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Abstract— Assistive robots that operate alongside humans
require the ability to understand and replicate human be-
haviours during a handover. A handover is defined as a joint
action between two participants in which a giver hands an
object over to the receiver. In this paper, we present a method
for learning human-to-human handovers observed from motion
capture data. Given the giver and receiver pose from a single
timestep, and the object label in the form of a word embedding,
our Multitask Variational Autoencoder jointly forecasts their
pose as well as the orientation of the object held by the giver
at handover. Our method is in large contrast to existing works
for human pose forecasting that employ deep autoregressive
models requiring a sequence of inputs. Furthermore, our
method is novel in that it learns both the human pose and
object orientation in a joint manner. Experimental results
on the publicly available Handover Orientation and Motion
Capture Dataset show that our proposed method outperforms
the autoregressive baselines for handover pose forecasting by
approximately 20% while being on-par for object orientation
prediction with a runtime that is 5x faster. a

I. INTRODUCTION

Understanding how humans interact with one another is
essential for the deployment of social or assistive robots
that will share the same ecosystem as us. One important
task in particular, is the act of handover which is defined
as a collaborative action between two participants in which
the giver hands an object to the receiver [1]. However,
performing a handover is not straightforward due to a number
of common sense rules and social conventions that apply
during the action. For instance, both the giver and receiver
respect personal space during the handover. They avoid
standing chest-to-chest and instead, perform the handover
at or near arm’s length, and at the giver-receiver midpoint
[2], [3], [4]. The giver also understands that some objects
are more restricted in how they are held or oriented. For
instance, a mug should be oriented with its base as parallel
to the ground plane as possible in order to avoid spilling its
contents. A book in contrast, is far less restricted in how
it should be oriented. In order for a robot to operate in the
same environment as humans without making the interaction
awkward, it needs to model these behaviours and use them
to perform handovers.

In this paper, we propose a Multitask Variational Autoen-
coder for learning human-to-human object handovers using
motion capture data. Specifically, our architecture takes as
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Fig. 1: Given the giver and receiver input poses in trans-
parent pink and white respectively, and the object label, our
method learns to forecast both their poses and an appropriate
orientation of the object (umbrella) for handover, shown via
the brighter colors.

input the giver and receiver pose that we denote together
as Pi ∈ RNx3 where N indicates the total number of
joints, the object label Ol ∈ RM with M classes, and
forecasts both their poses Ph and the orientation of the object
Or ∈ R3 centered on the giver’s grasping hand at handover
(Figure I). In short, we seek to learn a model that maximizes
p(Ph, Or|Pi, Ol). To the best of our knowledge, our method
is the first that directly forecasts the handover pose and object
orientation in a joint manner.

II. RELATED WORKS

A. Object Handover

The learning of human-to-human object handovers is a
problem that has been extensively studied in the literature [1].
Stralaba et al. [5] studied non-verbal cues such as eye-gaze
and body pose leading to the handover. Pan et al. [6] used
support vector machines on kinematic features of the human
joints to detect the intent to hand over an object. Carfi et al.
[7] released a dataset of two humans performing a handover
with different objects that varied in weight and size. Chan et
al. [8] studied grasp object orientations and later proposed
an affordance axes [9] to learn handover configurations by
observing two participants performing the handover.

B. Human Pose Forecasting

Advances in deep neural networks for human pose fore-
casting can also be used for learning human-to-human object
handovers. These methods deploy an autoregressive model
such as a recurrent [10], [11] or a convolutional sequence-to-
sequence [12] model where the output is conditioned on the



history of inputs and predicted poses thus far. These methods
however, have focused on modelling the spatiotemporal
relation of the human joints without contextual information.
Corona et al. [13] later proposed a model that utilized ad-
ditional information such as object label and location. How-
ever, learning handovers via autoregressive models become
redundant when there is no need to learn the spatiotemporal
relationships of the body joints. In our work, we are mainly
interested in learning the posture two individuals take as
they perform the handover. Our method is thus most closely
related to the above-mentioned works on pose forecasting
except that we do not forecast the pose one step at a time.
Rather, we directly forecast the giver and receiver pose,
and the object orientation when the handover takes place.
Furthermore, our method is the first that attempts to jointly
model human pose and object orientation at handovers in a
multitask data-driven fashion by observing two interacting
agents.

