396 research outputs found

    Automated generic integration of flight logbook data into aircraft maintenance systems

    Get PDF
    The automated transfer of flight logbook information from aircrafts into aircraft maintenance systems leads to reduced ground and maintenance time and is thus desirable from an economical point of view. Until recently, flight logbooks have not been managed electronically in aircrafts or at least the data transfer from aircraft to ground maintenance system has been executed manually. Latest aircraft types such as the Airbus A380 or the Boeing 787 do support an electronic logbook and thus make an automated transfer possible. A generic flight logbook transfer system must deal with different data formats on the input side -- due to different aircraft makes and models -- as well as different, distributed aircraft maintenance systems for different airlines as aircraft operators. This article contributes the concept and top level distributed system architecture of such a generic system for automated flight log data transfer. It has been developed within a joint industry and applied research project. The architecture has already been successfully evaluated in a prototypical implementation

    Initial flight qualification and operational maintenance of X-29A flight software

    Get PDF
    A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed

    A Study Of Factors Contributing To Self-reported Anomalies In Civil Aviation

    Get PDF
    A study investigating what factors are present leading to pilots submitting voluntary anomaly reports regarding their flight performance was conducted. The study employed statistical methods, text mining, clustering, and dimensional reduction techniques in an effort to determine relationships between factors and anomalies. A review of the literature was conducted to determine what factors are contributing to these anomalous incidents, as well as what research exists on human error, its causes, and its management. Data from the NASA Aviation Safety Reporting System (ASRS) was analyzed using traditional statistical methods such as frequencies and multinomial logistic regression. Recently formalized approaches in text mining such as Knowledge Based Discovery (KBD) and Literature Based Discovery (LBD) were employed to create associations between factors and anomalies. These methods were also used to generate predictive models. Finally, advances in dimensional reduction techniques identified concepts or keywords within records, thus creating a framework for an unsupervised document classification system. Findings from this study reinforced established views on contributing factors to civil aviation anomalies. New associations between previously unrelated factors and conditions were also found. Dimensionality reduction also demonstrated the possibility of identifying salient factors from unstructured text records, and was able to classify these records using these identified features

    Advanced EVA system design requirements study

    Get PDF
    The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock

    Design methodology and simulation of a fleet management system for an advanced helicopter platform

    Get PDF
    This research is part of a major helicopter acquisition and upgrade program of the Australian Defence Forces (ADF) under a 20+ year strategic plan. The ‘Air 9000’ program aims to rationalise the number of helicopter types operated, simplify operational requirements and reduce through-life-support costs. This research program developed and modelled a Fleet Management System (FMS) for the newly acquired Multi-Role Helicopter-90 (MRH-90 / NHI NH-90) platform. It assessed current practices in aerospace technology management of civil and military aircraft fleets, and established requirements of civil & military rotary-wing platforms for the development of a fleet management methodology for the MRH-90 platform. A novel approach was adopted by applying systems engineering principles to design the FMS. The systems engineering approach enabled identification and implementation of the additional rotary-wing design parameters, required for system adaptability to future network-centric military & civil operational environments from a life-cycle perspective. This approach has resulted in the development and implementation of an adaptable prototype FMS software with integrated fleet management capabilities. Subsequent simulation & validation demonstrated significant enhancements in operational effectiveness over state-of-the art rotary-wing fleet management practices, by holistically and systematically addressing the present and future system needs of helicopter life-cycle management

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations

    Estimating the ROI on an ERP for Naval aviation operations using market comparables

    Get PDF
    U.S. Navy aviation squadrons conduct a variety of flight operations in peace and wartime environments. At the heart of these operations is the flight scheduling that occurs to command and control the squadron's assets to ensure the actors and processes carry out the squadron's operations seamlessly and meet the squadron's mission requirements. This research and case study demonstrates how the Knowledge Value Added Methodology (KVA) and Business Process Reengineering (BPR) can be applied to these processes to analyze the performance and effectiveness of a Navy squadron's operations and maintenance departments. By analyzing the outputs of the sub processes involved at the squadron level in common units of change, a price per unit of output can be generated to allocate both cost and revenue at the sub process level. With this level of financial detail, a return on investment (ROI) analysis can be conducted for each process and the changes that occur to the processes when reengineering. A determination can then be made as to what level of reengineering if any should occur to the system to maximize ROI and what types of reengineering such as reducing costs, increasing value or implementing IT resources into the processes.http://archive.org/details/estimatingroionn109452556Approved for public release; distribution is unlimited

    A Virtual University Infrastructure For Orthopaedic Surgical Training With Integrated Simulation

    No full text
    This thesis pivots around the fulcrum of surgical, educational and technological factors. Whilst there is no single conclusion drawn, it is a multidisciplinary thesis exploring the juxtaposition of different academic domains that have a significant influence upon each other. The relationship centres on the engineering and computer science factors in learning technologies for surgery. Following a brief introduction to previous efforts developing surgical simulation, this thesis considers education and learning in orthopaedics, the design and building of a simulator for shoulder surgery. The thesis considers the assessment of such tools and embedding into a virtual learning environment. It explains how the performed experiments clarified issues and their actual significance. This leads to discussion of the work and conclusions are drawn regarding the progress of integration of distributed simulation within the healthcare environment, suggesting how future work can proceed

    Telemetry Data Mining For Unmanned Aircraft Systems

    Get PDF
    With ever more data becoming available to the US Air Force, it is vital to develop effective methods to leverage this strategic asset. Machine learning (ML) techniques present a means of meeting this challenge, as these tools have demonstrated successful use in commercial applications. For this research, three ML methods were applied to a unmanned aircraft system (UAS) telemetry dataset with the aim of extracting useful insight related to phases of flight. It was shown that ML provides an advantage in exploratory data analysis and as well as classification of phases. Neural network models demonstrated the best performance with over 90% accuracy in classifying of UAS phases of flight. Categorical and Regression Trees (CART) also performed well, whereas C5.0 is less suited for this task. In addition, several interesting patterns were uncovered within the dataset, which can aid UAS operators in identifying mission anomalies and atypical system operation

    Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    Get PDF
    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements
    • …
    corecore