2,619 research outputs found

    Automatic Document Image Binarization using Bayesian Optimization

    Full text link
    Document image binarization is often a challenging task due to various forms of degradation. Although there exist several binarization techniques in literature, the binarized image is typically sensitive to control parameter settings of the employed technique. This paper presents an automatic document image binarization algorithm to segment the text from heavily degraded document images. The proposed technique uses a two band-pass filtering approach for background noise removal, and Bayesian optimization for automatic hyperparameter selection for optimal results. The effectiveness of the proposed binarization technique is empirically demonstrated on the Document Image Binarization Competition (DIBCO) and the Handwritten Document Image Binarization Competition (H-DIBCO) datasets

    Learning Surrogate Models of Document Image Quality Metrics for Automated Document Image Processing

    Full text link
    Computation of document image quality metrics often depends upon the availability of a ground truth image corresponding to the document. This limits the applicability of quality metrics in applications such as hyperparameter optimization of image processing algorithms that operate on-the-fly on unseen documents. This work proposes the use of surrogate models to learn the behavior of a given document quality metric on existing datasets where ground truth images are available. The trained surrogate model can later be used to predict the metric value on previously unseen document images without requiring access to ground truth images. The surrogate model is empirically evaluated on the Document Image Binarization Competition (DIBCO) and the Handwritten Document Image Binarization Competition (H-DIBCO) datasets

    Unsupervised ensemble of experts (EoE) framework for automatic binarization of document images

    Full text link
    In recent years, a large number of binarization methods have been developed, with varying performance generalization and strength against different benchmarks. In this work, to leverage on these methods, an ensemble of experts (EoE) framework is introduced, to efficiently combine the outputs of various methods. The proposed framework offers a new selection process of the binarization methods, which are actually the experts in the ensemble, by introducing three concepts: confidentness, endorsement and schools of experts. The framework, which is highly objective, is built based on two general principles: (i) consolidation of saturated opinions and (ii) identification of schools of experts. After building the endorsement graph of the ensemble for an input document image based on the confidentness of the experts, the saturated opinions are consolidated, and then the schools of experts are identified by thresholding the consolidated endorsement graph. A variation of the framework, in which no selection is made, is also introduced that combines the outputs of all experts using endorsement-dependent weights. The EoE framework is evaluated on the set of participating methods in the H-DIBCO'12 contest and also on an ensemble generated from various instances of grid-based Sauvola method with promising performance.Comment: 6-page version, Accepted to be presented in ICDAR'1

    Persian Heritage Image Binarization Competition (PHIBC 2012)

    Full text link
    The first competition on the binarization of historical Persian documents and manuscripts (PHIBC 2012) has been organized in conjunction with the first Iranian conference on pattern recognition and image analysis (PRIA 2013). The main objective of PHIBC 2012 is to evaluate performance of the binarization methodologies, when applied on the Persian heritage images. This paper provides a report on the methodology and performance of the three submitted algorithms based on evaluation measures has been used.Comment: 4 pages, 2 figures, conferenc

    A selectional auto-encoder approach for document image binarization

    Get PDF
    Binarization plays a key role in the automatic information retrieval from document images. This process is usually performed in the first stages of document analysis systems, and serves as a basis for subsequent steps. Hence it has to be robust in order to allow the full analysis workflow to be successful. Several methods for document image binarization have been proposed so far, most of which are based on hand-crafted image processing strategies. Recently, Convolutional Neural Networks have shown an amazing performance in many disparate duties related to computer vision. In this paper we discuss the use of convolutional auto-encoders devoted to learning an end-to-end map from an input image to its selectional output, in which activations indicate the likelihood of pixels to be either foreground or background. Once trained, documents can therefore be binarized by parsing them through the model and applying a global threshold. This approach has proven to outperform existing binarization strategies in a number of document types.This work was partially supported by the Social Sciences and Humanities Research Council of Canada, the Spanish Ministerio de Ciencia, Innovación y Universidades through Juan de la Cierva - Formación grant (Ref. FJCI-2016-27873), and the Universidad de Alicante through grant GRE-16-04

    Enhancement of Image Resolution by Binarization

    Full text link
    Image segmentation is one of the principal approaches of image processing. The choice of the most appropriate Binarization algorithm for each case proved to be a very interesting procedure itself. In this paper, we have done the comparison study between the various algorithms based on Binarization algorithms and propose a methodologies for the validation of Binarization algorithms. In this work we have developed two novel algorithms to determine threshold values for the pixels value of the gray scale image. The performance estimation of the algorithm utilizes test images with, the evaluation metrics for Binarization of textual and synthetic images. We have achieved better resolution of the image by using the Binarization method of optimum thresholding techniques.Comment: 5 pages, 8 figure

    DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning

    Get PDF
    This paper presents a novel iterative deep learning framework and apply it for document enhancement and binarization. Unlike the traditional methods which predict the binary label of each pixel on the input image, we train the neural network to learn the degradations in document images and produce the uniform images of the degraded input images, which allows the network to refine the output iteratively. Two different iterative methods have been studied in this paper: recurrent refinement (RR) which uses the same trained neural network in each iteration for document enhancement and stacked refinement (SR) which uses a stack of different neural networks for iterative output refinement. Given the learned uniform and enhanced image, the binarization map can be easy to obtain by a global or local threshold. The experimental results on several public benchmark data sets show that our proposed methods provide a new clean version of the degraded image which is suitable for visualization and promising results of binarization using the global Otsu's threshold based on the enhanced images learned iteratively by the neural network.Comment: Accepted by Pattern Recognitio
    • …
    corecore