6,317 research outputs found

    An M-QAM Signal Modulation Recognition Algorithm in AWGN Channel

    Full text link
    Computing the distinct features from input data, before the classification, is a part of complexity to the methods of Automatic Modulation Classification (AMC) which deals with modulation classification was a pattern recognition problem. Although the algorithms that focus on MultiLevel Quadrature Amplitude Modulation (M-QAM) which underneath different channel scenarios was well detailed. A search of the literature revealed indicates that few studies were done on the classification of high order M-QAM modulation schemes like128-QAM, 256-QAM, 512-QAM and1024-QAM. This work is focusing on the investigation of the powerful capability of the natural logarithmic properties and the possibility of extracting Higher-Order Cumulant's (HOC) features from input data received raw. The HOC signals were extracted under Additive White Gaussian Noise (AWGN) channel with four effective parameters which were defined to distinguished the types of modulation from the set; 4-QAM~1024-QAM. This approach makes the recognizer more intelligent and improves the success rate of classification. From simulation results, which was achieved under statistical models for noisy channels, manifest that recognized algorithm executes was recognizing in M-QAM, furthermore, most results were promising and showed that the logarithmic classifier works well over both AWGN and different fading channels, as well as it can achieve a reliable recognition rate even at a lower signal-to-noise ratio (less than zero), it can be considered as an Integrated Automatic Modulation Classification (AMC) system in order to identify high order of M-QAM signals that applied a unique logarithmic classifier, to represents higher versatility, hence it has a superior performance via all previous works in automatic modulation identification systemComment: 18 page

    Speech and crosstalk detection in multichannel audio

    Get PDF
    The analysis of scenarios in which a number of microphones record the activity of speakers, such as in a round-table meeting, presents a number of computational challenges. For example, if each participant wears a microphone, speech from both the microphone's wearer (local speech) and from other participants (crosstalk) is received. The recorded audio can be broadly classified in four ways: local speech, crosstalk plus local speech, crosstalk alone and silence. We describe two experiments related to the automatic classification of audio into these four classes. The first experiment attempted to optimize a set of acoustic features for use with a Gaussian mixture model (GMM) classifier. A large set of potential acoustic features were considered, some of which have been employed in previous studies. The best-performing features were found to be kurtosis, "fundamentalness," and cross-correlation metrics. The second experiment used these features to train an ergodic hidden Markov model classifier. Tests performed on a large corpus of recorded meetings show classification accuracies of up to 96%, and automatic speech recognition performance close to that obtained using ground truth segmentation

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Automatic Modulation Recognition for MFSK Using Modified Covariance Method

    Get PDF
    This paper presents modulation classification method capable of classifyingMFSK digital signals without a priori information using modified covariancemethod. This method using for calculation features for FSK modulationshould have a good properties of sensitive with FSK modulation index andinsensitive with signal to noise ratio SNR variation. The numericalsimulations and investigation of the performance by the support vectorsmachine one against all (SVM-OAA) as a classifier for classifying 6 digitallymodulated signals which gives probability of correction classification up to85.85 at SNR=-15dB
    corecore