain call at domain i, 0miW =  

otherwise; Let 1miL =  if wavelength m is used for a local call at the first link of domain i, 

0miL =  otherwise, where 1, 2, , ,m F=  and 1, 2, ,i L= . From the assumptions in 

Section 2.6.1, the following joint probabilities hold for 1, 2, , 1:i L= −  

1 2( 1, 1) [ (1 )];mi m i n l lP W W P P Pρ+= = = + −          (B.1)   
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1 1( 1, 1) .mi m i nP L W Pρ+= = =                       (B.4)  

Then,  
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From (B.1), we have,  
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Similarly, we have  
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From (2.11), we have  

          2 2 2(1 ) [ (1 )].n n l lP P P Pρ ρ ρ= − + + −    (B.10) 

Then 1i iC +  can be simplified as  
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APPENDIX C 

PROOF OF THEOREM 2.2  

Proof: The non-blocking probability of the dependent model satisfies 

[ ( 1 )].adP E f Xω= =  Since 1( ,..., )LX N N=  are jointly Gaussian, we can expand adP  in 

terms of ijρ ’s as follows, 

         *
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ρ =

∂
= + +

∂
                 (C.1)              

where *
adP  is the non-blocking probability of the dependent model when all the inter-

domain calls only last for one subnet ( 1lP = ). Specifically, we have 
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with , ;( )i j ijf π π ρ  being the joint Gaussian p.d.f. of iN and .jN  
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 Simplifying ,  ijq we have,  

( 1) { ( , ,0)( )( )(1 )(1 ) }.
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Using the characteristic functions of Gaussian r.v.’s, we have 

22( ) ln 2 2( 1) ln ,F
ijq L µ σ γγ σ γ− += −                  (C.6)             

Therefore, we have 
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APPENDIX D 

DERIVATION OF (3.7) TO (3.9) 

Let iU  denote the jamming power of the attack flow at node ,
sdi i fV V∀ ∈V . We first 

show that if 1i iU U +≥  for 1 i k≤ < , then 1 1 2 1( | , ..., ) ( | ).i i i iP X X X X P X X+ +=  

Suppose 1i iU U +≥ . Since 1iX = , if ( )i th c nU c l u> ; and 0,iX =  otherwise, it follows that 

1 1 2 2( , ,..., ) 0i iP X x X x X x= = = ≠ , only if  1 2 ... ix x x≥ ≥ ≥ .     (D.1) 

Let 1 max{ : 1&1 }jk j x j i= = ≤ ≤ , which is the largest index of nodes affected by the 

attack among 1 2, ,..., iV V V . Then,   
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Obviously, 1( 0 | 0) 1.i iP X X+ = = =  Therefore, 
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Next we show  1i iU U +≥ , assuming that, when there is no crosstalk attack in the 

network, amplifiers on each fiber operate in the gain clamped regions and make up the 

signal attenuation between the two nodes. From (3.5), we have 

1 , 1( )i i i iU Uτ+ += 1,1 1,1 , 1 ,2 ,2( ( ))i i i i i i il a l Uπ π+ + += .      (D.4) 

1,1 , 1 ,2 ,2 1,1 1i i i i i il a l d d+ + + = ,        (D.5)   

where ,2id  denotes the clamped gain of EDFA at the output side of node iV ; 1,1id +  denotes 

the clamped gain of EDFA at the input side of node 1iV + . Then,  

If ,2 ,( ,2)i i th il U p≤ , 1i iU U+ = ;                        

If ,2 ,( ,2)i i th il U p> , ,2 ,2 ,2( )i i i i il U d Uπ < ,                

which corresponds to the case where the EDFA with subscript ( , 2)i  works at the 

saturation region. Therefore, 

                        1 1,1 1,1 , 1 ,2 ,2i i i i i i i iU l d a d l U+ + + +< .        (D.6) 

It follows that 1i iU U+ < .  