C. Multitask learning

Multitask learning aims to increase generalization power
by using the domain information contained in the training
signals of related tasks as an inductive bias [14]. Multitask
models typically have a number of shared layers termed as
a base network followed by several task-specific layers that
are also known as head networks. Their arrangement is both
problem dependent and empirical, with some using a single
shared representation as input to the head networks [15],
[16], and others, opting for a hierarchical approach in which
increasingly dependent tasks are predicted at successively
deeper layers [17]. Despite its potential, a caveat that comes
with it is the increased training difficulty due to the number
of tunable task weights, particularly in the variants with the
parallel task heads [15], [16].

III. METHOD

The goal of our method is to learn a model that maximizes
log p(Ph, Or|Pi, Ol) where Pi ∈ RNx3 denotes the giver and
receiver input pose with a total of N joints, Ol ∈ RM the
object label with M classes, Ph the giver and receiver pose
at handover, and Or ∈ R3 the object orientation at handover.
The most widely used method to solve for any multi-output
expression resembling the form above is to train a multi-
task architecture with multiple head networks to optimize
for each corresponding output. However, directly optimizing
the above expression results in a deterministic model that
is not able to account for the variability of how different
individuals perform the handover and in how they handle
the same object differently.

A. Multi-Task Variational Autoencoder

Variational Autoencoders (VAEs) [18] provide a solution
to this problem by assuming that the data is generated by a
low dimensional latent random variable z. This latent variable
tends to be a random gaussian noise that when decoded
during the forward pass, results in a unique output even if
provided the same input. As a result, the model is converted

into a stochastic one that allows it to capture the variability
in the dataset. We extend the VAE framework into a multi-
task setting, having it jointly learn the variability shared
between the giver and receiver input poses, and the object
label and rotation. Specifically, our goal is to learn a model
that maximizes the following:

log p(Ph, Or, z|Pi, Ol) (1)
= log p(Ph, Or|z, Pi, Ol) + log p(z|Pi, Ol) (2)

that when reformulated as a maximization of the evidence
lower bound, results in the following multi-task objective:

L = λp log p(Ph|z, Pi, Ol) (3)
+ λo log p(Or|z, Pi, Ol)

− λKL KL(q(z|Ph, Or, Pi, Ol)||N(0, 1))

where KL denotes the Kullback-Leibler divergence and
the lambdas are used to balance the losses. Intuitively, the
above expression tells us that the model is trained to map the
set {Ph, Or, Pi, Ol} to a distribution that is likely to produce
them such that at test time, the sampled z, together with the
set {Pi, Ol} can be decoded back to the set {Ph, Or}. Note
that we chose to use a VAE since it is more thematic with
future forecasting as it is able to emulate the fact that there
can be multiple handover poses and object orientations at
handover. The component used for forecasting can thus be
replaced by any deterministic ANN such as an Autoencoder
which can be optimized using equation 3 but without the KL
term.

B. GloVe Embedded Object Labels

As our model requires as input the object label, a natural
question that arises is how we encode these labels into a
representation that makes it usable by a neural network. A
quick and easy way of doing so is to generate a one-hot
encoding that maps object labels to a probability distribution
over a discrete set of the n labels. However, this simplicity
leads to the curse of dimensionality as it requires a dimension
for each new class. Moreover, a one-hot encoding does not
inform the model semantics of the object as the vectorization
of each unique class results in an orthogonal representation
that is equidistant to all others. As such, a model learning
to map an object label to a corresponding set of orientation
ignores the relationship among labels such as ”fork” and
”spoon” that can in fact, be exploited during training.

