

MergePoint: A Graphical Web-App for merging HTTP-Endpoints and IoT-
Platform Models

Fabian Burzlaff
University of
Mannheim

 burzlaff@es.uni-
mannheim.de

Johannes Hammen
University of
Mannheim

jhammen@mail.uni-
mannheim.de

Benedikt Bongarth
University of
Mannheim

bbongart@mail.uni-
mannheim.de

Sven Grottker
University of
Mannheim

sgrottke@mail.uni-
mannheim.de

Christian Bartelt
University of
Mannheim

bartelt@es.uni-
mannheim.de

Abstract

More and more devices are connected to Internet of
Things Platforms in various application domains. The
resulting device integration effort is moderated by the
concrete integration syntax and the technical abilities
of the device integrator. Therefore, researchers from
various communities have been investigating and
designing component coupling architectures to achieve
interoperability for more than 30 years. Emerging
Smart Home scenarios challenges classical integration
approaches as no single formal integration standard
exists. In this paper we introduce a reference
architecture called MergePoint that automates HTTP-
Endpoint integration with smart home platforms such
as openHAB in a plug-and-play manner. Based on a
prototypical system implementation, our empirical
evaluation demonstrates that average integration time
can be reduced by 78% and average tool usability
score is increased by 65% compared to textual
integration approaches. MergePoint can serve as a
reference implementation for practitioners that want to
automate the integration between HTTP-Endpoints and
IoT Platform Models.

1. Introduction

More and more devices are connected to Internet of
Things (IoT) Platforms in various application domains
[1]. The application cases range from Industry and
Healthcare to Transportation and Smart Homes [2].
One key characteristic of IoT-Systems is their flexible
architecture. In contrast to closed, classical systems
(e.g. ERP Systems), these IoT-Systems can be
efficiently extended during design and runtime. For
example, use cases for smart home appliances such as
“send warning message if stove or oven is not turned

off” or “notification when washing cycle has
completed” are currently trending [3].

Although smart appliances such as Amazons Alexa
currently support more than 15’000 skills (=voice
command), these skills must be manually developed by
software engineers per device. Hence, interoperability
across platforms and devices is still one of the main
adoption barriers for consumers when avoiding vendor
lock-in. To exploit the growing IoT-market (i.e. 153
billion US$ in 2023 [3]) the integration between IoT
devices and platforms across company ecosystems,
standards and markets will be key to success.

From a scientific viewpoint, integration challenges
such as interface compatibility and (automated)
software component coupling are in the scope of
several research communities [4]–[6]. In general,
relevant IoT architectures can be conceptually
described as a four-layered architecture integrating a 1)
sensing layer containing sensors and RFID tags 2) a
networking layer providing basic transfer networks 3) a
service layer to control system states according to user
goals and 4) a platform interface layer accessed by the
user and other systems. In most cases, such
architectural styles are centralized platforms that
connect distributed devices [7]. Furthermore, the most
studied quality attributes of IoT architectures are
scalability, security, interoperability and performance
[7].

Engineering IoT systems involves several
architectural decisions. For tackling the integration
challenge for automated interface component coupling,
there are 7 relevant design choices: 1) standardized vs.
proprietary information models 2) raw vs. semantically
annotated information 3) generic vs. domain-specific
protocols 4) standardized vs. specific interfaces 5)
common model vs. peer mapping for model
interoperability 6) standardized vs. proprietary
engineering data models and 7) desktop-based vs. web-
based User Experience [8].

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6661
URI: https://hdl.handle.net/10125/64557
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

The contribution of this paper is the
conceptualization and implementation of the web-
based application called MergePoint. MergePoint
automates the integration of self-describing HTTP
interfaces including raw and proprietary information
models between devices and platforms. By not relying
on one data model from one manufacturer, the
syntactical interface description is formalized using the
openAPI specification standard and engineering
knowledge is stored in a model. To achieve
interoperability, a common intermediate mapping
model is defined which can be used for smart home
applications. Our proposed solution is evaluated within
an empirical setting where we compare traditional,
more expressive textual integration solutions with a
graphical integration tool. On average, the system
usability as suggested by Brooks [9], [10] increased
from 29.25 to 85.25 (Scale 0-100) and integration time
decreased from 27.51 to 5.9 minutes when using
MergePoint.