To prove (3.9), it suffices to show that , 1( )i i iUτ + monotonically increases in iU , where 

         1 , 1( )i i i iU Uτ+ += 1,1 1,1 , 1 ,2 ,2( ( ))i i i i i i il a l Uπ π+ + += .     (D.7) 

Since 1,1 , 1, ,i i il a+ +  and ,2il  are constants, to show that , 1( )i i iUτ + monotonically increases 

in iU , it suffices to show that ( )ij inputPπ  monotonically increase in inputP . This can be 

obtained by showing 
( ( ))

0input input

input

P g P
P

∂
>

∂
 for (3.4). This means that: the higher the input 

power at EDFA, the higher the output power, when the EDFA worked at either the 

saturated or the non-saturated region.  
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APPENDIX E 

PROOF OF PROPOSITION 3.1 

Proof: From (3.17), assume ijγ γ≡ , then, 

(1 )

1( ~ )

1( ) (1 ) ( ).
sd sdr rsd ij sd ij

sd iji j

N N

sdrV V
P I N

Z
γ γ∈ ∈

−

∈

∑ ∑
= − ∑∏ R R

R
N

N      (E.1) 

Let 
uv ij

ij uvr
W N

∈
=∑ R

 and ( : ~ )ij i jW V V=W . W  is a vector that represent the 

wavelength usage at each link in the network. We denote a configuration of ( , )N W  with 

non-zero probability as a traffic pattern, i.e., a traffic pattern ( , )N W  satisfies the 

capacity constraints and ( , ) 0.P = = >N n W w  Let , 0,1,...,| |,k k =Τ E  be the set of traffic 

patterns that k  links in the network are used by active connections, with | |E  being the 

number of links in E . Let | |kT  denote the cardinality of kT , then,  
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Using Cauchy-Schwartz Inequality, it can be shown that  
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   ( ( )) 0, 0ξ θ θ θ∂ ∂ > ∀ > .        (E.4) 

Since 0, 0 1,θ γ γ∂ ∂ > ∀ < <  we have 

    0, 0 1.ρ γ γ∂ ∂ > ∀ < <        (E.5) 

Therefore, ρ  increases monotonically in γ .  
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APPENDIX F 

PROOF OF THEOREM 3.1 

Proof: Consider a ring network ( , )V EG  with m  nodes ( 1)m > . The route set 

R consists of the two link-disjoint routes between each pair of nodes in the network. 

Suppose the crosstalk attack is started on flow ijf  between node  iV  and jV , 

, 1, 2,..., , .i j m i j= <  The set of nodes traversed by flow ijf  is 1{ , ,..., }
ijf i i jV V V+=V . Then 

at most two nodes, node 1iV −  and node 1jV + , are neighbors of nodes in 
ijfV , but are not in 

ijfV  themselves. Without loss of generality, we focus on the conditional wavelength 

usage at link between jV  and 1jV + .  

To show that 
ijfM  monotonically increases in ρ  for the ring network, from (3.25), it 

suffices to show that  
1
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f uv
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 monotonically increase with 

parameter γ  in (E.1) for the ring network.   

Let 
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=∑ R

 and
ih ij
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H N
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. Then for the ring network, denote 

1

[ ]
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uv j j
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E N
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  as 1( , , )j j ijw m f ring+ ;  denote 
1

[ ]
ij

jh j j

f jh
r

E N
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∑
R

 as 1( , , )j j ijm f ringϖ + , 

where m  is the number of nodes in the ring network.  

Let 12 ( , )w l bus  denote the mean value of 12W  in an l -node network of bus topology 

with a route set that includes the route between each pair of nodes, where subscript l  

denotes the number of nodes in the bus network. Since, 

1( , , )j j ijw m f ring+ = 1( , , )j j ijm f ringϖ + = 12 ( , )w m j i bus− + ,      (F.1) 
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it is sufficient to show that 12 ( , ), 1,w l bus l∀ >  increases monotonically with γ .  

As in Appendix E, let (1 )θ γ γ= −  and ( : ~ )ij i jW V V=W . In addition, a 

configuration of ( , )N W  with non-zero probability is denoted as a traffic pattern. Let 

( )sum W  denote the summation of all the components in W , then from (E.1),  

( )
2~

( , ) ( ),
uv iji j

sum
ij uvrV V

P I W Nθ
∈

∝ =∑∏W
R

N W                  (F.2) 

where 2 ( ) 1I A =  if A is true; and 2 ( ) 0I A = , otherwise.  If ( , )N W  is a traffic pattern, 

(F.2) can be simplified as ( )( , ) sumP θ∝ WN W  .              

