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Abstract 
 

More and more devices are connected to Internet of 
Things Platforms in various application domains. The 
resulting device integration effort is moderated by the 
concrete integration syntax and the technical abilities 
of the device integrator. Therefore, researchers from 
various communities have been investigating and 
designing component coupling architectures to achieve 
interoperability for more than 30 years. Emerging 
Smart Home scenarios challenges classical integration 
approaches as no single formal integration standard 
exists. In this paper we introduce a reference 
architecture called MergePoint that automates HTTP-
Endpoint integration with smart home platforms such 
as openHAB in a plug-and-play manner. Based on a 
prototypical system implementation, our empirical 
evaluation demonstrates that average integration time 
can be reduced by 78% and average tool usability 
score is increased by 65% compared to textual 
integration approaches. MergePoint can serve as a 
reference implementation for practitioners that want to 
automate the integration between HTTP-Endpoints and 
IoT Platform Models.  
 
 
1. Introduction  
 

More and more devices are connected to Internet of 
Things (IoT) Platforms in various application domains 
[1]. The application cases range from Industry and 
Healthcare to Transportation and Smart Homes [2]. 
One key characteristic of IoT-Systems is their flexible 
architecture. In contrast to closed, classical systems 
(e.g. ERP Systems), these IoT-Systems can be 
efficiently extended during design and runtime. For 
example, use cases for smart home appliances such as 
“send warning message if stove or oven is not turned 

off” or “notification when washing cycle has 
completed” are currently trending [3]. 

Although smart appliances such as Amazons Alexa 
currently support more than 15’000 skills (=voice 
command), these skills must be manually developed by 
software engineers per device. Hence, interoperability 
across platforms and devices is still one of the main 
adoption barriers for consumers when avoiding vendor 
lock-in. To exploit the growing IoT-market (i.e. 153 
billion US$ in 2023 [3]) the integration between IoT 
devices and platforms across company ecosystems, 
standards and markets will be key to success.  

From a scientific viewpoint, integration challenges 
such as interface compatibility and (automated) 
software component coupling are in the scope of 
several research communities [4]–[6]. In general, 
relevant IoT architectures can be conceptually 
described as a four-layered architecture integrating a 1) 
sensing layer containing sensors and RFID tags 2) a 
networking layer providing basic transfer networks 3) a 
service layer to control system states according to user 
goals and 4) a platform interface layer accessed by the 
user and other systems. In most cases, such 
architectural styles are centralized platforms that 
connect distributed devices [7]. Furthermore, the most 
studied quality attributes of IoT architectures are 
scalability, security, interoperability and performance 
[7].  

Engineering IoT systems involves several 
architectural decisions. For tackling the integration 
challenge for automated interface component coupling, 
there are 7 relevant design choices: 1) standardized vs. 
proprietary information models 2) raw vs. semantically 
annotated information 3) generic vs. domain-specific 
protocols 4) standardized vs. specific interfaces 5) 
common model vs. peer mapping for model 
interoperability 6) standardized vs. proprietary 
engineering data models and 7) desktop-based vs. web-
based User Experience [8].  
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The contribution of this paper is the 
conceptualization and implementation of the web-
based application called MergePoint. MergePoint 
automates the integration of self-describing HTTP 
interfaces including raw and proprietary information 
models between devices and platforms. By not relying 
on one data model from one manufacturer, the 
syntactical interface description is formalized using the 
openAPI specification standard and engineering 
knowledge is stored in a model. To achieve 
interoperability, a common intermediate mapping 
model is defined which can be used for smart home 
applications. Our proposed solution is evaluated within 
an empirical setting where we compare traditional, 
more expressive textual integration solutions with a 
graphical integration tool. On average, the system 
usability as suggested by Brooks [9], [10] increased 
from 29.25 to 85.25 (Scale 0-100) and integration time 
decreased from 27.51 to 5.9 minutes when using 
MergePoint. 