Label embeddings address the above-mentioned limita-
tions by mapping every word in a training corpus into a dense
vector with an arbitrary but fixed number of dimensions.
The Global Vectors for Word Representation (GloVe) [19]
in specific, incorporates co-occurrence statistics of words
that frequently appear together within the document. Intu-
itively, the co-occurrence statistics encode meaning since
semantically similar words such as “fork” and “spoon” occur
together more frequently than semantically dissimilar words
such as “fork” and “camera.” The training objective is to then
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Fig. 2: Overview of our architecture. The training inputs to
the network include the coordinates of the giver and receiver
input and handover poses Pi and Ph respectively, the object
label Ol, and its orientation Or. The VAE then encodes
these set of information while the decoder predicts the set
{Ph, Or} given a random gaussian noise and the output from
the green encoder blocks. The blocks and arrows with a
dotted outline are removed during testing. The colored blocks
represent multilayer perceptrons as explained in section IV.
The loss functions used for the corresponding components
are also shown.

learn word vectors such that their dot product equals the co-
occurrence probability of these two words. In our work, we
use the pretrained GloVe vectors available at [20].

IV. ARCHITECTURE

Our architecture is shown in Figure 2. Its inputs are the
absolute coordinates of the giver and receiver pose, the
object label in the form of a GloVe embedding, and the
orientation of the object expressed as rotations about the
X, Y, and Z axes. The approximate posterior q is made
up of 4 sets of multilayer perceptrons (MLPs) to process
the set {Ph, Or, Pi, Ol} where both Pi and Ph are the
concatenation of the giver and receiver input and output
poses respectively. Their outputs are then concatenated be-
fore being sent through another MLP with two heads to
produce the parameters of the gaussian distribution. We then
sample a random gaussian noise vector and concatenate it
to the features representing the set {Pi, Ol} before feeding
them to 2 parallel head networks to predict {Ph, Or}. Note
that the blocks and arrows with a dotted outline are removed
during testing.

V. EXPERIMENTS

A. Dataset

We evaluate our method on the publicly available Han-
dover Orientation and Motion Capture Dataset [9] that con-
tains motion capture data recorded during object handovers
between humans, as well as the extracted handover orien-
tations for 20 daily objects. The system tracks 21 upper
body joints per person but excludes the fingers. The giver
selects an item from the table behind and hands it over to
the receiver. The giver and receiver moves a maximum of

1.2m and 0.7m respectively and were asked to use only their
right hand for the handover. Each video lasts an average of
6 seconds. After cleaning the data and removing sequences
that contained missing joints, we are left with approximately
600 recordings with a total of 600k frames from 10 pairs
of participants. We train on the first 7 pair of participants
and test on the last 3 pair, resulting in a train:test ratio of
approximately 70:30.

B. Setup

We compare our approach to three recurrent baselines that
we adapt for human pose and object orientation forecasting.

• Martinez et al. [10]: This method takes as input a
sequence of the concatenated giver and receiver pose,
and the object orientations and uses LSTMs to forecast
the pose and orientation velocities.

• Chung et al. [11]: This variational recurrent model
incorporates a VAE into [10] at every timestep.

• Li et al. [12]: This method forgoes LSTMs in favour of
convolutions. It performs a series of convolutions over
the near and distant past of the concatenated data to
predict their velocities.

We train the baselines to forecast the next 10 frames
given the first 10 as input, each of which is spaced 0.1
seconds apart. At test time, we have these models forecast
the maximum length of the sequence and select the handover
pose to be at the timestep that has the lowest error between
the predicted and ground truth handover pose. Models that
contain the VAE are evaluated by randomly sampling from
the VAE 256 times for each input that are then averaged
at the output. We scale all models such that their number
of parameters are on par at approximately 100k. We found
this especially important to prevent the autoregressive models
from overfitting. Finally, we also evaluate our model without
the latent component i.e. a simple ANN / Autoencoder.

All models, including ours, are trained for 50k iterations
(approximately 12 hours) using PyTorch’s ADAM optimizer
[21] with default hyperparameters, a learning rate of 1e-3 and
batch size of 64. We then select the epoch with the lowest
validation error. We set λKL to 1 and used grid search to
select the optimal set of weights (λo, λp) for each model
where λo + λp = 1. We preprocess the object orientation
by computing it with respect to a reference vector whose X
axis points from the receiver’s chest to the giver’s chest, a
Z axis that points upwards from the ground plane, and a Y
axis that completes a right-handed frame. We represent the
object orientation as a sequence of rotations about the X,Y
then the Z axis. We do not preprocess the human joints nor
do we augment the data in any way.