Let ( ),l busT  denote the set of all traffic patterns on the bus network with l  nodes 

( 1l > ). By counting all possible ways of using link 1 2A A , we have for the l -node bus 

network, 

( 1), ( 2),

( 1), ( 2),

( ) ( )2
12( 1) ... .l bus l bus

l bus l bus

sum sum lP W θ θ θ θ θ− −

− −

= ∝ + + +∑ ∑W W

T T

        (F.3) 

( 1),

( 1),

( )
12( 0) k bus

l bus

sumP W θ −

−

= ∝ ∑ W

T
.           (F.4)      

Let ( ),

( ),

( )( ) , 1l bus

l bus

sum
lf lθ θ= ∀ >∑ W

T
, and 1( ) 1f θ = . We have,  

2
12 1 2( 1) ( ) ( ) ... l

l lP W f fθ θ θ θ θ− −= ∝ + + + .  

12 1( 0) ( )lP W f θ−= ∝ .  

Furthermore, we have the following recursive equations,  

1( ) 1;f θ =  

2 ( ) 1 ;f θ θ= +  

1 2( ) (1 2 ) ( ) ( ),i i if f fθ θ θ θ θ− −= + −  3, 4,..., .i l=          (F.5)  

Then,  
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12
1

1 2

, 2,
1( , ) ( )1 , 2.

(1 2 ) ( ) ( )
l

l l

if l
w l bus f if l

f f

θ
θ

θ
θ θ θ θ

−

− −

 = += 
 − >

+ −

      (F.6) 

Obviously, 12 ( , ) 0,w l bus
θ

∂
>

∂
for 2l = . 

 If 2,l >   

' ' '
1 1 2 1 212

2
1 2

2 ( ) ( )( , )
((1 2 ) ( ) ( ))

l l l l l

l l

f f f f fw l bus
f f

θ θ
θ θ θ θ θ

− − − − −

− −

+ −∂
=

∂ + −
.       (F.7) 

From (F.5), 

        ' ' 2 ' '
1 1 1 1 2 1 2 1 22 ( )l l l l l l l l l l lf f f f f f f f f f fθ− − − − − − − − −− = − + − .                 (F.8) 

Since ' ' 2
2 1 2 1 2 4 1 0f f f f θ θ− = + + > , through Mathematical induction, from (F.8), we 

have ' '
1 1 0, 1l l l lf f f f l− −− > ∀ > , and 12 ( , ) 0, 1w l bus l

θ
∂

> ∀ >
∂

.      

Since (1 ),θ γ γ= −  and 0 1θ< < , it follows that  

12 ( , ) 0, 1w l bus l
γ

∂
> ∀ >

∂
.        (F.9) 

From Proposition 3.1, 
ijfM  monotonically increases in ρ  for the ring network.  

The upper and lower bound of 
sdfM  in (3.26) is obtained by showing that  

      1( , , )j j ijw m f ringγ ρ+≤ ≤ .                 (F.10) 

Here we first show that for arbitrary network topologies ( , )G V E , if ijr ∈R , i.e., there is 

one route from node  iV   to jV  in R , where ,
sdi fV ∈V  

sdj fV ∉V , and ~i jV V ,   then,  

[ ]
sdf ijE W γ≥ ,       (F.11) 

Obviously, the ring network considered here satisfies the condition in (F.11). 
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 Let 1 { : ~ , }ij i j sd ije V V r= ∉E R . 1E  denotes the set of links that are not traversed by 

flow sdf : . Let 1R  be the set of routes in R  that only traverse links in 1E . Let 

2 1 \{ }ije=E E , and 2R  be the set of routes in R  that only traverse links in 2E . Clearly, 

2 1 ,⊂ ⊂R R R if ijr ∈R . Let 
1 1 1

{ ( , )}=E E ET N W  be the set of traffic patterns restricted to 

a network formed by link set 1E  with route set 1R . Let 
2 2 2

{ ( , )}=E E ET N W  be the set of 

traffic patterns restricted to a network formed by link set 2E  with route set 2R .  Then,  

1 2

1 2

( ) ( )[ ] ,
(1 ) ( ) ( )sdf ij

Z ZE W
Z Z

θ θ θ
θ θ θ

+
=

+ +
     (F.12) 

where  

2

2

( )
1( ) sumZ θ θ=∑ E

E

W

T
 and 1

1

( )
2 1( ) (1 ) ( )sumZ Zθ θ θ θ= − +∑ E

E

W

T
.  