The remainder of this paper is structured as 
follows: section 2 outlines the context of this work, 
section 3 introduces the reference architecture, section 
4 describes MergePoint and section 5 presents our 
evaluation. Finally, section 6 concludes our work. 

 
2. Background and Related Work 
 

Context: From a software development point of 
view, the term “Internet of Things” can be defined as 
“co-engineered interacting networks of physical and 
computational components” [11]. Overall, six 
computational components can be identified. These are 
Identification, Sensing, Communication, Computation, 
Services and Semantics [2], [7]. Within smart home 
scenarios, a four-layered architecture can be regarded 
as a common model for structuring these components. 
Most major open-source smart home platforms such as 
openHAB, home-assistant or ioBroker pursue this 
architecture as these platforms are a centralized 
installation per household. Hence, the resulting layers 
are Sensing&Perception, Communication and Services, 
Application and UI&Interfaces (see Fig. 1). 

Problem: Among others, one main problem for the 
widespread adoption of IoT-Platforms is massive 
scaling [12]. Within this problem space, 
interoperability between provided data offered by 
smart home devices and platform data models is one of 
the key challenges. Here a translation between IoT data 
models and Platform-Applications (e.g. automation 
rules) are necessary to fulfil desired user goals. As 
most smart home platforms already offer the 
underlying generic (e.g. HTTP, SOAP or TCP/IP) and 
domain-specific protocol adapters (e.g. MQTT, KNX 
or ZigBee), the integration challenge shifts from a 

syntactic-centric to a semantic-centric challenge. For 
instance, openHAB currently offers support for 1547 
things, home-assistant provides 1395 thing adapters 
and ioBroker exhibits 276 interface adapters. Based on 
the assumption that future IoT-devices offer open 
interfaces (i.e. accessible for third parties), platforms 
must be equipped with a flexible logical data model. 
Consequently, different thing channels must be linked 
to platform model items (see red boxes in Fig. 1). 

This mapping is trivial when all parties involved 
use the same standard. Each standard defines its own 
data model and must be supported by the platform (e.g. 
one home installation uses only products and platforms 
offered by Apples HomeKit). 

 

Thing Thing
Sensing and 

Perception [Physical]

Communication 
and Services

Application

UI and Interfaces

IP-based Protocols

Gateway

Mobile Web 3rd Party

Data model

Automation
Rules

Logging Storage
Device 

Management

Service-API

IP-based Protocols
Smart Home Platform

[Cyber]

 
Fig. 1: Smart Home Platform Architecture 

 
However, this may result in an undesired vendor 

lock-in. Hence, open-source smart home platforms 
propose their own data model where each IoT-device 
data model item must be integrated manually. This 
must be mainly done by the end-user. If end users 
formulate their own automation rules, the semantics of 
an IoT-device item is decided at integration time based 
on the application context. In contrast, standard-based 
integration solutions fix mappings already at 
component design time. 

Example: Based on an adapted version of the well-
known knowledge pyramid [13], the integration of a 
light bulb status is exemplified:  

 Data: Value of “status” is on, true active or 1 
 Information: This means that the light bulb 

channel “status” acts as a switch and now the 
light bulb produces luminance 

 Knowledge: Peter turns on the light when he´s 
playing the drums in his room 

 Actionable Wisdom/Intelligence: Shut the 
windows in Peters room 
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Need: By assigning the data item value of “status” 
a type information offered by the smart home platform, 
the meaning is fixed per use case. If the item label is 
named differently (e.g. “condition”), the end user must 
reconfigure the assigned type. Such mappings must be 
currently defined manually by the end user and thus the 
user interface is subject to usability aspects. Here, the 
question arises how textual or graphical integration 
interfaces are perceived by the end user.  

Solution Proposal: Facilitating this comparison, 
we propose MergePoint – a graphical user interface 
that allows for an easy mapping between IoT data 
models and platform models. Furthermore, the 
performance increases as integration knowledge in 
distributed smart home installations becomes reusable 
in an automated setting. 

