26,979 research outputs found

    Recognizing cited facts and principles in legal judgements

    Get PDF
    In common law jurisdictions, legal professionals cite facts and legal principles from precedent cases to support their arguments before the court for their intended outcome in a current case. This practice stems from the doctrine of stare decisis, where cases that have similar facts should receive similar decisions with respect to the principles. It is essential for legal professionals to identify such facts and principles in precedent cases, though this is a highly time intensive task. In this paper, we present studies that demonstrate that human annotators can achieve reasonable agreement on which sentences in legal judgements contain cited facts and principles (respectively, Îș=0.65 and Îș=0.95 for inter- and intra-annotator agreement). We further demonstrate that it is feasible to automatically annotate sentences containing such legal facts and principles in a supervised machine learning framework based on linguistic features, reporting per category precision and recall figures of between 0.79 and 0.89 for classifying sentences in legal judgements as cited facts, principles or neither using a Bayesian classifier, with an overall Îș of 0.72 with the human-annotated gold standard

    Defining International Law Librarianship in an Age of Multiplicity, Knowledge, and Open Access to Law

    Get PDF
    Many law librarians are experts in international law and legal research. The concept of ‘international law librarianship’, however, encompasses something more than a field of study in which a group of experts practise their profession. In the broader sense, the idea suggests a common calling, similar interests, and goals shared by librarians with a range of specialties beyond international law, working in all types of law libraries. What commonalities create and sustain the concept of international law librarianship? This paper suggests that they can be found in: law librarians’ common need to respond to the ‘multiplicity’ of information sources facing twenty-first century legal researchers; the development and nurturing of a shared base of professional knowledge; and a common commitment to work toward ensuring free and open access to legal information globally

    Towards a Semantic-based Approach for Modeling Regulatory Documents in Building Industry

    Get PDF
    Regulations in the Building Industry are becoming increasingly complex and involve more than one technical area. They cover products, components and project implementation. They also play an important role to ensure the quality of a building, and to minimize its environmental impact. In this paper, we are particularly interested in the modeling of the regulatory constraints derived from the Technical Guides issued by CSTB and used to validate Technical Assessments. We first describe our approach for modeling regulatory constraints in the SBVR language, and formalizing them in the SPARQL language. Second, we describe how we model the processes of compliance checking described in the CSTB Technical Guides. Third, we show how we implement these processes to assist industrials in drafting Technical Documents in order to acquire a Technical Assessment; a compliance report is automatically generated to explain the compliance or noncompliance of this Technical Documents

    Towards a reading of the Vindolanda Stylus Tablets: Engineers and the Papyrologist

    Get PDF
    We introduce a collaborative project between the Department of Engineering Science and the Centre for the Study of Ancient Documents at the University of Oxford regarding the analysis and reading of the Vindolanda Stylus Tablets. We sketch the imaging and image processing techniques used to digitally capture and analyse the tablets, the development of the image analysis tools to aid papyrologists in the transcription of the texts, and lessons that can be learned so far from such an inter-disciplinary project

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Distributed human computation framework for linked data co-reference resolution

    No full text
    Distributed Human Computation (DHC) is a technique used to solve computational problems by incorporating the collaborative effort of a large number of humans. It is also a solution to AI-complete problems such as natural language processing. The Semantic Web with its root in AI is envisioned to be a decentralised world-wide information space for sharing machine-readable data with minimal integration costs. There are many research problems in the Semantic Web that are considered as AI-complete problems. An example is co-reference resolution, which involves determining whether different URIs refer to the same entity. This is considered to be a significant hurdle to overcome in the realisation of large-scale Semantic Web applications. In this paper, we propose a framework for building a DHC system on top of the Linked Data Cloud to solve various computational problems. To demonstrate the concept, we are focusing on handling the co-reference resolution in the Semantic Web when integrating distributed datasets. The traditional way to solve this problem is to design machine-learning algorithms. However, they are often computationally expensive, error-prone and do not scale. We designed a DHC system named iamResearcher, which solves the scientific publication author identity co-reference problem when integrating distributed bibliographic datasets. In our system, we aggregated 6 million bibliographic data from various publication repositories. Users can sign up to the system to audit and align their own publications, thus solving the co-reference problem in a distributed manner. The aggregated results are published to the Linked Data Cloud
    • 

    corecore