874 research outputs found

    Local Binary Pattern based algorithms for the discrimination and detection of crops and weeds with similar morphologies

    Get PDF
    In cultivated agricultural fields, weeds are unwanted species that compete with the crop plants for nutrients, water, sunlight and soil, thus constraining their growth. Applying new real-time weed detection and spraying technologies to agriculture would enhance current farming practices, leading to higher crop yields and lower production costs. Various weed detection methods have been developed for Site-Specific Weed Management (SSWM) aimed at maximising the crop yield through efficient control of weeds. Blanket application of herbicide chemicals is currently the most popular weed eradication practice in weed management and weed invasion. However, the excessive use of herbicides has a detrimental impact on the human health, economy and environment. Before weeds are resistant to herbicides and respond better to weed control strategies, it is necessary to control them in the fallow, pre-sowing, early post-emergent and in pasture phases. Moreover, the development of herbicide resistance in weeds is the driving force for inventing precision and automation weed treatments. Various weed detection techniques have been developed to identify weed species in crop fields, aimed at improving the crop quality, reducing herbicide and water usage and minimising environmental impacts. In this thesis, Local Binary Pattern (LBP)-based algorithms are developed and tested experimentally, which are based on extracting dominant plant features from camera images to precisely detecting weeds from crops in real time. Based on the efficient computation and robustness of the first LBP method, an improved LBP-based method is developed based on using three different LBP operators for plant feature extraction in conjunction with a Support Vector Machine (SVM) method for multiclass plant classification. A 24,000-image dataset, collected using a testing facility under simulated field conditions (Testbed system), is used for algorithm training, validation and testing. The dataset, which is published online under the name “bccr-segset”, consists of four subclasses: background, Canola (Brassica napus), Corn (Zea mays), and Wild radish (Raphanus raphanistrum). In addition, the dataset comprises plant images collected at four crop growth stages, for each subclass. The computer-controlled Testbed is designed to rapidly label plant images and generate the “bccr-segset” dataset. Experimental results show that the classification accuracy of the improved LBP-based algorithm is 91.85%, for the four classes. Due to the similarity of the morphologies of the canola (crop) and wild radish (weed) leaves, the conventional LBP-based method has limited ability to discriminate broadleaf crops from weeds. To overcome this limitation and complex field conditions (illumination variation, poses, viewpoints, and occlusions), a novel LBP-based method (denoted k-FLBPCM) is developed to enhance the classification accuracy of crops and weeds with similar morphologies. Our contributions include (i) the use of opening and closing morphological operators in pre-processing of plant images, (ii) the development of the k-FLBPCM method by combining two methods, namely, the filtered local binary pattern (LBP) method and the contour-based masking method with a coefficient k, and (iii) the optimal use of SVM with the radial basis function (RBF) kernel to precisely identify broadleaf plants based on their distinctive features. The high performance of this k-FLBPCM method is demonstrated by experimentally attaining up to 98.63% classification accuracy at four different growth stages for all classes of the “bccr-segset” dataset. To evaluate performance of the k-FLBPCM algorithm in real-time, a comparison analysis between our novel method (k-FLBPCM) and deep convolutional neural networks (DCNNs) is conducted on morphologically similar crops and weeds. Various DCNN models, namely VGG-16, VGG-19, ResNet50 and InceptionV3, are optimised, by fine-tuning their hyper-parameters, and tested. Based on the experimental results on the “bccr-segset” dataset collected from the laboratory and the “fieldtrip_can_weeds” dataset collected from the field under practical environments, the classification accuracies of the DCNN models and the k-FLBPCM method are almost similar. Another experiment is conducted by training the algorithms with plant images obtained at mature stages and testing them at early stages. In this case, the new k-FLBPCM method outperformed the state-of-the-art CNN models in identifying small leaf shapes of canola-radish (crop-weed) at early growth stages, with an order of magnitude lower error rates in comparison with DCNN models. Furthermore, the execution time of the k-FLBPCM method during the training and test phases was faster than the DCNN counterparts, with an identification time difference of approximately 0.224ms per image for the laboratory dataset and 0.346ms per image for the field dataset. These results demonstrate the ability of the k-FLBPCM method to rapidly detect weeds from crops of similar appearance in real time with less data, and generalize to different size plants better than the CNN-based methods

    A novel method for detecting morphologically similar crops and weeds based on the combination of contour masks and filtered Local Binary Pattern operators