Related Work: Koziolek et al. just presented an 
OpenPnP (plug-and-play) reference architecture for the 
industrial IoT at ICSE 2019 Demonstrations Track. 
Krishna et al. presented a tool called IoT Composer 
within the same track that can compose and deploy IoT 
applications automatically. However, industrial IoT use 
cases differ significantly from smart home use cases 
[14]. Last, Platenius et al. published MatchBox, a 
configurable interface matching tool for component 
matching processes [15] and Bennaceur and Issarny 
implemented MICS (Mediator synthesis to Connect 
Components) for verifiable component mappings [16]. 
 
2.1. Scope Restrictions 

 
The components of a formal mapping language can 

be categorized as syntax, semantics and pragmatic. 
Applying these categories on the adaptive DIKW 
pyramid pragmatics can be related to Actionable 
Wisdom/Intelligence. MergePoint and the 
accompanying engineering approach does not cover 
this aspect. Furthermore, contextual information (i.e. 
Knowledge) are necessary for determining the 
semantics of data but are also not in the scope of 
MergePoint. However, the context (e.g. automation 
rule) for determining the semantics during integration 
time can be described in forums, manuals or 
repositories. Consequently, only the semantical 
mappings (i.e. Information) between IoT device data 
and smart home platform model is formalized. 

When  formalizing the semantics of mappings 
between data models, a mapping language is required 
[8]. For example, Burzlaff and Bartelt [17] used a first-
order logic language called OWL-DL. OWL-DL is a 
formal language with SHOIN expressivity [18]. 
Furthermore, there exist reasoners such as FaCT++ or 
Pellet that allow to infer new knowledge based on 
deductive reasoning (i.e. Conditional Statement && 
Antecedent  Consequence). Burzlaff and Bartelt 

conclude that the formalization effort when using 
OWL requires an advanced end-user skillset as 
declarative integration languages (e.g. SQL) behave 
differently compared to imperative languages (e.g. 
Java). We also believe that OWL exposes a poor end-
user usability and exclude it from MergePoint. 
Consequently, this work is a subsequent work that 
focuses on the usability aspect of using formalized 
integration knowledge by decreasing language 
expressivity. 
 
3. MergePoint Reference Architecture  
 

From the viewpoint of a software developer, 
designing an interface for one IoT device is technically 
easy. For example, one can implement an OPC UA 
server by using a java-based reference implementation 
(e.g. Eclipse Milo). It is easy because the software 
developer picks a standardized communication 
protocol and designs the message content. The 
message content is mainly driven by his conceptual 
model.  

When integrating multiple IoT devices from 
different vendors within a platform, data and service 
integration effort arise. For example, when integrating 
a light bulb providing a HTTP-Interface with 
predefined smart home platform types, the sub-route 
/status does not syntactically match the platform type 
Switch although they refer (i.e. meaning) to the same 
semantic concept of a light-bulb state (see Fig. 2). The 
same circumstance applies for the sub-route 
/brightness and the platform type Dimmer. Here, an 
existing automation rule may not be executable 
because these semantic relationships cannot be 
retrieved. The reason for this is that the engineering 
knowledge is not persisted during integration time. 
MergePoint closes this gap by attempting to answer the 
overall research question:  

 
How can IoT device integration processes be 

automated by tools so that a high usability is achieved? 
 
 

Smart Home Platform

192.168.0.200

/brightness

Switch

Dimmer

UI-SitemapRule
/api/v1

/status

Smart Home Device
 

Fig. 2: Integration Example 
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Arguably, an intuitive approach for automating 
such integration challenges would be using domain-
specific standards.  
 

However, the creation of such standards requires 
time and thus cannot keep up with the fast-technical 
innovation cycles. This means, that IoT standards may 
be heavily adapted or that they do only provide a 
vocabulary. This vocabulary is then interpretable by a 
human, but not by a computer as conceptual links are 
not available. Hence, the usability of integration tools 
for storing these links are central to this work. 

