4 research outputs found

    MergePoint: A Graphical Web-App for merging HTTP-Endpoints and IoT-Platform Models

    Get PDF
    More and more devices are connected to Internet of Things Platforms in various application domains. The resulting device integration effort is moderated by the concrete integration syntax and the technical abilities of the device integrator. Therefore, researchers from various communities have been investigating and designing component coupling architectures to achieve interoperability for more than 30 years. Emerging Smart Home scenarios challenges classical integration approaches as no single formal integration standard exists. In this paper we introduce a reference architecture called MergePoint that automates HTTP-Endpoint integration with smart home platforms such as openHAB in a plug-and-play manner. Based on a prototypical system implementation, our empirical evaluation demonstrates that average integration time can be reduced by 78% and average tool usability score is increased by 65% compared to textual integration approaches. MergePoint can serve as a reference implementation for practitioners that want to automate the integration between HTTP-Endpoints and IoT Platform Models

    Seamless Reconfiguration of Rule-Based IoT Applications

    Get PDF
    International audienceThe Internet of Things (IoT) consists of devices and software interacting altogether in order to build powerful and added-value services. One of the main challenges in this context is to support end-users with simple, user-friendly, and automated techniques to design such applications. Given the dynamicity of IoT applications, these techniques should consider that these applications are in most cases not built once and for all. They can evolve over time and objects may be added or removed for several reasons (replacement, loss of connectivity, upgrade, failure, etc.). In this paper, we propose new techniques for supporting the reconfiguration of running IoT applications. These techniques compare two versions of the application (before and after reconfiguration) to check if several properties of interest from a reconfiguration perspective are preserved. The analysis techniques have been implemented using the Maude framework and integrated into the WebThings platform

    Protocol for a Systematic Literature Review on Adaptative Middleware Support for IoT and CPS

    Get PDF
    This protocol defines the procedure to conduct a systematic literature review on adaptive middleware support for the Internet of Things (IoT) and Cyber-physical Systems (CPS). The mentioned concepts deal with smart interactive objects which provide a set of services, but they look into the problem from various perspectives. We especially look into middleware design decisions for reactive/proactive adaptations. Following a systematic literature review (SLR) in the selection procedure, we selected 62 papers among 4,274 candidate studies. To this end, we applied the classification and extraction framework to select and analyze the most influential domain-related information. In addition to the academic database, we took advantage of the use-cases provided by our industrial partners within the CPS4EU 2 project. This document clarifies the primary studies' selection process. The analysis of the studies, discussion, and solution proposals will be presented separately in a journal article
    corecore