789 research outputs found

    Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure

    Get PDF
    Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tissue structure needs to be reconstructed over hundreds of micrometers with a resolution sufficient to follow the thinnest cellular processes and to identify small organelles such as synaptic vesicles. Such 3D data are, however, essential to understand cellular networks that, particularly in the nervous system, need to be completely reconstructed throughout a substantial spatial volume. Here we demonstrate that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope. Backscattering contrast is used to visualize the heavy-metal staining of tissue prepared using techniques that are routine for transmission electron microscopy. Low-vacuum (20–60 Pa H(2)O) conditions prevent charging of the uncoated block face. The resolution is sufficient to trace even the thinnest axons and to identify synapses. Stacks of several hundred sections, 50–70 nm thick, have been obtained at a lateral position jitter of typically under 10 nm. This opens the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits

    Acquisition and Mining of the Whole Mouse Brain Microstructure

    Get PDF
    Charting out the complete brain microstructure of a mammalian species is a grand challenge. Recent advances in serial sectioning microscopy such as the Knife- Edge Scanning Microscopy (KESM), a high-throughput and high-resolution physical sectioning technique, have the potential to finally address this challenge. Nevertheless, there still are several obstacles remaining to be overcome. First, many of these serial sectioning microscopy methods are still experimental and are not fully automated. Second, even when the full raw data have been obtained, morphological reconstruction, visualization/editing, statistics gathering, connectivity inference, and network analysis remain tough problems due to the unprecedented amounts of data. I designed a general data acquisition and analysis framework to overcome these challenges with a focus on data from the C57BL/6 mouse brain. Since there has been no such complete microstructure data from any mammalian species, the sheer amount of data can overwhelm researchers. To address the problems, I constructed a general software framework for automated data acquisition and computational analysis of the KESM data, and conducted two scientific case studies to discuss how the mouse brain microstructure from the KESM can be utilized. I expect the data, tools, and studies resulting from this dissertation research to greatly contribute to computational neuroanatomy and computational neuroscience

    Automation of section acquisition for Array Tomography

    Get PDF
    Array Tomography hat großes Potential, um die dreidimensionale Struktur von Proben bis zu Nanometer Größenordnungen aufzulösen. Dabei wird eine Probe mechanisch geschnitten um so innen liegende Strukturen freizulegen. Die Schnitte schwimmen zunächst auf einer Wasseroberfläche und werden dann auf starren Substraten zur Bildaufnahme abgelegt. Die Flexibilität und Vielseitigkeit der zur Verfügung stehenden bildgebenden Verfahren ist einzigartig für Array Tomography. Zur Zeit wird eine intensive Nutzung jedoch durch den hohen Arbeitsaufwand und Anspruch an die Bedienung eingeschränkt. Existierende maschinelle Systeme zur Schnittaufnahme schränken entweder die zur Verfügung stehenden Bildgebungsverfahren oder das Probenvolumen ein. In dieser Dissertation wird ein maschinelles Verfahren zur Schnittaufnahme vorgestellt, welches die gleiche Flexibilität und Vielfältigkeit ermöglicht wie die konventionelle manuelle Schnittaufnahme. Fluidkanäle bilden ein mikrofluidisches System mit geringer Reynolds Nummer, in dem sich Schnitte und Substrat gemeinsam bewegen. Die Fluidkanäle formen sich auf der Substratoberfläche durch eine lokale Modifikation der Benetzbarkeit. Die Oberflächenfunktionalisierung wird durch Abscheiden einer hydrophoben Beschichtung und anschließender Plasmastrukturierung erreicht. Das neu entwickelte System umfasst eine maschinelle Probenausrichtung, Schnittaufnahme und Schnittüberwachung. Die Schnitte können auf den für Array Tomography üblichen Substraten abgelegt und somit mit einer Vielzahl von mikroskopischen Verfahren untersucht werden. Durch die maschinelle Schnittaufnahme können große Volumen effizient geschnitten werden, wodurch die Anwedung der Array Tomography in neuen Forschungsgebieten möglich wird. Die maschinelle Schnittaufnahme ist an zwei repräsentativen Proben mit jeweils 1000 Schnitten validiert

    3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy

    Get PDF
    AbstractMechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems

    Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    Get PDF
    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions

    Modular multimodal platform for classical and high throughput light sheet microscopy

    Get PDF
    Light-sheet fluorescence microscopy (LSFM) has become an important tool for biological and biomedical research. Although several illumination and detection strategies have been developed, the sample mounting still represents a cumbersome procedure as this is highly dependent on the type of sample and often this might be time consuming. This prevents the use of LSFM in other promising applications in which a fast and straightforward sample-mounting procedure and imaging are essential. These include the high-throughput research fields, e.g. in drug screenings and toxicology studies. Here we present a new imaging paradigm for LSFM, which exploits modularity to offer multimodal imaging and straightforward sample mounting strategy, enhancing the flexibility and throughput of the system. We describe its implementation in which the sample can be imaged either as in any classical configuration, as it flows through the light-sheet using a fluidic approach, or a combination of both. We also evaluate its ability to image a variety of samples, from zebrafish embryos and larvae to 3D complex cell cultures.The authors acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) through the “Severo Ochoa” program for Centres of Excellence in R&D (CEX2019-000910-S [MCIN/ AEI/10.13039/501100011033]), Fundació Privada Cellex, Fundació Mir-Puig, and Generalitat de Catalunya through CERCA program; MINECO/FEDER Ramón y Cajal program (RYC-2015-17935); Laserlab- Europe EU-H2020 GA no. 871124; European Union’s Horizon 2020 Framework Programme (H2020 Marie Skłodowska-Curie Innovative Training Networks ImageInLife N. 721537). We thank Verena Ruprecht (CRG- Center of Genomic Regulation, Barcelona), Paz Herráez (Universidad de León), Ester Antón-Galindo and Noelia Fernández-Castillo (Universitat de Barcelona), Marymar Becerra (Universidad Nacional Autónoma de México), Georges Lutfalla, Mai Nguyen Chi and Tamara Sipka (Université de Montpellier), Catarina Brito (ITQB/IBEQ, Lisbon), Antonia Weberling and Magdalena Zernicka-Goetz (University of Cambridge), and Corinne Lorenzo (ITAV – CNRS, Toulouse) for the samples provided. We also thank Maria Marsal and Jordi Andilla for many fruitful discussions.Postprint (published version

    A platform for brain-wide imaging and reconstruction of individual neurons

    Get PDF
    The structure of axonal arbors controls how signals from individual neurons are routed within the mammalian brain. However, the arbors of very few long-range projection neurons have been reconstructed in their entirety, as axons with diameters as small as 100 nm arborize in target regions dispersed over many millimeters of tissue. We introduce a platform for high-resolution, three-dimensional fluorescence imaging of complete tissue volumes that enables the visualization and reconstruction of long-range axonal arbors. This platform relies on a high-speed two-photon microscope integrated with a tissue vibratome and a suite of computational tools for large-scale image data. We demonstrate the power of this approach by reconstructing the axonal arbors of multiple neurons in the motor cortex across a single mouse brain.Howard Hughes Medical InstitutePublished versio

    Cluster-based milling method for large-field-of-view volume electron microscopy

    Get PDF
    Current methods for automated volume image acquisition that allow resolving the structure of neural circuits have a limited field-of-view. This work investigates using a gas cluster ion beam (GCIB) to overcome the field-of-view limitation and explores the combination with a multi-beam scanning electron microscope (mSEM) to create a system for the acquisition of the whole mouse brain. To this end, a staining protocol for 500 micrometre thick whole-coronal cross-sections is established, and a GCIB is incorporated with a scanning electron microscope (SEM) to identify optimal system parameters. In addition, an electron beam irradiation system is built and automated to induce conductivity in collected sections for SEM imaging. The results verify that ion milling can keep up with the imaging rate in the mSEM while maintaining adequate quality. In addition, software is implemented for targeted image acquisition in the mSEM. Finally, calculations show that acquiring the whole mouse brain is feasible but heavily dependent on the imaging rate and the number of parallel GCIB-mSEM systems

    Imaging Transient Blood Vessel Fusion Events in Zebrafish by Correlative Volume Electron Microscopy

    Get PDF
    The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) and Serial Block Face/Scanning Electron Microscopy (SBF/SEM). The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism
    corecore