We are empirically investigating 1) if a textual or a 
graphical concrete syntax achieves a higher usability 
score and 2) how integration performance varies 
between both integration approaches.  

In the upcoming section, we provide a static as well 
as a dynamic view of our proposed reference 
architecture. All technologies and standards used are 
open-source and can be implemented by using various 
libraries in a desired programming language. We will 
describe one concrete implementation of this reference 
architecture, MergePoint, in section 4. 
 
3.1 Architectural Design Choices 
 

Based on the proposed catalogue for implementing 
(industrial) IoT-platforms [8], we answer 7 (out of 13) 
relevant design choices for the main architectural 
layers in the physical and cyber-world (see Fig. 1): 

 
[Layer: Sensing and Perception] 
1. Standardized vs. proprietary information models: 
We mostly rely on unstandardized IoT device 
information models. 
2. Raw vs. semantically annotated information models: 
As we are not relying on standards, semantic 
annotation tags that may point to an ontology are not 
used. Hence, we only raw information model data. 
[Layer: Smart Home Platform] 
3. Generic vs. domain-specific protocols: We strictly 
require generic protocols such as HTTP or OPC UA 
for communicating with edge devices. Hence, we do 
not support company-specific solutions. However, we 
are not restricting the communication paradigm (e.g. 
client/server or publish/subscribe) 
4. Standardized vs. specific interfaces: We require 
REST-like interfaces for accessing the device APIs in a 
uniform way. For automating parsing of functions 
offered by APIs we furthermore require all devices to 
expose an openAPI specification file. Please note that 
openAPI only standardizes the hierarchy of path routes 
and not the meaning of data items.  
5. Common model vs. peer mapping model: For 
achieving interoperability between device and platform 

information model, we rely on a peer mapping model. 
This is necessary as there exist no common 
information model that is supported by all available 
devices or every platform may have its own 
information model. 
[Layer: UI and Interfaces of Engineering Tools] 
6. Standardized vs. proprietary engineering data 
models: For formalizing mappings within our peer 
mapping model, we envision a domain-specific 
standard. To transfer integration information between 
platforms, we chose an open-accessible schema-free 
database. 
7. Desktop-based vs. Web-based User Experience: 
Although desktop-based integration IDEs may offer 
more functionality and are more expressive [17], we 
chose a web-based integration frontend for mapping 
definition. The main reason for this lies within the 
overall usability goal of integration tools. 
 

We are not supporting closed, domain-specific 
solutions such as Apple HomeKit, where interfaces are 
not accessible programmatically by third parties. 
Although this may affect overall system performance 
in a negative way, we gain technical interoperability 
when using generic communication protocols. 

Furthermore, we are not concerned about device 
discovery and self-configuration mechanisms (e.g. 
network addresses or authentication credentials) as 
they may affect scalability aspects but are not directly 
related to usability aspects. Our evaluation targets are 
on-premise smart home platforms. Hence, aspects 
related to cloud communications (e.g. firewall friendly 
protocols) are not taken into consideration but are 
supported by most smart home platforms out-of-the-
box. 

Finally, we assume that the web-based integration 
tool is accessed by a device that can present all 
functions in a complete and concise way. 
 
3.2 Static View 
 

Fig. 3 shows an overview of all architectural 
elements from a logical point of view. The deployment 
nodes are NoSQL Database, Integration Service, Smart 
Home Device, Smart Home Platform and Integration 
Engineering Interface. 