The remainder of this paper is structured as
follows: section 2 outlines the context of this work,
section 3 introduces the reference architecture, section
4 describes MergePoint and section 5 presents our
evaluation. Finally, section 6 concludes our work.

2. Background and Related Work

Context: From a software development point of
view, the term “Internet of Things” can be defined as
“co-engineered interacting networks of physical and
computational components” [11]. Overall, six
computational components can be identified. These are
Identification, Sensing, Communication, Computation,
Services and Semantics [2], [7]. Within smart home
scenarios, a four-layered architecture can be regarded
as a common model for structuring these components.
Most major open-source smart home platforms such as
openHAB, home-assistant or ioBroker pursue this
architecture as these platforms are a centralized
installation per household. Hence, the resulting layers
are Sensing&Perception, Communication and Services,
Application and UI&Interfaces (see Fig. 1).

Problem: Among others, one main problem for the
widespread adoption of IoT-Platforms is massive
scaling [12]. Within this problem space,
interoperability between provided data offered by
smart home devices and platform data models is one of
the key challenges. Here a translation between IoT data
models and Platform-Applications (e.g. automation
rules) are necessary to fulfil desired user goals. As
most smart home platforms already offer the
underlying generic (e.g. HTTP, SOAP or TCP/IP) and
domain-specific protocol adapters (e.g. MQTT, KNX
or ZigBee), the integration challenge shifts from a

syntactic-centric to a semantic-centric challenge. For
instance, openHAB currently offers support for 1547
things, home-assistant provides 1395 thing adapters
and ioBroker exhibits 276 interface adapters. Based on
the assumption that future IoT-devices offer open
interfaces (i.e. accessible for third parties), platforms
must be equipped with a flexible logical data model.
Consequently, different thing channels must be linked
to platform model items (see red boxes in Fig. 1).

This mapping is trivial when all parties involved
use the same standard. Each standard defines its own
data model and must be supported by the platform (e.g.
one home installation uses only products and platforms
offered by Apples HomeKit).

Thing Thing
Sensing and

Perception [Physical]

Communication
and Services

Application

UI and Interfaces

IP-based Protocols

Gateway

Mobile Web 3rd Party

Data model

Automation
Rules

Logging Storage
Device

Management

Service-API

IP-based Protocols
Smart Home Platform

[Cyber]

Fig. 1: Smart Home Platform Architecture

However, this may result in an undesired vendor

lock-in. Hence, open-source smart home platforms
propose their own data model where each IoT-device
data model item must be integrated manually. This
must be mainly done by the end-user. If end users
formulate their own automation rules, the semantics of
an IoT-device item is decided at integration time based
on the application context. In contrast, standard-based
integration solutions fix mappings already at
component design time.

Example: Based on an adapted version of the well-
known knowledge pyramid [13], the integration of a
light bulb status is exemplified:

 Data: Value of “status” is on, true active or 1
 Information: This means that the light bulb

channel “status” acts as a switch and now the
light bulb produces luminance

 Knowledge: Peter turns on the light when he´s
playing the drums in his room

 Actionable Wisdom/Intelligence: Shut the
windows in Peters room

Page 6662

Need: By assigning the data item value of “status”
a type information offered by the smart home platform,
the meaning is fixed per use case. If the item label is
named differently (e.g. “condition”), the end user must
reconfigure the assigned type. Such mappings must be
currently defined manually by the end user and thus the
user interface is subject to usability aspects. Here, the
question arises how textual or graphical integration
interfaces are perceived by the end user.

Solution Proposal: Facilitating this comparison,
we propose MergePoint – a graphical user interface
that allows for an easy mapping between IoT data
models and platform models. Furthermore, the
performance increases as integration knowledge in
distributed smart home installations becomes reusable
in an automated setting.

Related Work: Koziolek et al. just presented an
OpenPnP (plug-and-play) reference architecture for the
industrial IoT at ICSE 2019 Demonstrations Track.
Krishna et al. presented a tool called IoT Composer
within the same track that can compose and deploy IoT
applications automatically. However, industrial IoT use
cases differ significantly from smart home use cases
[14]. Last, Platenius et al. published MatchBox, a
configurable interface matching tool for component
matching processes [15] and Bennaceur and Issarny
implemented MICS (Mediator synthesis to Connect
Components) for verifiable component mappings [16].

