5 research outputs found

    Cattle Number Estimation on Smart Pasture Based on Multi-Scale Information Fusion

    Get PDF
    In order to solve the problem of intelligent management of cattle numbers in the pasture, a dataset of cattle density estimation was established, and a multi-scale residual cattle density estimation network was proposed to solve the problems of uneven distribution of cattle and large scale variations caused by perspective changes in the same image. Multi-scale features are extracted by multiple parallel dilated convolutions with different dilation rates. Meanwhile, aiming at the “grid effect” caused by the use of dilated convolution, the residual structure is combined with a small dilation rate convolution to eliminate the influence of the “grid effect”. Experiments were carried out on the cattle dataset and dense population dataset, respectively. The experimental results show that the proposed multi-scale residual cattle density estimation network achieves the lowest mean absolute error (MAE) and means square error (RMSE) on the cattle dataset compared with other density estimation methods. In ShanghaiTech, a dense population dataset, the density estimation results of the multi-scale residual network are also optimal or suboptimal in MAE and RMSE

    Applications of smart agriculture for environmental protection using deep learning techniques

    Get PDF
    DL, short for Deep Learning, is a cutting-edge approach that merges advanced techniques in image processing and data analysis with the power of big data analysis. Its potential is enormous and has already found practical applications in several fields, including autonomous driving, automatic speech recognition, medical research, image restoration, natural language processing, and, among others. DL has been recently introduced in agriculture showing promising results in solving various farming problems like disease detection, automated plant and fruit identification, and counting. This study presents a comprehensive review of research using DL techniques in farming, including crop monitoring, crop mapping, weed and pest detection and management, irrigation, fruit grading, reorganizations of species and herbicide identification. Furthermore, different DL techniques applied in various fields are analyzed and compared with existing techniques. It was found that DL outperforms traditional image processing technology in terms of accuracy, both in classification and regression. Additionally, the study suggests that DL can be applied beyond detections, classification tasks to yield production, and disease segmentation in agriculture

    A review of deep learning algorithms for computer vision systems in livestock.

    Get PDF
    In livestock operations, systematically monitoring animal body weight, bio-metric body measurements, animal behavior, feed bunk, and other difficult-to-measure phenotypes is manually unfeasible due to labor, costs, and animal stress. Applications of computer vision are growing in importance in livestock systems due to their ability to generate real-time, non-invasive, and accurate animal-level information. However, the development of a computer vision system requires sophisticated statistical and computational approaches for efficient data management and appropriate data mining, as it involves mas-sive datasets. This article aims to provide an overview of how deep learning has been implemented in computer vision systems used in livestock, and how such implementation can be an effective tool to predict animal phe-notypes and to accelerate the development of predictive modeling for precise management decisions. First, we reviewed the most recent milestones achieved with computer vision systems and its respective deep learning algorithms implemented in Animal Science studies. Second, we reviewed the published research studies in Animal Science, which used deep learning algorithms as the primary analytical strategy for image classification, object detection, object segmentation, and feature extraction. The great number of reviewed articles published in the last few years demonstrates the high interest and rapid development of deep learning algorithms in computer vision systems across livestock species. Deep learning algorithms for computer vision systems, such as Mask R-CNN, Faster R-CNN, YOLO (v3 and v4), DeepLab v3, U-Net and others have been used in Animal Science research studies. Additionally, network architectures such as ResNet, Inception, Xception, and VGG16 have been implemented in several studies across livestock species. The great performance of these deep learning algorithms suggests an33improved predictive ability in livestock applications and a faster inference.34However, only a few articles fully described the deep learning algorithms and its implementation. Thus, information regarding hyperparameter tuning, pre-trained weights, deep learning backbone, and hierarchical data structure were missed. We summarized peer-reviewed articles by computer vision tasks38(image classification, object detection, and object segmentation), deep learn-39ing algorithms, species, and phenotypes including animal identification and behavior, feed intake, animal body weight, and many others. Understanding the principles of computer vision and the algorithms used for each application is crucial to develop efficient systems in livestock operations. Such development will potentially have a major impact on the livestock industry by predicting real-time and accurate phenotypes, which could be used in the future to improve farm management decisions, breeding programs through high-throughput phenotyping, and optimized data-driven interventions
    corecore