The Integration Service is the main backend 
component of our reference architecture. It includes 
functionality to parse the API specification which is 
based on the YAML syntax. The YAML syntax is an 
XML-like message format with well-known rules for 
making message parsing easy. Furthermore, the service 
contains the Mapping Logic component that is 
responsible for performing CRUD operations on the 
NoSQL Database. One can think of the result of the 
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mapping logic component as a recommender system 
that retrieves all relevant device-platform model 
mappings from the database and presents it to the end 
user. Mapping data is stored in a peer mapping model 
and must be transformed in a platform supported 
model when a HTTP binding is being generated. The 
Integration Service can support multiple platforms if 
the platform exposes a Management API where third-
party systems can perform services like creating an 
automation rule or querying the platform type model 
(e.g. retrieve all devices of type Switch). Please note 
that the Device Discovery only can detect whether an 
IP address is answering a “ping”-command or not. 

 

 
 

Fig. 3: Static View Reference Architecture 
 

The frontend component of our reference 
architecture is the Integration Engineering Interface. 
This web-based user interface is accessed by the smart 
home platform owner and is exploited to perform the 
required integration tasks. These tasks will be 
presented in detail in section 3.3. Furthermore, the 
Integration Engineering Interface can render the 
OpenAPI specification of a Smart Home Device. 
Furthermore, all specific mappings between device and 
platform model can be transferred to the Integration 
Service via a HTTP-Client.  

The last architectural component is the Smart 
Home Platform. It contains basic platform 
functionality as defined in Fig. 1. The Integration 
Service has some dependencies on the attached smart 
home platform. The Integration Service currently 
requires a HTTP Binding because mappings formalized 
in the frontend are only supporting devices that expose 
an openAPI specification. Although other bindings 
such as MQTT are technically feasible by most 
platforms, other endpoints than HTTP are not natively 
supported by the openAPI specification. Furthermore, 
it must be possible to parse Messages sent by the 
Smart Home Device (e.g. JSON messages). Lastly, a 
Rule Engine must be present that can access the HTTP 
Binding. The expressiveness of the rule formalization 
language must support update events (i.e. when a value 
is changed by the Smart Home Device). In most 
platforms a simple “If-This-Then-That” (IFTTT) 
language is available. 
 
3.3 Dynamic View 
 

The dynamic view of our reference architecture is 
influenced by the applied integration method. Here, we 
use the “Knowledge-driven Architecture Composition” 
(KDAC) approach [17], [19]). The KDAC approach 
can be described as an interface integration method 
where integration knowledge is formalized per use-
case. This means, that a suitable knowledge base grows 
incrementally as only required component coupling 
knowledge is captured. This stands in stark contrast to 
classical integration methods from component-based 
software development [4] and automated web service 
composition [5]. Formal integration methods rely on 
heavy-weight formal standards such as OWL-S [20] 
and their domain-specific sub-ontologies (e.g. IoT-O 
[21]. However, such formal standards require expert 
knowledge and are hard to use for end users. 
Furthermore, the process to create such domain 
standards in practice is slow whereas the technological 
innovation cycles are expected to become faster and 
faster. Consequently, understanding and applying IoT 
standards may be more difficult in contrast to creating 
an adapter. 

Applying the KDAC approach on the reference 
architecture results in the sequence diagram illustrated 
(see Fig. 4). Please note that there is only one swim-
lane for the Integration Service and the Database. 
The reason for this is that only the Integration Service 
can access the Database and both components run on 
the same physical host. In general, the user has to 1) 
inspect all available device mappings 2) select and 
save mappings and 3) generate the respective platform-
specific payloads for performing the integration. In 2) 
mappings can be either reused if they are present in the 
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database or mappings between smart home device and 
platform type model can be created or deleted. As a 
last note, the dynamic view shows that the Integration 
Service fetches platform types from its database (see 
Fig. 4). 

This seems conceptually conflicting to supporting 
multiple platforms. However, this is only a technical 
circumstance as platform types can be queried by using 
the Management API. In addition, the schema-free 
NoSQL knowledge base can be easily manipulated in 
comparison to SQL- or OWL-based knowledge bases.  