In addition, 2 ( ) 0Z θ > if there is a route that traverses link ij  and one or more links in 

set 2E ; 2 ( ) 0Z θ = , otherwise. Since 1( ) 0,Z θ >  we have  

[ ]
1sdf ijE W θ γ

θ
≥ =

+
.       (F.13) 

To show that 1( , , )j j ijw m f ring ρ+ ≤ , from (F.1), it suffices to show that   

12 ( 1, )w m j bus ρ− + ≤ ,                    (F.14)  

which can be proved through the following two lemmas. 

Lemma 3.1 12 12( , ) ( 1, ), 1.w l bus w l bus l≤ + ∀ >  

Lemma 3.2  12 ( , ) , 1.w m bus mρ≤ ∀ >  

Lemma 3.1 and 3.2 are proved using induction similarly as in the proof of (F.9). 

Detailed proof is omitted here. Using (F.10), we can obtain (3.26) from (3.25). 
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APPENDIX G 

PROOF OF THEOREM 3.2 

Proof: For a network of star topology with m  nodes, 2,m >  and a route set R  that 

consists of the routes between each pair of nodes. Let node mV  be the hub node of the star 

network. Let 
uv ij

ij uvr
W N

∈
=∑ R

 and
ih ij

ij ihr
H N

∈
=∑ R

. We first show that, when the attack 

is started on flow 1mf ,  1 1( , , ) ( , , )mi m mi mw m f star m f starϖ+ , 2,..., 1,i m= −  increases 

monotonically with γ , where  

11( , , ) [ ],
m

uv mi

mi m f uv
r

w m f star E N
∈

= ∑
R

 

and 

11( , , ) [ ].
m

mh mi

mi m f mh
r

m f star E Nϖ
∈

= ∑
R

 

Let ( ),l starT denote the set of all traffic patterns on the star network with l  nodes. By 

counting all possible ways of using link mi , it can be found that, for the l -node star 

network, 

( 1), ( 2),

( 1), ( 2),

( ) ( )2
1( 1| ) ( 2) ;m star m star

m star m star

sum sum
mi f mP W R f mθ θ θ θ− −

− −

= = ∝ + −∑ ∑W W

T T
         (G.1) 

( 1),

( 1),

( )
1( 0 | ) m star

m star

sum
mi f mP W R f θ −

−

= = ∝ ∑ W

T
;                        (G.2)

( 1),

( 1),

( )
1( 1| ) m star

m star

sum
mi f mP H R f θ θ −

−

= = ∝ ∑ W

T
;                       (G.3) 

( 1), ( 2),

( 1), ( 2),

( ) ( )2
1( 0 | ) ( 2)m star m star

m star m star

sum sum
mi f mP H R f mθ θ θ− −

− −

= = ∝ + −∑ ∑W W

T T
.         (G.4) 
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Let 1 1t =  and ( ),

( ),

( )( ) l star

l star

sum
lt θ θ= ∑ W

T
, 1l > . Then, we have the following recursive 

equations, 

2 1 ;t θ= +  

2
1 2(1 ) ( 2)l l kt t l tθ θ− −= + + − , 2l∀ > .  

Therefore, from (G.1)- (G.4),  

 1
1 1 2

1 2

( 1)( , , ) ( , , ) 1 .
(1 ) ( 2)

m
mi m mi m

m m

tw m f star m f star
t m t
θϖ

θ θ
−

− −

−
+ = +

+ + −
     (G.5) 

Through induction similarly as in the proof of (F.9), we have 

1 1{ ( , , ) ( , , )} 0mi m mi mw m f star m f starϖ
γ

∂ +
>

∂
.  

Similarly, when the attack is started from flow
1 2A Af , it can be shown that 

12 12{ ( , , ) ( , , )} 0mi miw m f star m f starϖ
γ

∂ +
>

∂
.  