2.1. Scope Restrictions

The components of a formal mapping language can

be categorized as syntax, semantics and pragmatic.
Applying these categories on the adaptive DIKW
pyramid pragmatics can be related to Actionable
Wisdom/Intelligence. MergePoint and the
accompanying engineering approach does not cover
this aspect. Furthermore, contextual information (i.e.
Knowledge) are necessary for determining the
semantics of data but are also not in the scope of
MergePoint. However, the context (e.g. automation
rule) for determining the semantics during integration
time can be described in forums, manuals or
repositories. Consequently, only the semantical
mappings (i.e. Information) between IoT device data
and smart home platform model is formalized.

When formalizing the semantics of mappings
between data models, a mapping language is required
[8]. For example, Burzlaff and Bartelt [17] used a first-
order logic language called OWL-DL. OWL-DL is a
formal language with SHOIN expressivity [18].
Furthermore, there exist reasoners such as FaCT++ or
Pellet that allow to infer new knowledge based on
deductive reasoning (i.e. Conditional Statement &&
Antecedent  Consequence). Burzlaff and Bartelt

conclude that the formalization effort when using
OWL requires an advanced end-user skillset as
declarative integration languages (e.g. SQL) behave
differently compared to imperative languages (e.g.
Java). We also believe that OWL exposes a poor end-
user usability and exclude it from MergePoint.
Consequently, this work is a subsequent work that
focuses on the usability aspect of using formalized
integration knowledge by decreasing language
expressivity.

3. MergePoint Reference Architecture

From the viewpoint of a software developer,
designing an interface for one IoT device is technically
easy. For example, one can implement an OPC UA
server by using a java-based reference implementation
(e.g. Eclipse Milo). It is easy because the software
developer picks a standardized communication
protocol and designs the message content. The
message content is mainly driven by his conceptual
model.

When integrating multiple IoT devices from
different vendors within a platform, data and service
integration effort arise. For example, when integrating
a light bulb providing a HTTP-Interface with
predefined smart home platform types, the sub-route
/status does not syntactically match the platform type
Switch although they refer (i.e. meaning) to the same
semantic concept of a light-bulb state (see Fig. 2). The
same circumstance applies for the sub-route
/brightness and the platform type Dimmer. Here, an
existing automation rule may not be executable
because these semantic relationships cannot be
retrieved. The reason for this is that the engineering
knowledge is not persisted during integration time.
MergePoint closes this gap by attempting to answer the
overall research question:

How can IoT device integration processes be

automated by tools so that a high usability is achieved?

Smart Home Platform

192.168.0.200

/brightness

Switch

Dimmer

UI-SitemapRule
/api/v1

/status

Smart Home Device

Fig. 2: Integration Example

Page 6663

Arguably, an intuitive approach for automating
such integration challenges would be using domain-
specific standards.

However, the creation of such standards requires
time and thus cannot keep up with the fast-technical
innovation cycles. This means, that IoT standards may
be heavily adapted or that they do only provide a
vocabulary. This vocabulary is then interpretable by a
human, but not by a computer as conceptual links are
not available. Hence, the usability of integration tools
for storing these links are central to this work.

We are empirically investigating 1) if a textual or a
graphical concrete syntax achieves a higher usability
score and 2) how integration performance varies
between both integration approaches.

In the upcoming section, we provide a static as well
as a dynamic view of our proposed reference
architecture. All technologies and standards used are
open-source and can be implemented by using various
libraries in a desired programming language. We will
describe one concrete implementation of this reference
architecture, MergePoint, in section 4.

3.1 Architectural Design Choices

Based on the proposed catalogue for implementing
(industrial) IoT-platforms [8], we answer 7 (out of 13)
relevant design choices for the main architectural
layers in the physical and cyber-world (see Fig. 1):