 

 
 
Fig. 4: Dynamic View Reference Architecture 

 
In the context of the KDAC approach, one device-

platform integration case performed by the end user is 
one formalization increment. Hence, one can apply the 
human-in-the-loop principle on the depicted dynamic 
view so that only required integration knowledge is 
formalized per use-case. Over time, the knowledge 
database contains more and more mappings. 
Consequently, the end user fades out of the loop and 
only approves recommendations made based on 
previous integrations. Reusable mappings in 
distributed integration settings over time require an 
easy to use integration user interface. This is the 
purpose of the upcoming implementation and 
evaluation chapters. Therefore, the amount of 
mappings that can be reused over a long period of time 
(i.e. full automation of thousands of devices) is not in 
the scope this work. 

4. Implementation 
 

By using the proposed reference architecture in 
practice, we focused on achieving the system 
characteristics for evaluating our research question. 
The beneficial system characteristics are end user 
usability and reduced integration time achieved by 
automating binding generation. 

 
Fig. 5: Knowledge Base Schema 

 
All components have been deployed on a dedicated 
Linux Ubuntu Server 18 LTS. As a NoSQL database 
we used OrientDB. For materializing the recommender 
feature, the data schema illustrated in Fig. 5 is used. 
For integrating smart home devices, two mock servers 
were implemented in Node.js and were equipped with 
openAPI specification files as an API Specification 
language. As a smart home platform, we selected 
openHAB 2.4 as it offers most platform services over a 
HTTP API (i.e. Management API). OpenHAB relies on 
textual rules, items and sitemap files. Those files can 
be written by a JavaScript file writer to the respective 
directory as all logical components are deployed on the 
same operating system. Furthermore, openHAB offers 
a textual IFTTT rule engine and supports JSON Path 
Transformations for message handling send by the 
HTTP-based mock server. The Integration 
Engineering Interface UI communicates with the 
Integration Service using an Axios HTTP Client. The 
user interface is based on Vue.js which allows for the 
development of a single-page web application in 
combination with Vuex for state management across 
different UI components (see Fig. 6). The Integration 
Service backend application is based on the JavaScript 
runtime Node.js which was built on Google Chrome’s 
V8 JavaScript engine. Node.js is built on an event-
driven, non-blocking I/O model which ensures high 
throughput of requests and efficiency. Using the web-
framework Express the backend provides REST 
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functions that can be called from the user interface. We 
only support one smart home platform. 
However, this does not influence the evaluation results 
as most smart home platforms offer a user interface 
where end users can check whether the device 
integration was successful.  
 
/***Item File for openHab***/ 
Switch EasyLight1_status "Get status of light (On / Off)"  
{http="<[http://easyuser:Upd4t3d@localhost: 
3000/api/v1/status:1000:JSONPATH($.status)]"} 
 
/***Sitemap File for openHab***/ 
sitemap EasyLight1 label="ControlEasyLight1"  
{Frame label="Controls" {Default item=EasyLight1_status}} 
 
/***Rule File for openHab***/ 
rule "changeStatus_EasyLight1_status" 
   when Item EasyLight1_status changed 
   then  
      var Boolean switchState 
      if (EasyLight1.state == OFF) { 
         switchState = false 
      } else { 
         switchState = true 
  } 
  var requestPayload = '{"status":' + switchState + '}' 
  logInfo("Sending: ", requestPayload.toString) 
  sendHttpPostRequest("http://easyuser:Upd4t3d@ 
  localhost:3000/api/v1/status", "application/json",       
  requestPayload) 
end 

 Fig. 7: openHABs’ text-based Integration 
 
5. Evaluation 
 

For answering our core research question “How can 
IoT device integration processes be automated by tools 

so that a high tool usability is achieved?” we designed 
a user study which can be described as an action-case 
research [22]. Therefore, we adopted a within-subject 
evaluation design where the independent variable is the 
user interface and the dependent variables are the 
system usability score according to Brooks [9] and the 
integration time. Regarding the independent variable 
we compare the traditional text-based approach (see 
Fig. 7) with our graphical approach (see Fig. 6). The 
study participants were required to perform the 
following concrete integration task per input option:  

Textual integration: 1) Map an offered smart home 
device sub-route to an openHAB type item 2) Create a 
rule that makes an HTTP POST request to the device 
as soon as the device state changes 3) Create a sitemap 
that displays all state changes as a simple UI 
component. 

