9 research outputs found

    Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts

    Get PDF
    We propose an algorithm for automatically obtaining a segmentation of a rigid object in a sequence of images that are calibrated for camera pose and intrinsic parameters. Until recently, the best segmentation results have been obtained by interactive methods that require manual labelling of image regions. Our method requires no user input but instead relies on the camera fixating on the object of interest during the sequence. We begin by learning a model of the object’s colour, from the image pixels around the fixation points. We then extract image edges and combine these with the object colour information in a volumetric binary MRF model. The globally optimal segmentation of 3D space is obtained by a graph-cut optimisation. From this segmentation an improved colour model is extracted and the whole process is iterated until convergence. Our first finding is that the fixation constraint, which requires that the object of interest is more or less central in the image, is enough to determine what to segment and initialise an automatic segmentation process. Second, we find that by performing a single segmentation in 3D, we implicitly exploit a 3D rigidity constraint, expressed as silhouette coherency, which significantly improves silhouette quality over independent 2D segmentations. We demonstrate the validity of our approach by providing segmentation results on real sequences

    Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts

    Get PDF
    n o george.vogiatzi

    Multiple depth maps integration for 3D reconstruction using geodesic graph cuts

    Get PDF
    Depth images, in particular depth maps estimated from stereo vision, may have a substantial amount of outliers and result in inaccurate 3D modelling and reconstruction. To address this challenging issue, in this paper, a graph-cut based multiple depth maps integration approach is proposed to obtain smooth and watertight surfaces. First, confidence maps for the depth images are estimated to suppress noise, based on which reliable patches covering the object surface are determined. These patches are then exploited to estimate the path weight for 3D geodesic distance computation, where an adaptive regional term is introduced to deal with the “shorter-cuts” problem caused by the effect of the minimal surface bias. Finally, the adaptive regional term and the boundary term constructed using patches are combined in the graph-cut framework for more accurate and smoother 3D modelling. We demonstrate the superior performance of our algorithm on the well-known Middlebury multi-view database and additionally on real-world multiple depth images captured by Kinect. The experimental results have shown that our method is able to preserve the object protrusions and details while maintaining surface smoothness

    Temporally Coherent General Dynamic Scene Reconstruction

    Get PDF
    Existing techniques for dynamic scene reconstruction from multiple wide-baseline cameras primarily focus on reconstruction in controlled environments, with fixed calibrated cameras and strong prior constraints. This paper introduces a general approach to obtain a 4D representation of complex dynamic scenes from multi-view wide-baseline static or moving cameras without prior knowledge of the scene structure, appearance, or illumination. Contributions of the work are: An automatic method for initial coarse reconstruction to initialize joint estimation; Sparse-to-dense temporal correspondence integrated with joint multi-view segmentation and reconstruction to introduce temporal coherence; and a general robust approach for joint segmentation refinement and dense reconstruction of dynamic scenes by introducing shape constraint. Comparison with state-of-the-art approaches on a variety of complex indoor and outdoor scenes, demonstrates improved accuracy in both multi-view segmentation and dense reconstruction. This paper demonstrates unsupervised reconstruction of complete temporally coherent 4D scene models with improved non-rigid object segmentation and shape reconstruction and its application to free-viewpoint rendering and virtual reality.Comment: Submitted to IJCV 2019. arXiv admin note: substantial text overlap with arXiv:1603.0338

    Automatic Object Segmentation from Calibrated Images

    Get PDF
    This paper addresses the problem of automatically obtaining the object/background segmentation of a rigid 3D object observed in a set of images that have been calibrated for camera pose and intrinsics. Such segmentations can be used to obtain a shape representation of a potentially texture-less object by computing a visual hull. We propose an automatic approach where the object to be segmented is identified by the pose of the cameras instead of user input such as 2D bounding rectangles or brush-strokes. The key behind our method is a pairwise MRF framework that combines (a) foreground/background appearance models, (b) epipolar constraints and (c) weak stereo correspondence into a single segmentation cost function that can be efficiently solved by Graph-cuts. The segmentation thus obtained is further improved using silhouette coherency and then used to update the foreground/background appearance models which are fed into the next Graph-cut computation. These two steps are iterated until segmentation convergences. Our method can automatically provide a 3D surface representation even in texture-less scenes where MVS methods might fail. Furthermore, it confers improved performance in images where the object is not readily separable from the background in colour space, an area that previous segmentation approaches have found challenging

    Automatic 3D object segmentation in multiple views using volumetric graph-cuts

    No full text

    Reconstruction and analysis of dynamic shapes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 122-141).Motion capture has revolutionized entertainment and influenced fields as diverse as the arts, sports, and medicine. This is despite the limitation that it tracks only a small set of surface points. On the other hand, 3D scanning techniques digitize complete surfaces of static objects, but are not applicable to moving shapes. I present methods that overcome both limitations, and can obtain the moving geometry of dynamic shapes (such as people and clothes in motion) and analyze it in order to advance computer animation. Further understanding of dynamic shapes will enable various industries to enhance virtual characters, advance robot locomotion, improve sports performance, and aid in medical rehabilitation, thus directly affecting our daily lives. My methods efficiently recover much of the expressiveness of dynamic shapes from the silhouettes alone. Furthermore, the reconstruction quality is greatly improved by including surface orientations (normals). In order to make reconstruction more practical, I strive to capture dynamic shapes in their natural environment, which I do by using hybrid inertial and acoustic sensors. After capture, the reconstructed dynamic shapes are analyzed in order to enhance their utility. My algorithms then allow animators to generate novel motions, such as transferring facial performances from one actor onto another using multi-linear models. The presented research provides some of the first and most accurate reconstructions of complex moving surfaces, and is among the few approaches that establish a relationship between different dynamic shapes.by Daniel Vlasic.Ph.D
    corecore