[Layer: Sensing and Perception]
1. Standardized vs. proprietary information models:
We mostly rely on unstandardized IoT device
information models.
2. Raw vs. semantically annotated information models:
As we are not relying on standards, semantic
annotation tags that may point to an ontology are not
used. Hence, we only raw information model data.
[Layer: Smart Home Platform]
3. Generic vs. domain-specific protocols: We strictly
require generic protocols such as HTTP or OPC UA
for communicating with edge devices. Hence, we do
not support company-specific solutions. However, we
are not restricting the communication paradigm (e.g.
client/server or publish/subscribe)
4. Standardized vs. specific interfaces: We require
REST-like interfaces for accessing the device APIs in a
uniform way. For automating parsing of functions
offered by APIs we furthermore require all devices to
expose an openAPI specification file. Please note that
openAPI only standardizes the hierarchy of path routes
and not the meaning of data items.
5. Common model vs. peer mapping model: For
achieving interoperability between device and platform

information model, we rely on a peer mapping model.
This is necessary as there exist no common
information model that is supported by all available
devices or every platform may have its own
information model.
[Layer: UI and Interfaces of Engineering Tools]
6. Standardized vs. proprietary engineering data
models: For formalizing mappings within our peer
mapping model, we envision a domain-specific
standard. To transfer integration information between
platforms, we chose an open-accessible schema-free
database.
7. Desktop-based vs. Web-based User Experience:
Although desktop-based integration IDEs may offer
more functionality and are more expressive [17], we
chose a web-based integration frontend for mapping
definition. The main reason for this lies within the
overall usability goal of integration tools.

We are not supporting closed, domain-specific
solutions such as Apple HomeKit, where interfaces are
not accessible programmatically by third parties.
Although this may affect overall system performance
in a negative way, we gain technical interoperability
when using generic communication protocols.

Furthermore, we are not concerned about device
discovery and self-configuration mechanisms (e.g.
network addresses or authentication credentials) as
they may affect scalability aspects but are not directly
related to usability aspects. Our evaluation targets are
on-premise smart home platforms. Hence, aspects
related to cloud communications (e.g. firewall friendly
protocols) are not taken into consideration but are
supported by most smart home platforms out-of-the-
box.

Finally, we assume that the web-based integration
tool is accessed by a device that can present all
functions in a complete and concise way.

3.2 Static View

Fig. 3 shows an overview of all architectural
elements from a logical point of view. The deployment
nodes are NoSQL Database, Integration Service, Smart
Home Device, Smart Home Platform and Integration
Engineering Interface.

The Integration Service is the main backend
component of our reference architecture. It includes
functionality to parse the API specification which is
based on the YAML syntax. The YAML syntax is an
XML-like message format with well-known rules for
making message parsing easy. Furthermore, the service
contains the Mapping Logic component that is
responsible for performing CRUD operations on the
NoSQL Database. One can think of the result of the

Page 6664

mapping logic component as a recommender system
that retrieves all relevant device-platform model
mappings from the database and presents it to the end
user. Mapping data is stored in a peer mapping model
and must be transformed in a platform supported
model when a HTTP binding is being generated. The
Integration Service can support multiple platforms if
the platform exposes a Management API where third-
party systems can perform services like creating an
automation rule or querying the platform type model
(e.g. retrieve all devices of type Switch). Please note
that the Device Discovery only can detect whether an
IP address is answering a “ping”-command or not.

Fig. 3: Static View Reference Architecture

The frontend component of our reference
architecture is the Integration Engineering Interface.
This web-based user interface is accessed by the smart
home platform owner and is exploited to perform the
required integration tasks. These tasks will be
presented in detail in section 3.3. Furthermore, the
Integration Engineering Interface can render the
OpenAPI specification of a Smart Home Device.
Furthermore, all specific mappings between device and
platform model can be transferred to the Integration
Service via a HTTP-Client.

The last architectural component is the Smart
Home Platform. It contains basic platform
functionality as defined in Fig. 1. The Integration
Service has some dependencies on the attached smart
home platform. The Integration Service currently
requires a HTTP Binding because mappings formalized
in the frontend are only supporting devices that expose
an openAPI specification. Although other bindings
such as MQTT are technically feasible by most
platforms, other endpoints than HTTP are not natively
supported by the openAPI specification. Furthermore,
it must be possible to parse Messages sent by the
Smart Home Device (e.g. JSON messages). Lastly, a
Rule Engine must be present that can access the HTTP
Binding. The expressiveness of the rule formalization
language must support update events (i.e. when a value
is changed by the Smart Home Device). In most
platforms a simple “If-This-Then-That” (IFTTT)
language is available.