Thus, from (3.25), it follows that 
ijfM  monotonically increases in ρ  for the star 

network.  

The upper and lower bound of 
sdfM  in (3.28) and (3.29) is obtained by showing that   

    1 1( , , ) ( , , ) 2mi m mi mw m f star m f starγ ϖ ρ< + ≤ ,     (G.6) 

and  

   12 12( , , ) ( , , ) 2 .mi miw m f star m f starγ ϖ ρ< + ≤      (G.7) 

Since  

1 1( , , ) ( , , )mi m mi mm f star w m f starϖ ≤ ,       (G.8) 

and  



 144

12 12( , , ) ( , , ),mi mim f star w m f starϖ ≤       (G.9) 

(G.6) and (G.7) can be obtained by showing 

        1( , , )mi mw m f starγ ρ≤ ≤ ,     (G.10) 

         12( , , )miw m f starγ ρ≤ ≤ .     (G.11) 

The proof of (G.11) is similar to that of  (F.10), and is omitted. 
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APPENDIX H 

PROOF OF THEOREM 3.3 AND 3.4 

H. 1 Proof of Theorem 3.3 

We first derive 1 1( 1)i ia P N += = . Through solving the difference equation in (F.5), it can 

be found that  

         
2 2 2 2

1 1

2 2

1 4 1 1 2 1 4 1 4 1 1 2 1 4( ) ( ) .
2 22 1 4 2 1 4

m m
mf

θ θ θ θ θ θ
θ θ

− −+ + + + + + − + − +
= +

+ +
    (H.1) 

Let ( ),l ringT  be the set of all traffic patterns on a ring network with l  nodes and a route set 

that includes all possible link-disjoint shortest paths between each pair of nodes in the 

network. Let ( ),

( ),

( )m ring

m ring

sum
mg θ= ∑ W

T
By counting different ways of using one single link in 

the ring network, we have  

2 1
1 22 ... ( 1) .k

k k k kg f f f k fθ θ θ −
−= + + + + −       (H.2) 

Therefore, 
1 1 1( 1)

i

i
i A A k i ka P N f gθ

+ − += = = . 

Using the lower and upper bound of 
sdfM for the ring network in (3.26), we obtain 

Theorem 3.3.  

H.2 Proof of Theorem 3.4 

From (G.1)-(G.4), we have 

1 1( 1) ;m k kP N t tθ −= =
1 2

2
2( 1) ;A A m mP N t tθ −= = 3k∀ > .    (H.3) 

Using the lower and upper bound of 
sdfM  for the star network in (3.28) and (3.29). We 

can obtain Theorem 3.4.  
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APPENDIX I 

PROOF OF THEOREM 3.5 

Proof: From (3.2),  

( 1) 2 | |
sdsd

f sdf
M M P N= =∑ R  

( 1)
max{ }

2 | |
[ ( )] max{ },

| |

sd

sd
sd

sd
sd

sdf
ff

ff

P N
M

sum M

=
≤

=

∑
R
N

R
E

                            (I.1) 

where ( : )sd sdN r= ∈N R , and [ ]E  stands for expectation.  

[ ( )] [ ( ) | ] ( )sum sum P=∑W
N N W WE E ,  

where ( , ~ )ijW i j=W .  

Since [ ( ) | ] [ ( ) | ]sum sum≤N W W WE E ,  

( ( )) ( ( ) | ) ( ) ( ( )).sum sum P sum≤ =∑W
N W W W WE E E                 (I.2) 

Since [ ( )] | |,sum ρ=W EE from (I.2), it follows that 

     ( ( )) | |sum ρ≤N EE                   (I.3) 

 and  

1 max{ } | |
| | sd

sd
ff

M M ρ≤ E
R

.                  (I.4) 
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APPENDIX J 
 

PROOF OF THEOREM 4.3 

Proof: Consider a route between node m  and n  with j  links. We index the nodes 

along the route as node 0, 1, 2, …, j and denote the status of links on the route as 

1, 2,,mn mnZ Z , ,,..., j mnZ . Furthermore, we denote type A and B events affecting route mnr  as 

1, 2, ,, ,...,mn mn j mnX X X , and 0, 1, 2, ,, , ,...,mn mn mn j mnY Y Y Y , where the subscripts mn  are omitted in 

the rest of Appendix J. The proof of Theorem 4.3 is obtained by considering all possible 

combinations of events that may not cause the connection mn  to be lost when there is no 

failure protection.  

