Computation of document image quality metrics often depends upon the
availability of a ground truth image corresponding to the document. This limits
the applicability of quality metrics in applications such as hyperparameter
optimization of image processing algorithms that operate on-the-fly on unseen
documents. This work proposes the use of surrogate models to learn the behavior
of a given document quality metric on existing datasets where ground truth
images are available. The trained surrogate model can later be used to predict
the metric value on previously unseen document images without requiring access
to ground truth images. The surrogate model is empirically evaluated on the
Document Image Binarization Competition (DIBCO) and the Handwritten Document
Image Binarization Competition (H-DIBCO) datasets