3.3 Dynamic View

The dynamic view of our reference architecture is
influenced by the applied integration method. Here, we
use the “Knowledge-driven Architecture Composition”
(KDAC) approach [17], [19]). The KDAC approach
can be described as an interface integration method
where integration knowledge is formalized per use-
case. This means, that a suitable knowledge base grows
incrementally as only required component coupling
knowledge is captured. This stands in stark contrast to
classical integration methods from component-based
software development [4] and automated web service
composition [5]. Formal integration methods rely on
heavy-weight formal standards such as OWL-S [20]
and their domain-specific sub-ontologies (e.g. IoT-O
[21]. However, such formal standards require expert
knowledge and are hard to use for end users.
Furthermore, the process to create such domain
standards in practice is slow whereas the technological
innovation cycles are expected to become faster and
faster. Consequently, understanding and applying IoT
standards may be more difficult in contrast to creating
an adapter.

Applying the KDAC approach on the reference
architecture results in the sequence diagram illustrated
(see Fig. 4). Please note that there is only one swim-
lane for the Integration Service and the Database.
The reason for this is that only the Integration Service
can access the Database and both components run on
the same physical host. In general, the user has to 1)
inspect all available device mappings 2) select and
save mappings and 3) generate the respective platform-
specific payloads for performing the integration. In 2)
mappings can be either reused if they are present in the

Page 6665

database or mappings between smart home device and
platform type model can be created or deleted. As a
last note, the dynamic view shows that the Integration
Service fetches platform types from its database (see
Fig. 4).

This seems conceptually conflicting to supporting
multiple platforms. However, this is only a technical
circumstance as platform types can be queried by using
the Management API. In addition, the schema-free
NoSQL knowledge base can be easily manipulated in
comparison to SQL- or OWL-based knowledge bases.

Fig. 4: Dynamic View Reference Architecture

In the context of the KDAC approach, one device-

platform integration case performed by the end user is
one formalization increment. Hence, one can apply the
human-in-the-loop principle on the depicted dynamic
view so that only required integration knowledge is
formalized per use-case. Over time, the knowledge
database contains more and more mappings.
Consequently, the end user fades out of the loop and
only approves recommendations made based on
previous integrations. Reusable mappings in
distributed integration settings over time require an
easy to use integration user interface. This is the
purpose of the upcoming implementation and
evaluation chapters. Therefore, the amount of
mappings that can be reused over a long period of time
(i.e. full automation of thousands of devices) is not in
the scope this work.

4. Implementation

By using the proposed reference architecture in
practice, we focused on achieving the system
characteristics for evaluating our research question.
The beneficial system characteristics are end user
usability and reduced integration time achieved by
automating binding generation.

Fig. 5: Knowledge Base Schema

All components have been deployed on a dedicated
Linux Ubuntu Server 18 LTS. As a NoSQL database
we used OrientDB. For materializing the recommender
feature, the data schema illustrated in Fig. 5 is used.
For integrating smart home devices, two mock servers
were implemented in Node.js and were equipped with
openAPI specification files as an API Specification
language. As a smart home platform, we selected
openHAB 2.4 as it offers most platform services over a
HTTP API (i.e. Management API). OpenHAB relies on
textual rules, items and sitemap files. Those files can
be written by a JavaScript file writer to the respective
directory as all logical components are deployed on the
same operating system. Furthermore, openHAB offers
a textual IFTTT rule engine and supports JSON Path
Transformations for message handling send by the
HTTP-based mock server. The Integration
Engineering Interface UI communicates with the
Integration Service using an Axios HTTP Client. The
user interface is based on Vue.js which allows for the
development of a single-page web application in
combination with Vuex for state management across
different UI components (see Fig. 6). The Integration
Service backend application is based on the JavaScript
runtime Node.js which was built on Google Chrome’s
V8 JavaScript engine. Node.js is built on an event-
driven, non-blocking I/O model which ensures high
throughput of requests and efficiency. Using the web-
framework Express the backend provides REST

Page 6666

functions that can be called from the user interface. We
only support one smart home platform.
However, this does not influence the evaluation results
as most smart home platforms offer a user interface
where end users can check whether the device
integration was successful.