Graphical Integration: 1) Retrieve possible 
mappings for the device to be integrated 2) Show and 
adapted the mapping for the preferred device sub-route 
3) Generate all necessary Bindings (i.e. files required 
by openHab depicted in Fig. 7). 

All study participants performed both integration 
approaches for two sub-paths (i.e. status and brightness 
route of a light bulb). The order of treatment is 
randomly decided per candidate and all candidates 
where allowed to use openHABs debug console. All 
instructions and necessary parameters such as login 
credentials were given to participants before starting all 
measurements.  

Furthermore, we facilitated Think-Aloud scenarios 
where one study participant is guided by one 
facilitator that may provide help on request. Every 
feedback and request is logged by a third person, the 
log keeper [23]. These roles were always fixed. 

To generate a quantifiable hypothesis, we divided 
our core research question into two sub questions: 

Fig. 6: UIs for Integration Engineering Interface 
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 RQ1: How do usability aspects differ for 
textual and graphical integration tools? 

 RQ2:  How many errors per minute are made 
during the respective integration sessions per 
minute? 

For RQ1, we assume that the usability score is higher 
for the graphical integration interface. For RQ2, our 
hypothesis is that there are less errors when code 
generation is activated. Furthermore, we suppose that 
overall integration time decreases.  
 

 
Fig. 8: OpenHAB Result Check 

 
A device integration is successful if the device can 

be accessed by the openHAB UI and there is no error 
shown in the debug console when a state change is 
triggered (see Fig. 8). The evaluation operator also 
checked whether the mock IoT device did receive an 
update during each session. 
 
5.1 Study participants characteristics 
 

Based on an online self-assessment questionnaire, 
we collected the following study participants 
characteristics: Overall 10 persons participated in the 
evaluation. 6 persons are currently pursuing a PhD, 1 
person pursues studies in a master and 3 persons in a 
bachelor program. 

Graphic A: Overall IT Skillset of all participants 
 

6 persons stated that they are majoring in business 
informatics and one person was from the fields of 
informatics, mechanical engineering, political sciences 
and business education. Overall, 6 persons had already 
heard of openHAB whereas 5 persons had theoretical 
knowledge, 2 persons had practical knowledge and 3 
persons had no knowledge within the field of IoT. The 

overall IT Skillset by all participants achieved an 
average of 4.1 (see Graphic A). 
 
5.2 Usability 

 
Usability was quantified by adapting the system 

usability score by Brooke [9]. After executing both 
integration approaches, the study participants where 
asked 8 questions concerning the usability of both 
tools. These are: 

 I felt very safe using the system. 
 I find the system unnecessarily complex (*) 
 I find that there are too many inconsistencies 

in the system. (*) 
 I find the system easy to use. 
 I had to learn a lot of things before I could 

work with the system. (*) 
 I think I would need more technical support to 

use the system. (*) 
 I can imagine that most people learn to 

control the system quickly. 
 I find that the various functions of the system 

are well integrated. 
A question marked with an Asterix (*) are perceived as 
negative usability questions. We dismissed two 
questions as they were not relevant to our case. 

Each question could be answered based on a 6-
point Likert scale ranging from 1 (strongly disagree) to 
6 (strongly agree). This has been done to achieve a 
more fine-grained result. Please note, that the 
adaptations were also reflected in our score 
calculations. All values have been accumulated per 
persons and visualized in Graphic B. 