1 0

1 0 1 0
,..., , ,...,

( 0) ( 0 | ,..., , ,..., ) ( ,..., , ,..., )
j j

mn mn j j j j
X X Y Y

P S P S X X Y Y P X X Y Y= = =∑ .   (J.1) 

Since 1 2( 0) ( 0, 0,..., 0)mn jP S P Z Z Z= = = = = , it follows that 

0

1
2

1 0 1
1 1

( 0 | ,..., , , ..., ) (1 ) (1 ) (1 ) (1 ) .j i l

j j
YY X Y

mn j j b b a b
i l

P S X X Y Y Y p P p p
−

= =

= = − − − −∏ ∏          (J.2)  

As events 1 2, ,..., jA A A , and 0 1 2, , ,..., jB B B B  are independent, we have 

1 2 0 1
1 0

( , ,..., , , ..., ) ( ) ( )
j j

j j i l
i l

P X X X Y Y Y P X P Y
= =

=∏ ∏ .        (J.3) 

Thus, from (J.2) and (J.3),  

0

0

1
2

0
1 1

( 0)

{ (1 ) ( )} { (1 ) ( )} (1 ) ( ) (1 ) ( ).i l

i l j

mn

j j
X Y Y Yj

a i b l b b j
X Y Y Yi l

P S

p P X p P Y P P Y P P Y
−

= =

=

= − − − −∑ ∑ ∑ ∑∏ ∏
 

  (J.4) 

Since ( 1)iP X a= =  and ( 0) 1iP X a= = − ; ( 1)lP Y b= = and ( 0) 1lP Y b= = − , from (J.4), 
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2 2 1( 0) (1 ) (1 ) (1 (2 ))j j
mn a b b bP S ap bP b p P −= = − − − − .        (J.5) 

Since 2( 0) (1 )(1 )i a bP Z aP bP= = − − , it follows that 

2 2
1

2 2 2 1
1 2

1 ( 0)
1 (1 ) (1 2 ) 1.

1 ( 0, 0,..., 0) 1 (1 ) (1 2 )(1 2 )

j

j j j
l a b b

j j
j a b b b b

P Z
ap bp b p

P Z Z Z ap bp b p bp bp
=

−

− =
− − − +

= −
− = = = − − − + − +

∏
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APPENDIX K 

PROOF OF THEOREM 4.4 

Proof: We let the number of links on the primary route and the backup route between 

node m  and n  be 1j  and 2j  respectively. Without loss of generally we assume that 

1 2j j≤ . The proof of Theorem 4.4 is obtained by considering all possible combination of 

events that the connection on mn  are not lost due to failures. Specifically, we denote the 

following binary random variables  

(1) 11E : 11 1E =  if there is a failure on the first link of the primary route; 11 0E =  

otherwise. 

(2) 12E : 12 1E =  if there is a failure on the first link of the backup route; 12 0E =  

otherwise. 

(3) 21E : 21 1E =  if there is a failure on the last link of the primary route; 21 0E =  otherwise. 

(4) 22E : 22 1E =  if there is a failure on the last link of the backup route; 22 0E =  

otherwise. 

(5) 1E :  1 1E =  if there is one or more failures on one or more links of the primary route 

that are neither the first link nor the last link; 1 0E =  otherwise.  

(6) 2E :  2 1E =  if there is one or more failures on one or more links of the backup route 

that are neither the first link nor the last link; 2 0E =  otherwise.  

Therefore, let 2(2 )b bb p pσ = − , then, 

(1) If 1 1j =  and 2 2j = , the connection is not lost due to failures upon the following 

events: 
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(i) 2
11( 0) (1 )(1 )a bP E ap bp= = − − . 

(ii) 2 2 2
11 12 22( 1, 0, 0) (1 )(1 ) {(1 ) (1 )(1 ) }.a b aP E E E ap bp apσ σ= = = = − − − − − −  

Thus,  

11 11 12 22( 0) ( 0) ( 1, 0, 0)mnP S P E P E E E= = = + = = = .  