    Get PDF
    Background: Weeds are a major cause of low agricultural productivity. Some weeds have morphological features similar to crops, making them difficult to discriminate. Results: We propose a novel method using a combination of filtered features extracted by combined Local Binary Pattern operators and features extracted by plant-leaf contour masks to improve the discrimination rate between broadleaf plants. Opening and closing morphological operators were applied to filter noise in plant images. The images at 4 stages of growth were collected using a testbed system. Mask-based local binary pattern features were combined with filtered features and a coefficient k. The classification of crops and weeds was achieved using support vector machine with radial basis function kernel. By investigating optimal parameters, this method reached a classification accuracy of 98.63% with 4 classes in the bccr-segset dataset published online in comparison with an accuracy of 91.85% attained by a previously reported method. Conclusions: The proposed method enhances the identification of crops and weeds with similar appearance and demonstrates its capabilities in real-time weed detection. © 2020 The Author(s) 2020

    A Rapidly Deployable Classification System using Visual Data for the Application of Precision Weed Management

    Full text link
    In this work we demonstrate a rapidly deployable weed classification system that uses visual data to enable autonomous precision weeding without making prior assumptions about which weed species are present in a given field. Previous work in this area relies on having prior knowledge of the weed species present in the field. This assumption cannot always hold true for every field, and thus limits the use of weed classification systems based on this assumption. In this work, we obviate this assumption and introduce a rapidly deployable approach able to operate on any field without any weed species assumptions prior to deployment. We present a three stage pipeline for the implementation of our weed classification system consisting of initial field surveillance, offline processing and selective labelling, and automated precision weeding. The key characteristic of our approach is the combination of plant clustering and selective labelling which is what enables our system to operate without prior weed species knowledge. Testing using field data we are able to label 12.3 times fewer images than traditional full labelling whilst reducing classification accuracy by only 14%.Comment: 36 pages, 14 figures, published Computers and Electronics in Agriculture Vol. 14

    How automated image analysis techniques help scientists in species identification and classification?

    Get PDF
    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification incre­ased over the last two decades. Automation of data classification is primarily focussed on images while incorporating and analysing image data has recently become easier due to developments in computational technology. Research ef­forts on identification of species include specimens’ image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, mainly for categorising and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies. (Folia Morphol 2018; 77, 2: 179–193

    Applying textural Law’s masks to images using machine learning

    Get PDF
    Currently, artificial neural networks are experiencing a rebirth, which is primarily due to the increase in the computing power of modern computers and the emergence of very large training data sets available in global networks. The article considers Laws texture masks as weights for a machine-learning algorithm for clustering aerospace images. The use of Laws texture masks in machine learning can help in the analysis of the textural characteristics of objects in the image, which are further identified as pockets of weeds. When solving problems in applied areas, in particular in the field of agriculture, there are often problems associated with small sample sizes of images obtained from aerospace and unmanned aerial vehicles and insufficient quality of the source material for training. This determines the relevance of research and development of new methods and algorithms for classifying crop damage. The purpose of the work is to use the method of texture masks of Laws in machine learning for automated processing of high-resolution images in the case of small samples using the example of problems of segmentation and classification of the nature of damage to crops

    A Comparative Analysis of Weed Images Classification Approaches in Vegetables Crops

    Get PDF
    This paper exposes a comparative analysis of three weed classification strategies based on area and texture features over images of vegetable crops, focus on provide a technological tool to support farmers in their maintenance tasks. The classification alternatives embrace a basic approach which defines an umbral according to scene features, indeed, a detection with a certain degree of uncertainty on the decision region is purposed and a rigid boundary decision arrangement are exposed. A first mode carry out an unsupervised learning, it uses area and color features with a practical thresholding classifier to differentiate between weed and vegetable classes, the following two, extracts statistical measures of autocorrelation, contrast, correlation and others, from grey level co-occurrence matrices to calculate texture features, next, a principal component analysis is made for dimensionality reduction. These patterns serve as basis for training K-Nearest Neighbor and Support Vector Machine classifiers. The algorithms performance is measured calculating sensitivity (SN), specificity (SP), positive and negative predicted values (PPV and NPV), also, the execution time is stored and tabulated in order to evaluate the proposed methods. Finally, the results show a similar performance of correct classification over 90 and 80% on SN and SP indices respectively, however, approaches present a clear difference in execution time respect of train an evaluation stages.This paper exposes a comparative analysis of three weed classification strategies based on area and texture features over images of vegetable crops, focus on provide a technological tool to support farmers in their maintenance tasks. The classification alternatives embrace a basic approach which defines an umbral according to scene features, indeed, a detection with a certain degree of uncertainty on the decision region is purposed and a rigid boundary decision arrangement are exposed. A first mode carry out an unsupervised learning, it uses area and color features with a practical thresholding classifier to differentiate between weed and vegetable classes, the following two, extracts statistical measures of autocorrelation, contrast, correlation and others, from grey level co-occurrence matrices to calculate texture features, next, a principal component analysis is made for dimensionality reduction. These patterns serve as basis for training K-Nearest Neighbor and Support Vector Machine classifiers. The algorithms performance is measured calculating sensitivity (SN), specificity (SP), positive and negative predicted values (PPV and NPV), also, the execution time is stored and tabulated in order to evaluate the proposed methods. Finally, the results show a similar performance of correct classification over 90 and 80% on SN and SP indices respectively, however, approaches present a clear difference in execution time respect of train an evaluation stages