/***Item File for openHab***/
Switch EasyLight1_status "Get status of light (On / Off)"
{http="<[http://easyuser:Upd4t3d@localhost:
3000/api/v1/status:1000:JSONPATH($.status)]"}

/***Sitemap File for openHab***/
sitemap EasyLight1 label="ControlEasyLight1"
{Frame label="Controls" {Default item=EasyLight1_status}}

/***Rule File for openHab***/
rule "changeStatus_EasyLight1_status"
 when Item EasyLight1_status changed
 then
 var Boolean switchState
 if (EasyLight1.state == OFF) {
 switchState = false
 } else {
 switchState = true
 }
 var requestPayload = '{"status":' + switchState + '}'
 logInfo("Sending: ", requestPayload.toString)
 sendHttpPostRequest("http://easyuser:Upd4t3d@
 localhost:3000/api/v1/status", "application/json",
 requestPayload)
end

 Fig. 7: openHABs’ text-based Integration

5. Evaluation

For answering our core research question “How can
IoT device integration processes be automated by tools

so that a high tool usability is achieved?” we designed
a user study which can be described as an action-case
research [22]. Therefore, we adopted a within-subject
evaluation design where the independent variable is the
user interface and the dependent variables are the
system usability score according to Brooks [9] and the
integration time. Regarding the independent variable
we compare the traditional text-based approach (see
Fig. 7) with our graphical approach (see Fig. 6). The
study participants were required to perform the
following concrete integration task per input option:

Textual integration: 1) Map an offered smart home
device sub-route to an openHAB type item 2) Create a
rule that makes an HTTP POST request to the device
as soon as the device state changes 3) Create a sitemap
that displays all state changes as a simple UI
component.

Graphical Integration: 1) Retrieve possible
mappings for the device to be integrated 2) Show and
adapted the mapping for the preferred device sub-route
3) Generate all necessary Bindings (i.e. files required
by openHab depicted in Fig. 7).

All study participants performed both integration
approaches for two sub-paths (i.e. status and brightness
route of a light bulb). The order of treatment is
randomly decided per candidate and all candidates
where allowed to use openHABs debug console. All
instructions and necessary parameters such as login
credentials were given to participants before starting all
measurements.

Furthermore, we facilitated Think-Aloud scenarios
where one study participant is guided by one
facilitator that may provide help on request. Every
feedback and request is logged by a third person, the
log keeper [23]. These roles were always fixed.

To generate a quantifiable hypothesis, we divided
our core research question into two sub questions:

Fig. 6: UIs for Integration Engineering Interface

Page 6667

 RQ1: How do usability aspects differ for
textual and graphical integration tools?

 RQ2: How many errors per minute are made
during the respective integration sessions per
minute?

For RQ1, we assume that the usability score is higher
for the graphical integration interface. For RQ2, our
hypothesis is that there are less errors when code
generation is activated. Furthermore, we suppose that
overall integration time decreases.

Fig. 8: OpenHAB Result Check

A device integration is successful if the device can

be accessed by the openHAB UI and there is no error
shown in the debug console when a state change is
triggered (see Fig. 8). The evaluation operator also
checked whether the mock IoT device did receive an
update during each session.

5.1 Study participants characteristics

Based on an online self-assessment questionnaire,
we collected the following study participants
characteristics: Overall 10 persons participated in the
evaluation. 6 persons are currently pursuing a PhD, 1
person pursues studies in a master and 3 persons in a
bachelor program.

Graphic A: Overall IT Skillset of all participants

6 persons stated that they are majoring in business
informatics and one person was from the fields of
informatics, mechanical engineering, political sciences
and business education. Overall, 6 persons had already
heard of openHAB whereas 5 persons had theoretical
knowledge, 2 persons had practical knowledge and 3
persons had no knowledge within the field of IoT. The

overall IT Skillset by all participants achieved an
average of 4.1 (see Graphic A).

5.2 Usability

Usability was quantified by adapting the system

usability score by Brooke [9]. After executing both
integration approaches, the study participants where
asked 8 questions concerning the usability of both
tools. These are:

 I felt very safe using the system.
 I find the system unnecessarily complex (*)
 I find that there are too many inconsistencies

in the system. (*)
 I find the system easy to use.
 I had to learn a lot of things before I could

work with the system. (*)
 I think I would need more technical support to

use the system. (*)
 I can imagine that most people learn to

control the system quickly.
 I find that the various functions of the system

are well integrated.
A question marked with an Asterix (*) are perceived as
negative usability questions. We dismissed two
questions as they were not relevant to our case.

Each question could be answered based on a 6-
point Likert scale ranging from 1 (strongly disagree) to
6 (strongly agree). This has been done to achieve a
more fine-grained result. Please note, that the
adaptations were also reflected in our score
calculations. All values have been accumulated per
persons and visualized in Graphic B.

