13,165 research outputs found

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    Flight control system design factors for applying automated testing techniques

    Get PDF
    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    A simplified software architecture for self-updating Building Information Models (BIM)

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 61-63).Building Information Modeling (BIM) is an emerging software technology that is revolutionizing the architecture, engineering, and construction (A/E/C) industry. BIM technology employs "object-based 3D models-containing the physical and functional characteristics of a facility-that serve as a repository for lifecycle information in an open, interoperable format" [1]. The major difference between BIM and Computer-Aided Design/Drafting (CADD) is that the former includes geometry and a plethora of building information while the latter includes only geometry. BIM utilization in the AEC industry has increased due to 1) BIM tools increasing productivity in design tasks; 2) the increasing number of private and government agencies that have instituted BIM requirements; 3) the pervasive use of computer analysis and simulations models; 4) the benefits of BIM as lifecycle management tool. Current literature shows trends of a transition from a "passive"-static model-based-approach to an "active"-dynamic model-based-approach. The active approach requires the integration of BIM with sensors to create "self-updating" building models. Previous research introduces the concept of a self-updating building model ([2], [31, [41). These systems involve complex software architecture and may perpetuate the problem of software interoperability. This thesis explores the following question: May a similar system be created to synthesize dynamic sensor data while improving upon previous research and simplifying the software architecture? The author describes a prototype system, called LiveBuild, which integrates commercial BIM software with other off-the-shelf software components to create a self-updating building model. LiveBuild is the first self-updating building model that operates as an extension to existing commercial BIM software. Therefore, the transition from static to active building models is as simple as installing a plug-in. LiveBuild may serve as the basis for future research in self-updating building by providing simplified system that is well integrated with state-of-the art commercial design software. Likewise, the prototype is applicable for professional practice by allowing firms to use their existing BIM software to perform "pilot projects" with self-updating technology. The current prototype supports an interface with single commercial BIM software (Autodesk Revit 2009) product however future prototypes may extend both the functions and interfaces for other BIM software.by Pierre Fuller.S.M

    Models for an Ecosystem Approach to Fisheries

    Get PDF
    This document is one outcome from a workshop held in Gizo in October 2010 attended by 82 representatives from government, NGO's private sector, and communities. The target audience for the document is primarily organizations planning to work with coastal communities of Solomon Islands to implement Community-Based Resource Management (CBRM). It is however also envisaged that the document will serve as a reference for communities to better understand what to expect from their partners and also for donors, to be informed about agreed approaches amongst Solomon Islands stakeholders. This document does not attempt to summarize all the outcomes of the workshop; rather it focuses on the Solomon Islands Coral Triangle Initiative (CTI) National Plan of Action (NPoA): Theme 1: Support and implementation of CBRM and specifically, the scaling up of CBRM in Solomon Islands. Most of the principles given in this document are derived from experiences in coastal communities and ecosystems as, until relatively recently, these have received most attention in Solomon Islands resource management. It is recognized however that the majority of these principles will be applicable to both coastal and terrestrial initiatives. This document synthesizes information provided by stakeholders at the October 2010 workshop and covers some basic principles of engagement and implementation that have been learned over more than twenty years of activities by the stakeholder partners in Solomon Islands. The document updates and expands on a summary of guiding principles for CBRM which was originally prepared by the Solomon Islands Locally Managed Marine Area Network (SILMMA) in 2007
    • …
    corecore