    Machine vision detection of pests, diseases, and weeds: A review

    Get PDF
    Most of mankind’s living and workspace have been or going to be blended with smart technologies like the Internet of Things. The industrial domain has embraced automation technology, but agriculture automation is still in its infancy since the espousal has high investment costs and little commercialization of innovative technologies due to reliability issues. Machine vision is a potential technique for surveillance of crop health which can pinpoint the geolocation of crop stress in the field. Early statistics on crop health can hasten prevention strategies such as pesticide, fungicide applications to reduce the pollution impact on water, soil, and air ecosystems. This paper condenses the proposed machine vision relate research literature in agriculture to date to explore various pests, diseases, and weeds detection mechanisms

    Effective plant discrimination based on the combination of local binary pattern operators and multiclass support vector machine methods

    Get PDF
    Accurate crop and weed discrimination plays a critical role in addressing the challenges of weed management in agriculture. The use of herbicides is currently the most common approach to weed control. However, herbicide resistant plants have long been recognised as a major concern due to the excessive use of herbicides. Effective weed detection techniques can reduce the cost of weed management and improve crop quality and yield. A computationally efficient and robust plant classification algorithm is developed and applied to the classification of three crops: Brassica napus (canola), Zea mays (maize/corn), and radish. The developed algorithm is based on the combination of Local Binary Pattern (LBP) operators, for the extraction of crop leaf textural features and Support vector machine (SVM) method, for multiclass plant classification. This paper presents the first investigation of the accuracy of the combined LBP algorithms, trained using a large dataset of canola, radish and barley leaf images captured by a testing facility under simulated field conditions. The dataset has four subclasses, background, canola, corn, and radish, with 24,000 images used for training and 6000 images, for validation. The dataset is referred herein as “bccr-segset” and published online. In each subclass, plant images are collected at four crop growth stages. Experimentally, the algorithm demonstrates plant classification accuracy as high as 91.85%, for the four classes. © 2018 China Agricultural Universit

    Plant Seed Identification

    Get PDF
    Plant seed identification is routinely performed for seed certification in seed trade, phytosanitary certification for the import and export of agricultural commodities, and regulatory monitoring, surveillance, and enforcement. Current identification is performed manually by seed analysts with limited aiding tools. Extensive expertise and time is required, especially for small, morphologically similar seeds. Computers are, however, especially good at recognizing subtle differences that humans find difficult to perceive. In this thesis, a 2D, image-based computer-assisted approach is proposed. The size of plant seeds is extremely small compared with daily objects. The microscopic images of plant seeds are usually degraded by defocus blur due to the high magnification of the imaging equipment. It is necessary and beneficial to differentiate the in-focus and blurred regions given that only sharp regions carry distinctive information usually for identification. If the object of interest, the plant seed in this case, is in- focus under a single image frame, the amount of defocus blur can be employed as a cue to separate the object and the cluttered background. If the defocus blur is too strong to obscure the object itself, sharp regions of multiple image frames acquired at different focal distance can be merged together to make an all-in-focus image. This thesis describes a novel non-reference sharpness metric which exploits the distribution difference of uniform LBP patterns in blurred and non-blurred image regions. It runs in realtime on a single core cpu and responses much better on low contrast sharp regions than the competitor metrics. Its benefits are shown both in defocus segmentation and focal stacking. With the obtained all-in-focus seed image, a scale-wise pooling method is proposed to construct its feature representation. Since the imaging settings in lab testing are well constrained, the seed objects in the acquired image can be assumed to have measureable scale and controllable scale variance. The proposed method utilizes real pixel scale information and allows for accurate comparison of seeds across scales. By cross-validation on our high quality seed image dataset, better identification rate (95%) was achieved compared with pre- trained convolutional-neural-network-based models (93.6%). It offers an alternative method for image based identification with all-in-focus object images of limited scale variance. The very first digital seed identification tool of its kind was built and deployed for test in the seed laboratory of Canadian food inspection agency (CFIA). The proposed focal stacking algorithm was employed to create all-in-focus images, whereas scale-wise pooling feature representation was used as the image signature. Throughput, workload, and identification rate were evaluated and seed analysts reported significantly lower mental demand (p = 0.00245) when using the provided tool compared with manual identification. Although the identification rate in practical test is only around 50%, I have demonstrated common mistakes that have been made in the imaging process and possible ways to deploy the tool to improve the recognition rate
    • …
    corecore