80,607 research outputs found

    Geometric and form feature recognition tools applied to a design for assembly methodology

    Get PDF
    The paper presents geometric tools for an automated Design for Assembly (DFA) assessment system. For each component in an assembly a two step features search is performed: firstly (using the minimal bounding box) mass, dimensions and symmetries are identified allowing the part to be classified, according to DFA convention, as either rotational or prismatic; secondly form features are extracted allowing an effective method of mechanised orientation to be determined. Together these algorithms support the fuzzy decision support system, of an assembly-orientated CAD system known as FuzzyDFA

    Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

    Full text link
    We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we first use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fit it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.Comment: To appear in ECCV 201

    Ball-Scale Based Hierarchical Multi-Object Recognition in 3D Medical Images

    Full text link
    This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.Comment: This paper was published and presented in SPIE Medical Imaging 201

    On Shape-Mediated Enrolment in Ear Biometrics

    No full text
    Ears are a new biometric with major advantage in that they appear to maintain their shape with increased age. Any automatic biometric system needs enrolment to extract the target area from the background. In ear biometrics the inputs are often human head profile images. Furthermore ear biometrics is concerned with the effects of partial occlusion mostly caused by hair and earrings. We propose an ear enrolment algorithm based on finding the elliptical shape of the ear using a Hough Transform (HT) accruing tolerance to noise and occlusion. Robustness is improved further by enforcing some prior knowledge. We assess our enrolment on two face profile datasets; as well as synthetic occlusion

    Prototype system for supporting the incremental modelling of vague geometric configurations

    Get PDF
    In this paper the need for Intelligent Computer Aided Design (Int.CAD) to jointly support design and learning assistance is introduced. The paper focuses on presenting and exploring the possibility of realizing learning assistance in Int.CAD by introducing a new concept called Shared Learning. Shared Learning is proposed to empower CAD tools with more useful learning capabilities than that currently available and thereby provide a stronger interaction of learning between a designer and a computer. Controlled computational learning is proposed as a means whereby the Shared Learning concept can be realized. The viability of this new concept is explored by using a system called PERSPECT. PERSPECT is a preliminary numerical design tool aimed at supporting the effective utilization of numerical experiential knowledge in design. After a detailed discussion of PERSPECT's numerical design support, the paper presents the results of an evaluation that focuses on PERSPECT's implementation of controlled computational learning and ability to support a designer's need to learn. The paper then discusses PERSPECT's potential as a tool for supporting the Shared Learning concept by explaining how a designer and PERSPECT can jointly learn. There is still much work to be done before the full potential of Shared Learning can be realized. However, the authors do believe that the concept of Shared Learning may hold the key to truly empowering learning in Int.CAD

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy
    corecore