4 research outputs found

    Multitask variational autoencoding of human-to-human object handover

    Get PDF
    Assistive robots that operate alongside humans require the ability to understand and replicate human behaviours during a handover. A handover is defined as a joint action between two participants in which a giver hands an object over to the receiver. In this paper, we present a method for learning human-to-human handovers observed from motion capture data. Given the giver and receiver pose from a single timestep, and the object label in the form of a word embedding, our Multitask Variational Autoencoder jointly forecasts their pose as well as the orientation of the object held by the giver at handover. Our method is in large contrast to existing works for human pose forecasting that employ deep autoregressive models requiring a sequence of inputs. Furthermore, our method is novel in that it learns both the human pose and object orientation in a joint manner. Experimental results on the publicly available Handover Orientation and Motion Capture Dataset show that our proposed method outperforms the autoregressive baselines for handover pose forecasting by approximately 20% while being on-par for object orientation prediction with a runtime that is 5x faster.

    Affordance-Aware Handovers With Human Arm Mobility Constraints

    Get PDF
    Reasoning about object handover configurations allows an assistive agent to estimate the appropriateness of handover for a receiver with different arm mobility capacities. While there are existing approaches for estimating the effectiveness of handovers, their findings are limited to users without arm mobility impairments and to specific objects. Therefore, current state-of-the-art approaches are unable to hand over novel objects to receivers with different arm mobility capacities. We propose a method that generalises handover behaviours to previously unseen objects, subject to the constraint of a user's arm mobility levels and the task context. We propose a heuristic-guided hierarchically optimised cost whose optimisation adapts object configurations for receivers with low arm mobility. This also ensures that the robot grasps consider the context of the user's upcoming task, i.e., the usage of the object. To understand preferences over handover configurations, we report on the findings of an online study, wherein we presented different handover methods, including ours, to 259259 users with different levels of arm mobility. We find that people's preferences over handover methods are correlated to their arm mobility capacities. We encapsulate these preferences in a statistical relational model (SRL) that is able to reason about the most suitable handover configuration given a receiver's arm mobility and upcoming task. Using our SRL model, we obtained an average handover accuracy of 90.8%90.8\% when generalising handovers to novel objects.Comment: Accepted for RA-L 202

    Object Handovers: a Review for Robotics

    Full text link
    This article surveys the literature on human-robot object handovers. A handover is a collaborative joint action where an agent, the giver, gives an object to another agent, the receiver. The physical exchange starts when the receiver first contacts the object held by the giver and ends when the giver fully releases the object to the receiver. However, important cognitive and physical processes begin before the physical exchange, including initiating implicit agreement with respect to the location and timing of the exchange. From this perspective, we structure our review into the two main phases delimited by the aforementioned events: 1) a pre-handover phase, and 2) the physical exchange. We focus our analysis on the two actors (giver and receiver) and report the state of the art of robotic givers (robot-to-human handovers) and the robotic receivers (human-to-robot handovers). We report a comprehensive list of qualitative and quantitative metrics commonly used to assess the interaction. While focusing our review on the cognitive level (e.g., prediction, perception, motion planning, learning) and the physical level (e.g., motion, grasping, grip release) of the handover, we briefly discuss also the concepts of safety, social context, and ergonomics. We compare the behaviours displayed during human-to-human handovers to the state of the art of robotic assistants, and identify the major areas of improvement for robotic assistants to reach performance comparable to human interactions. Finally, we propose a minimal set of metrics that should be used in order to enable a fair comparison among the approaches.Comment: Review paper, 19 page

    Reasoning and understanding grasp affordances for robot manipulation

    Get PDF
    This doctoral research focuses on developing new methods that enable an artificial agent to grasp and manipulate objects autonomously. More specifically, we are using the concept of affordances to learn and generalise robot grasping and manipulation techniques. [75] defined affordances as the ability of an agent to perform a certain action with an object in a given environment. In robotics, affordances defines the possibility of an agent to perform actions with an object. Therefore, by understanding the relation between actions, objects and the effect of these actions, the agent understands the task at hand, providing the robot with the potential to bridge perception to action. The significance of affordances in robotics has been studied from varied perspectives, such as psychology and cognitive sciences. Many efforts have been made to pragmatically employ the concept of affordances as it provides the potential for an artificial agent to perform tasks autonomously. We start by reviewing and finding common ground amongst different strategies that use affordances for robotic tasks. We build on the identified grounds to provide guidance on including the concept of affordances as a medium to boost autonomy for an artificial agent. To this end, we outline common design choices to build an affordance relation; and their implications on the generalisation capabilities of the agent when facing previously unseen scenarios. Based on our exhaustive review, we conclude that prior research on object affordance detection is effective, however, among others, it has the following technical gaps: (i) the methods are limited to a single object ↔ affordance hypothesis, and (ii) they cannot guarantee task completion or any level of performance for the manipulation task alone nor (iii) in collaboration with other agents. In this research thesis, we propose solutions to these technical challenges. In an incremental fashion, we start by addressing the limited generalisation capabilities of, at the time state-of-the-art methods, by strengthening the perception to action connection through the construction of an Knowledge Base (KB). We then leverage the information encapsulated in the KB to design and implement a reasoning and understanding method based on statistical relational leaner (SRL) that allows us to cope with uncertainty in testing environments, and thus, improve generalisation capabilities in affordance-aware manipulation tasks. The KB in conjunctions with our SRL are the base for our designed solutions that guarantee task completion when the robot is performing a task alone as well as when in collaboration with other agents. We finally expose and discuss a range of interesting avenues that have the potential to thrive the capabilities of a robotic agent through the use of the concept of affordances for manipulation tasks. A summary of the contributions of this thesis can be found at: https://bit.ly/grasp_affordance_reasonin
    corecore