Graphic B: Usability Score per Input Method

The average system utility score for the textual

integration method is 29.25 and for the graphical
integration method 85.25. Especially test persons with
a non-technical background (person 8 and 9)
performed well using the graphical tool. Brooke states
that a system usability score over 68 can be considered
as user friendly [9].

Page 6668

Regarding the Think-Aloud scenario [23], the
amount of questions asked is visualized in Graphic C.
Here the study participants where not actively asked to
count questions themselves. This was done by the log
keeper as a passive measurement. It can be noted that
the amount of questions asked by the participants
regarding the textual integration approach is higher
compared to the graphical approach.

Graphic C: Question Asked per Input Method

Since, test person 8 and 9 (students of Business

Education and Political Science) surrendered to
process the test scenario with the textual approach
immediately, no questions could be counted.
Furthermore, most questions regarding the graphical
approach have been asked by participants with a non-
IT background (8-10 where test person 10 is a student
from Mechanical Engineering). On average, 16.75
questions were asked for the textual and 3.3 questions
for the graphical approach.

5.3 System Performance

For measuring overall system performance, we
quantified the overall integration time per study
participant as well as the amount of user errors. A user
error is counted if and only if an error message was
shown in the debug console or if the integration of the

Graphic D: Integration Time per Input Method

device was not successful (i.e. not working via Basic
UI). Please note that when integrating the second sub-
path, some code fragments could be reused by copying
and pasting using the textual approach.

On average, the integration of both sub-paths took
1651 seconds (27.51 minutes) for the textual approach
and 354.2 seconds (5.9 minutes) for the graphical
approach. If a test person was not able to solve the
tasks, the time to complete is specified as 0 and is not
included in the calculation of the average time.
Overall, 3 persons did not finish the task.

On average, participants made 4.5 errors when
using the textual approach and 1.5 errors using the
graphical approach. Test persons 8 and 9 which
surrendered using the textual approach were able to
complete the graphical integration task (see Graphic
E). To sum up, the error rate per minute is 0.164 for the
textual and 0.254 for the graphical approach.

Graphic E: User Error Count per Input Method

For comparison, when a domain-expert performs

both integration tasks, 337 seconds were spent using
the textual and 48 seconds for the graphical tooling
environment.

5.4 Result Interpretation

Based on our evaluation we can confirm the
hypothesis for RQ1 as the overall usability increased.
The hypothesis for RQ2 must be partially rejected as
the error rate per minute is higher using the graphical
approach although overall integration time was lower.

However, there are several threats to validity where
some are listed in the following: Although our set-up
can be considered as replicable due to using open-
source technology exclusively, MergePoint only
generates simple rules (see Fig. 7) and is not Turing-
complete. Nevertheless, control and command use-
cases can already be integrated (semi-) automatically.

Learning a new textual integration language is not
an easy task. Therefore, we provided each study
participant with a manual where relevant code snippets

Page 6669

for creating the openHAB files were illustrated.
Although this introduces noise to the integration time,
it reflects the reality how IoT software developer work.
Furthermore, integration time is naturally lower when
certain steps are automated. However, as the usability
factor was our main object of investigation this
influence can be tolerated.

6. Conclusion

Software development for IoT devices exposes new
engineering challenges such as interface compatibility
and semantic interoperability. In this work we
presented MergePoint, a reference architecture for
automating integration tasks by persisting integration
knowledge incrementally. MergePoint can be
beneficial for practitioners and researches.
Practitioners can test and assess graphical, automated
integration approaches for smart home platforms based
on a reference architecture. Researchers can identify
current conceptual pitfalls for future research in the
area of software component coupling mechanisms.

In the future, we plan to support multiple IoT
platforms and want to apply our tooling and integration
approach in a distributed development setting. By
doing so, we will be enabled to focus on engineering
efficiency instead of tool usability.

Acknowledgement
This work was supported by the BMVI project
xDataToGo (http://www.bmvi.de/goto?id=359354)
under the support code 19F2048D.

