16,373 research outputs found

    Lexical Adaptation of Link Grammar to the Biomedical Sublanguage: a Comparative Evaluation of Three Approaches

    Get PDF
    We study the adaptation of Link Grammar Parser to the biomedical sublanguage with a focus on domain terms not found in a general parser lexicon. Using two biomedical corpora, we implement and evaluate three approaches to addressing unknown words: automatic lexicon expansion, the use of morphological clues, and disambiguation using a part-of-speech tagger. We evaluate each approach separately for its effect on parsing performance and consider combinations of these approaches. In addition to a 45% increase in parsing efficiency, we find that the best approach, incorporating information from a domain part-of-speech tagger, offers a statistically signicant 10% relative decrease in error. The adapted parser is available under an open-source license at http://www.it.utu.fi/biolg

    Automatic evaluation of generation and parsing for machine translation with automatically acquired transfer rules

    Get PDF
    This paper presents a new method of evaluation for generation and parsing components of transfer-based MT systems where the transfer rules have been automatically acquired from parsed sentence-aligned bitext corpora. The method provides a means of quantifying the upper bound imposed on the MT system by the quality of the parsing and generation technologies for the target language. We include experiments to calculate this upper bound for both handcrafted and automatically induced parsing and generation technologies currently in use by transfer-based MT systems

    Learning to select data for transfer learning with Bayesian Optimization

    Full text link
    Domain similarity measures can be used to gauge adaptability and select suitable data for transfer learning, but existing approaches define ad hoc measures that are deemed suitable for respective tasks. Inspired by work on curriculum learning, we propose to \emph{learn} data selection measures using Bayesian Optimization and evaluate them across models, domains and tasks. Our learned measures outperform existing domain similarity measures significantly on three tasks: sentiment analysis, part-of-speech tagging, and parsing. We show the importance of complementing similarity with diversity, and that learned measures are -- to some degree -- transferable across models, domains, and even tasks.Comment: EMNLP 2017. Code available at: https://github.com/sebastianruder/learn-to-select-dat

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    Robustness issues in a data-driven spoken language understanding system

    Get PDF
    Robustness is a key requirement in spoken language understanding (SLU) systems. Human speech is often ungrammatical and ill-formed, and there will frequently be a mismatch between training and test data. This paper discusses robustness and adaptation issues in a statistically-based SLU system which is entirely data-driven. To test robustness, the system has been tested on data from the Air Travel Information Service (ATIS) domain which has been artificially corrupted with varying levels of additive noise. Although the speech recognition performance degraded steadily, the system did not fail catastrophically. Indeed, the rate at which the end-to-end performance of the complete system degraded was significantly slower than that of the actual recognition component. In a second set of experiments, the ability to rapidly adapt the core understanding component of the system to a different application within the same broad domain has been tested. Using only a small amount of training data, experiments have shown that a semantic parser based on the Hidden Vector State (HVS) model originally trained on the ATIS corpus can be straightforwardly adapted to the somewhat different DARPA Communicator task using standard adaptation algorithms. The paper concludes by suggesting that the results presented provide initial support to the claim that an SLU system which is statistically-based and trained entirely from data is intrinsically robust and can be readily adapted to new applications

    Task Driven Generative Modeling for Unsupervised Domain Adaptation: Application to X-ray Image Segmentation

    Full text link
    Automatic parsing of anatomical objects in X-ray images is critical to many clinical applications in particular towards image-guided invention and workflow automation. Existing deep network models require a large amount of labeled data. However, obtaining accurate pixel-wise labeling in X-ray images relies heavily on skilled clinicians due to the large overlaps of anatomy and the complex texture patterns. On the other hand, organs in 3D CT scans preserve clearer structures as well as sharper boundaries and thus can be easily delineated. In this paper, we propose a novel model framework for learning automatic X-ray image parsing from labeled CT scans. Specifically, a Dense Image-to-Image network (DI2I) for multi-organ segmentation is first trained on X-ray like Digitally Reconstructed Radiographs (DRRs) rendered from 3D CT volumes. Then we introduce a Task Driven Generative Adversarial Network (TD-GAN) architecture to achieve simultaneous style transfer and parsing for unseen real X-ray images. TD-GAN consists of a modified cycle-GAN substructure for pixel-to-pixel translation between DRRs and X-ray images and an added module leveraging the pre-trained DI2I to enforce segmentation consistency. The TD-GAN framework is general and can be easily adapted to other learning tasks. In the numerical experiments, we validate the proposed model on 815 DRRs and 153 topograms. While the vanilla DI2I without any adaptation fails completely on segmenting the topograms, the proposed model does not require any topogram labels and is able to provide a promising average dice of 85% which achieves the same level accuracy of supervised training (88%)

    Hybrid language processing in the Spoken Language Translator

    Full text link
    The paper presents an overview of the Spoken Language Translator (SLT) system's hybrid language-processing architecture, focussing on the way in which rule-based and statistical methods are combined to achieve robust and efficient performance within a linguistically motivated framework. In general, we argue that rules are desirable in order to encode domain-independent linguistic constraints and achieve high-quality grammatical output, while corpus-derived statistics are needed if systems are to be efficient and robust; further, that hybrid architectures are superior from the point of view of portability to architectures which only make use of one type of information. We address the topics of ``multi-engine'' strategies for robust translation; robust bottom-up parsing using pruning and grammar specialization; rational development of linguistic rule-sets using balanced domain corpora; and efficient supervised training by interactive disambiguation. All work described is fully implemented in the current version of the SLT-2 system.Comment: 4 pages, uses icassp97.sty; to appear in ICASSP-97; see http://www.cam.sri.com for related materia
    corecore