48 research outputs found

    Weakly-supervised Visual Grounding of Phrases with Linguistic Structures

    Full text link
    We propose a weakly-supervised approach that takes image-sentence pairs as input and learns to visually ground (i.e., localize) arbitrary linguistic phrases, in the form of spatial attention masks. Specifically, the model is trained with images and their associated image-level captions, without any explicit region-to-phrase correspondence annotations. To this end, we introduce an end-to-end model which learns visual groundings of phrases with two types of carefully designed loss functions. In addition to the standard discriminative loss, which enforces that attended image regions and phrases are consistently encoded, we propose a novel structural loss which makes use of the parse tree structures induced by the sentences. In particular, we ensure complementarity among the attention masks that correspond to sibling noun phrases, and compositionality of attention masks among the children and parent phrases, as defined by the sentence parse tree. We validate the effectiveness of our approach on the Microsoft COCO and Visual Genome datasets.Comment: CVPR 201

    Action Recognition using High-Level Action Units

    Get PDF
    Vision-based human recognition is the process of naming image sequences with action labels. In this project, a model is developed for human activity detection using high-level action units to represent human activity. Training phase learns the model for action units and action classifiers. Testing phase uses the learned model for action prediction.Three components are used to classify activities such as New spatial- temporal descriptor, Statistics of the context-aware descriptors, Suppress noise in the action units. Representing human activities by a set of intermediary concepts called action units which are automatically learned from the training data. At low-level, we have existing a locally weighted word context descriptor to progress the traditional interest-point-based representation. The proposed descriptor incorporates the neighborhood details effectively. At high-level, we have introduced the GNMF-based action units to bridge the semantic gap in activity representation. Moreover, we have proposed a new joint l2,1-norm based sparse model for action unit selection in a discriminative manner. Broad experiments have been passed out to authorize our claims and have confirmed our intuition that the action unit based representation is dangerous for modeling difficult activities from videos. DOI: 10.17762/ijritcc2321-8169.16042

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201

    Describing Textures in the Wild

    Get PDF
    Patterns and textures are defining characteristics of many natural objects: a shirt can be striped, the wings of a butterfly can be veined, and the skin of an animal can be scaly. Aiming at supporting this analytical dimension in image understanding, we address the challenging problem of describing textures with semantic attributes. We identify a rich vocabulary of forty-seven texture terms and use them to describe a large dataset of patterns collected in the wild.The resulting Describable Textures Dataset (DTD) is the basis to seek for the best texture representation for recognizing describable texture attributes in images. We port from object recognition to texture recognition the Improved Fisher Vector (IFV) and show that, surprisingly, it outperforms specialized texture descriptors not only on our problem, but also in established material recognition datasets. We also show that the describable attributes are excellent texture descriptors, transferring between datasets and tasks; in particular, combined with IFV, they significantly outperform the state-of-the-art by more than 8 percent on both FMD and KTHTIPS-2b benchmarks. We also demonstrate that they produce intuitive descriptions of materials and Internet images.Comment: 13 pages; 12 figures Fixed misplaced affiliatio
    corecore