In particular,  

2( 0) (1 )(1 ) (1 (1 )(1 ) )mn a a aP S ap b ap b ap= = − − + − −  if 1bp = .       (K.1) 

In addition, if 2 1a  and 1b , 

2 2( 0) 1 2 2 .mn a aP S abp b a p= = − − −       (K.2) 

(2) If 1 1j =  and 2 2j > , we need to consider 11 12 22 2, , ,E E E E .  

(i) 2
11( 0) (1 )(1 )a bP E ap bp= = − − . 

      (ii) 11 12 2 22( 1, 0, 0, 0)P E E E E= = = =   
2 2 1 2 2(1 ) (1 ) {(1 ) (1 )(1 ) }j j

a b aap bp apσ σ−= − − − − − − . 

Thus,  

11 11 12 22( 0) ( 0) ( 1, 0, 0)mnP S P E P E E E= = = + = = = .  

In particular,  

2 21 12( 0) (1 )(1 ) (1 (1 ) (1 ) )j j
mn a a aP S ap b ap b ap− −= = − − + − −  if 1bp = .     (K.3)     

In addition, if 2 1a  and 1b , 

2 2
2 2( 0) 1 2 ( 1) .mn a aP S b j abp j a p= = − − − −       (K.4) 

(3) If 1 2j = and 2 2j = , we need to consider 11 12 21, 22, , .E E E E  

(i) 2 2
11 21( 0, 0) (1 ) (1 ) (1 ).a bP E E ap bp σ= = = − − −  

(ii) 3 2 2 2
11 21 12 22( 0, 1, 0, 0) (1 ) (1 ) {(1 ) (1 )(1 ) }.a b aP E E E E ap bp apσ σ= = = = = − − − − − −  
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(iii) 11 21 12 22( 1, 0, 0, 0)P E E E E= = = =  
3 2 2 2(1 ) (1 ) {(1 ) (1 )(1 ) }.a b aap bp apσ σ= − − − − − −  

(iv) 2
11 21 12 22( 1, 1, 0, 0) (1 ) (1 )aP E E E E ap σ= = = = = − −  

 2 2{ [(1 ) (1 )(1 )(1 )] (1 )[(1 ) (1 )(1 )] }.b b a b ab bp p ap b bp apσ σ× − − − − − = − − − − −  

In particular,  

2 3 2 2( 0) (1 ) (1 ) (1 2(1 )(1 ) (1 ))mn a a a aP S ap b ap b ap b a p b= = − − + − − + + −  if 1bp = .    
      (K.5) 

In addition, if 2 1a  and 1b , 

2 2( 0) 1 2 4 4mn a aP S b abp a p= = − − − .       (K.6)  

(4) If 1 2j =  and 2 2j > , we need to consider 11 12 21, 22 2, , ,E E E E E ,  

(i) 2 2
11 21( 0, 0) (1 ) (1 ) (1 ).a bP E E ap bp σ= = = − − −  

(ii) 11 21 12 22 2( 0, 1, 0, 0, 0)P E E E E E= = = = =  
 2 21 2 2(1 ) (1 ) {(1 ) (1 )(1 ) }j j

a b aap bp apσ σ+= − − − − − − . 

(iii) 11 21 12 22 2( 1, 0, 0, 0, 0)P E E E E E= = = = =  
  2 21 2 2(1 ) (1 ) {(1 ) (1 )(1 ) }j j

a b aap bp apσ σ+= − − − − − − . 

(iv) 11 21 12 22 2( 1, 1, 0, 0, 0)P E E E E E= = = = =  

 
2 2 1 2

2

(1 ) (1 ) { [(1 ) (1 )(1 )(1 )]

(1 )[(1 ) (1 )(1 )] }.

j j
a b b a

b a

ap b bp p ap

b bp ap

σ σ

σ

−= − − − − − − −

+ − − − − −
 

In particular,  

2 2 1 2 2( 0) (1 ) (1 ) (1 2(1 )(1 ) (1 ))j j
mn a a a aP S ap b ap b ap b a p b+= = − − + − − + + − . if 1bp = .    