7. References

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of
Things: A survey,” Comput. Netw., vol. 54, no. 15, pp. 2787–
2805, Oct. 2010.
[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari,
and M. Ayyash, “Internet of Things: A Survey on Enabling
Technologies, Protocols, and Applications,” IEEE Commun.
Surv. Tutor., vol. 17, no. 4, pp. 2347–2376, Fourthquarter
2015.
[3] “Smart Home Report 2019,” Statista. [Online]. Available:
https://www.statista.com/study/42112/smart-home-report/.
[Accessed: 07-Jun-2019].
[4] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da M.
Silveira Neto, Y. C. Cavalcanti, and S. R. de L. Meira,
“Twenty-eight years of component-based software
engineering,” J. Syst. Softw., vol. 111, pp. 128–148, Jan.
2016.
[5] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S.
Bourne, and X. Xu, “Web services composition: A decade’s
overview,” Inf. Sci., vol. 280, pp. 218–238, Oct. 2014.
[6] A. Vakili and N. J. Navimipour, “Comprehensive and
systematic review of the service composition mechanisms in

the cloud environments,” J. Netw. Comput. Appl., vol. 81, pp.
24–36, Mar. 2017.
[7] H. Muccini and M. T. Moghaddam, “IoT Architectural
Styles,” in Software Architecture, 2018, pp. 68–85.
[8] S. Malakuti, T. Goldschmidt, and H. Koziolek, “A
Catalogue of Architectural Decisions for Designing IIoT
Systems,” in Software Architecture, 2018, pp. 103–111.
[9] J. Brooke, “SUS: A Retrospective,” J Usability Stud., vol.
8, no. 2, pp. 29–40, Feb. 2013.
[10] P. W. Jordan, B. Thomas, I. L. McClelland, and B.
Weerdmeester, Usability Evaluation In Industry. CRC Press,
1996.
[11] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja,
“Software Engineering for the Internet of Things,” IEEE
Softw., vol. 34, no. 1, pp. 24–28, Jan. 2017.
[12] J. A. Stankovic, “Research Directions for the Internet of
Things,” IEEE Internet Things J., vol. 1, no. 1, pp. 3–9, Feb.
2014.
[13] M. E. Jennex, “Big Data, the Internet of Things, and the
Revised Knowledge Pyramid,” SIGMIS Database, vol. 48,
no. 4, pp. 69–79, Nov. 2017.
[14] F. Burzlaff and C. Bartelt, “I4.0-Device Integration: A
Qualitative Analysis of Methods and Technologies Utilized
by System Integrators: Implications for Enginering Future
Industrial Internet of Things System,” in 2018 IEEE
International Conference on Software Architecture
Companion (ICSA-C), 2018, pp. 27–34.
[15] M. C. Platenius, W. Schäfer, and S. Arifulina,
“MatchBox: A Framework for Dynamic Configuration of
Service Matching Processes,” in Proceedings of the 18th
International ACM SIGSOFT Symposium on Component-
Based Software Engineering, New York, NY, USA, 2015,
pp. 75–84.
[16] A. Bennaceur and V. Issarny, “Automated Synthesis of
Mediators to Support Component Interoperability,” IEEE
Trans. Softw. Eng., vol. 41, no. 3, pp. 221–240, Mar. 2015.
[17] F. Burzlaff and C. Bartelt, “A Conceptual Architecture
for Enabling Future Self-Adaptive Service Systems,”
presented at the Proceedings of the 52nd Hawaii International
Conference on System Sciences, 2019.
[18] “SHOIN.” [Online]. Available:
http://www.cs.man.ac.uk/~ezolin/dl/. [Accessed: 07-Jun-
2019].
[19] F. Burzlaff and C. Bartelt, “Knowledge-Driven
Architecture Composition: Case-Based Formalization of
Integration Knowledge to Enable Automated Component
Coupling,” in 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), 2017, pp. 108–
111.
[20] “OWL Web Ontology Language for Services (OWL-
S).” [Online]. Available:
https://www.w3.org/Submission/2004/07/. [Accessed: 06-
Jun-2019].
[21] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil,
“IoT-O, a Core-Domain IoT Ontology to Represent
Connected Devices Networks,” in Knowledge Engineering
and Knowledge Management, 2016, pp. 561–576.
[22] G. Leroy, Designing User Studies in Informatics.
Springer Science & Business Media, 2011.
[23] J. Nielsen, “Thinking aloud: The# 1 usability tool,”
Nielsen Norman Group Online January, vol. 16, 2012.

Page 6670