 

 
Graphic B: Usability Score per Input Method 

 
The average system utility score for the textual 

integration method is 29.25 and for the graphical 
integration method 85.25. Especially test persons with 
a non-technical background (person 8 and 9) 
performed well using the graphical tool. Brooke states 
that a system usability score over 68 can be considered 
as user friendly [9].  
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Regarding the Think-Aloud scenario [23], the 
amount of questions asked is visualized in Graphic C. 
Here the study participants where not actively asked to 
count questions themselves. This was done by the log 
keeper as a passive measurement. It can be noted that 
the amount of questions asked by the participants 
regarding the textual integration approach is higher 
compared to the graphical approach. 
 

 
Graphic C: Question Asked per Input Method 
 
Since, test person 8 and 9 (students of Business 

Education and Political Science) surrendered to 
process the test scenario with the textual approach 
immediately, no questions could be counted. 
Furthermore, most questions regarding the graphical 
approach have been asked by participants with a non-
IT background (8-10 where test person 10 is a student 
from Mechanical Engineering). On average, 16.75 
questions were asked for the textual and 3.3 questions 
for the graphical approach. 
 
5.3 System Performance 
 

For measuring overall system performance, we 
quantified the overall integration time per study 
participant as well as the amount of user errors. A user 
error is counted if and only if an error message was 
shown in the debug console or if the integration of the 

 

 
Graphic D: Integration Time per Input Method 

device was not successful (i.e. not working via Basic 
UI). Please note that when integrating the second sub-
path, some code fragments could be reused by copying 
and pasting using the textual approach. 

On average, the integration of both sub-paths took 
1651 seconds (27.51 minutes) for the textual approach 
and 354.2 seconds (5.9 minutes) for the graphical 
approach. If a test person was not able to solve the 
tasks, the time to complete is specified as 0 and is not 
included in the calculation of the average time. 
Overall, 3 persons did not finish the task. 

On average, participants made 4.5 errors when 
using the textual approach and 1.5 errors using the 
graphical approach. Test persons 8 and 9 which 
surrendered using the textual approach were able to 
complete the graphical integration task (see Graphic 
E). To sum up, the error rate per minute is 0.164 for the 
textual and 0.254 for the graphical approach.  
 

 
Graphic E: User Error Count per Input Method 

 
For comparison, when a domain-expert performs 

both integration tasks, 337 seconds were spent using 
the textual and 48 seconds for the graphical tooling 
environment. 
 
5.4 Result Interpretation 
 

Based on our evaluation we can confirm the 
hypothesis for RQ1 as the overall usability increased. 
The hypothesis for RQ2 must be partially rejected as 
the error rate per minute is higher using the graphical 
approach although overall integration time was lower. 

However, there are several threats to validity where 
some are listed in the following: Although our set-up 
can be considered as replicable due to using open-
source technology exclusively, MergePoint only 
generates simple rules (see Fig. 7) and is not Turing-
complete. Nevertheless, control and command use-
cases can already be integrated (semi-) automatically. 

Learning a new textual integration language is not 
an easy task. Therefore, we provided each study 
participant with a manual where relevant code snippets 
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for creating the openHAB files were illustrated. 
Although this introduces noise to the integration time, 
it reflects the reality how IoT software developer work. 
Furthermore, integration time is naturally lower when 
certain steps are automated. However, as the usability 
factor was our main object of investigation this 
influence can be tolerated. 
 
6. Conclusion 
 
Software development for IoT devices exposes new 
engineering challenges such as interface compatibility 
and semantic interoperability. In this work we 
presented MergePoint, a reference architecture for 
automating integration tasks by persisting integration 
knowledge incrementally. MergePoint can be 
beneficial for practitioners and researches. 
Practitioners can test and assess graphical, automated 
integration approaches for smart home platforms based 
on a reference architecture. Researchers can identify 
current conceptual pitfalls for future research in the 
area of software component coupling mechanisms. 

In the future, we plan to support multiple IoT 
platforms and want to apply our tooling and integration 
approach in a distributed development setting. By 
doing so, we will be enabled to focus on engineering 
efficiency instead of tool usability. 
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