416 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Face recognition with variation in pose angle using face graphs

    Get PDF
    Automatic recognition of human faces is an important and growing field. Several real-world applications have started to rely on the accuracy of computer-based face recognition systems for their own performance in terms of efficiency, safety and reliability. Many algorithms have already been established in terms of frontal face recognition, where the person to be recognized is looking directly at the camera. More recently, methods for non-frontal face recognition have been proposed. These include work related to 3D rigid face models, component-based 3D morphable models, eigenfaces and elastic bunched graph matching (EBGM). This thesis extends recognition algorithm based on EBGM to establish better face recognition across pose variation. Facial features are localized using active shape models and face recognition is based on elastic bunch graph matching. Recognition is performed by comparing feature descriptors based on Gabor wavelets for various orientations and scales, called jets. Two novel recognition schemes, feature weighting and jet-mapping, are proposed for improved performance of the base scheme, and a combination of the two schemes is considered as a further enhancement. The improvements in performance have been evaluated by studying recognition rates on an existing database and comparing the results with the base recognition scheme over which the schemes have been developed. Improvement of up to 20% has been observed for face pose variation as large as 45°

    Performance of Unsupervised Change Detection Method Based on PSO and K-means Clustering for SAR Images

    Get PDF
    This paper presents unsupervised change detection method to produce more accurate change map from imbalanced SAR images for the same land cover. This method is based on PSO algorithm for image segmentation to layers which classify by Gabor Wavelet filter and then K-means clustering to generate new change map. Tests are confirming the effectiveness and efficiency by comparison obtained results with the results of the other methods. Integration of PSO with Gabor filter and k-means will providing more and more accuracy to detect a least changing in objects and terrain of SAR image, as well as reduce the processing time

    Performance of Unsupervised Change Detection Method Based on PSO and K-means Clustering for SAR Images

    Get PDF
    This paper presents unsupervised change detection method to produce more accurate change map from imbalanced SAR images for the same land cover. This method is based on PSO algorithm for image segmentation to layers which classify by Gabor Wavelet filter and then K-means clustering to generate new change map. Tests are confirming the effectiveness and efficiency by comparison obtained results with the results of the other methods. Integration of PSO with Gabor filter and k-means will providing more and more accuracy to detect a least changing in objects and terrain of SAR image, as well as reduce the processing time

    Automatic face recognition using stereo images

    Get PDF
    Face recognition is an important pattern recognition problem, in the study of both natural and artificial learning problems. Compaxed to other biometrics, it is non-intrusive, non- invasive and requires no paxticipation from the subjects. As a result, it has many applications varying from human-computer-interaction to access control and law-enforcement to crowd surveillance. In typical optical image based face recognition systems, the systematic vaxiability arising from representing the three-dimensional (3D) shape of a face by a two-dimensional (21)) illumination intensity matrix is treated as random vaxiability. Multiple examples of the face displaying vaxying pose and expressions axe captured in different imaging conditions. The imaging environment, pose and expressions are strictly controlled and the images undergo rigorous normalisation and pre-processing. This may be implemented in a paxtially or a fully automated system. Although these systems report high classification accuracies (>90%), they lack versatility and tend to fail when deployed outside laboratory conditions. Recently, more sophisticated 3D face recognition systems haxnessing the depth information have emerged. These systems usually employ specialist equipment such as laser scanners and structured light projectors. Although more accurate than 2D optical image based recognition, these systems are equally difficult to implement in a non-co-operative environment. Existing face recognition systems, both 2D and 3D, detract from the main advantages of face recognition and fail to fully exploit its non-intrusive capacity. This is either because they rely too much on subject co-operation, which is not always available, or because they cannot cope with noisy data. The main objective of this work was to investigate the role of depth information in face recognition in a noisy environment. A stereo-based system, inspired by the human binocular vision, was devised using a pair of manually calibrated digital off-the-shelf cameras in a stereo setup to compute depth information. Depth values extracted from 2D intensity images using stereoscopy are extremely noisy, and as a result this approach for face recognition is rare. This was cofirmed by the results of our experimental work. Noise in the set of correspondences, camera calibration and triangulation led to inaccurate depth reconstruction, which in turn led to poor classifier accuracy for both 3D surface matching and 211) 2 depth maps. Recognition experiments axe performed on the Sheffield Dataset, consisting 692 images of 22 individuals with varying pose, illumination and expressions
    corecore