      (K.7) 

In addition, if 2 1a  and 1b , 

2 2
2 2( 0) 1 2 (3 2) 2mn a aP S b j abp j a p= = − − − − .       (K.8)  

(5) If 1 22, 2,j j> >   
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(i) 11 12 1 21( 0, 1, 0, 0)P E E E E= = = =  
    2 2 1 2(1 ) (1 ) (1 ) (1 (1 )(1 )).j j

a b aap bp apσ σ−= − − − − − −       (K.9) 

(ii) 11 12 2 22( 1, 0, 0, 0)P E E E E= = = =  
     1 1 1 2(1 ) (1 ) (1 ) (1 (1 )(1 )).j j

a b aap bp apσ σ−= − − − − − −                      (K.10) 

(iii) 11 12 1 21 22( 0, 0, 0, 0, 1)P E E E E E= = = = =  
     1 11 2 2 2(1 ) (1 (2 )) (1 ) (1 (1 )(1 (2 ))).j j

a b b a bap b p p bp ap b p p+= − − − − − − − −  (K.11) 

(iv) 11 12 2 21 22( 0, 0, 0, 1, 0)P E E E E E= = = = =  
      2 21 2 2 2(1 ) (1 (2 )) (1 ) (1 (1 )(1 (2 ))).j j

a b b a bap b p p bp ap b p p+= − − − − − − − −  (K.12) 

(v) 11 12 1 2 21 22( 0, 0, 0, 0, 0)P E E E E E E= = = = =  

      
1 1 2 2

1 2 1 2

2 1 2 12 2 2

2

(1 ) {(1 ) (1 (2 )) (1 ) (1 (2 )) }

(1 ) (1 (2 ))

j j j j
b a b b a b b

j j j j
a b

bp ap b p p ap b p p

ap b p p

+ + + +

+ +

= − − − − + − − −

− − − −
.    

    (K.13) 

Add up (K.9) to (K.13), we can obtain ( 0)mnP S = . In addition, if 1,bp = 2 1a  and 

1b ,  

2 2
1 2 1 2 1 2( 0) 1 2 (2 )mn a aP S b j j j j abp j j a p= = − − − − − .    (K.14)  

Thus, combining (K.2), (K.4), (K.6), (K.8), and (K.14), we have 

2 2
1 2 1 2 1 2( 0) 1 2 (2 )mn a aP S b j j j j abp j j a p= = − − − − − , for 1 2 11, ,j j j≥ >  

if 1,bp = 2 1a  and 1b .  



 153

APPENDIX L 

PROOF OF THEOREM 4.5 

Proof:  

0
( , ) ( )

! !

C iC
ring ring

ring ring
i

B Erlang C
C i
ρ ρ

ρ
=

= = ∑ . From [81],  

1(1 ) (1 )ring ring ring ring
ring

B C B
B

ρ ρ− < < − + .      (L.1) 

Thus,  

1
2

1

1
2

2

1

1(1 ) , ,

1(1 ) (1 ) , .
4

k

j
ring

j ring

k
k

j
ring ring

j ring

jv B k odd
B

C
vjv B B k even

B

−

=

−

=


 − += 

 − + − +


∑

∑

      (L.2) 

Therefore, 

11
1ring

CB
v
−

= −
+

, as .v →∞  

2

( 1) ( ),ring
C pk C p o

v
= − +Z as .v →∞  

ring p=k , as .v →∞  
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APPENDIX M 

PROOF OF THEOREM 4.8 

Proof: We show that 0B
v

∂
>

∂
 for the ring networks with an odd number of nodes. 

The proof of 0B
v

∂
>

∂
 for ring networks with an even number of nodes, star, mesh-torus 

networks can be obtained using a similar approach. The main idea of the proof is based 
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It follows that,  
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APPENDIX N 

PROOF OF THEOREM 4.9 

Proof: We show that 0
v
∂

>
∂
k  for the ring networks with an odd number of nodes. 

The proof of 0
v
∂

>
∂
k  for ring networks with an even number of nodes, star, mesh-torus 

networks can be obtained in a similar way. The main idea of the proof is based on 

mathematical induction.  
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