C. Quantitative Results

We first present quantitative results for handover pose and
object orientation forecasting in Table I where we compute
the L1 losses for each of the human joints in metres and
the object’s rotation about the X, Y and Z axes in radians.
We sum and tabulate the errors for the giver and receiver
based on their location on the body i.e. the spinal column,



the left half and the right half of the body. Both the VAE
and AE versions of our method outperform the baselines
in handover pose forecasting by approximately 20% from
a summed total of 11.15m to approximately 8.85m over
42 joints, or an average single joint error of 0.2m. They
show a definitive improvement in predicting the giver’s pose
with very comparable results on receiver pose and object
orientation forecasting. The results are explainable if we
recall from Section V-A that the giver moves a maximum
distance of 1.2m while the receiver a maximum distance
of 0.7m. Because the errors coming from an autoregressive
model are known to accumulate the further predictions are
made into the future, we get the characteristic observed
in Table 1 with the errors coming from the giver being
considerably higher than the receiver. Next, we also observe
that the errors for the human poses are also reflective of
the dataset’s characteristics, specifically in that the methods
all obtain lower errors for the right half of the body, the
side that was used to perform the handover. Naturally, the
errors are lower since the joints on the right half performing
the handover are more restricted in their positioning. This
shows that our single-timestep input method is able to learn
the handover characteristics better than the autoregressive
models and is thus a strong alternative if there is no need to
learn the motion of the human joints from input to handover.

We next present the rate of inference of the various
methods in Table II in Hz. As indicated, our method has
a runtime that is at least 5x faster than the baselines. More
importantly, because our method does not rely on a sequence
of inputs, its runtime remains independent of the total
distance taken by the participants to perform the handover.
This is in contrast to the autoregressive models whose rate of
inference drops drastically in setups that require long-term
or finer forecasting. The results here further highlight the
efficacy of our method as it allows existing pose estimators
to additionally use our system with very little overhead.

Finally, we trained 3 models but with different object
label embedding strategies: (i) One-Hot encoding (ii) GloVe
embedding and (iii) no object information i.e. the model
does not take Ol as input. The results are presented in
Table III. It can firstly be seen that all 3 models share the
same pose error-profiles in that the errors coming from the
giver are greater than the receiver. The numbers also suggest
that object information, or lack thereof has no bearing on
the model’s ability to accurately forecast the giver’s pose.
For rotation forecasting however, we noted that nearly all
the classes have very large variances about their Z-axis
evidenced by the error scores. This can be qualitatively
observed from the dataset [9] but to provide an example,
a person passing a plate tends to orient the flat side parallel
to the ground without needing to consider how else it is
oriented about the axis that is perpendicular to the ground
plane i.e. about its Z-axis. As such, the very low correlation
that exists between the object and its Z rotations make it
very difficult for learning. It can still be noted however
that models trained with object information tend to achieve
lower errors. And although the One-Hot encoding performs

as well as the GloVe embeddings, we still promote GloVe
since it alleviates the curse of dimensionality especially with
increasing number of objects.

D. Qualitative Results

We show some qualitative results in Figure 5 where
the receiver is shown in white and the giver in pink, in
transparent colors for the input and in brighter colors for
the predicted handover poses. The ground truth is shown
in purple. Our method is able to generate poses that look
realistic and that are typically observed during a handover.
The predicted poses also obey social norms in that they are
not standing too close to each other. Rather, both participants
reach out their arms at midpoint to perform the exchange.
Note that the results are not exclusive to our model. Rather,
it shows that there is no need to use an autoregressive model
if the desired output is the pose at handover since it is
achievable using only a single input that decreases runtime
as evidenced in Table II.

In Figure 6, we get a zoomed in view of the object
orientation at handover where the red, green and blue lines
denote the object’s X, Y and Z axes respectively, and where
the thick lines represent the object’s true axes for the given
object and the thin lines its predictions sampled through
multiple runs. We observe some errors although they occur
mainly about the Z axis and are not incorrect since the
objects are still being handed over appropriately. These
figures let us understand the relatively large rotation errors in
Tables I and III. They also show the benefit of using a VAE
over a simple ANN (AE) i.e. the model learns that there
are multiple correct ways of orienting the object although
the variation learnt is ultimately limited by how clean the
dataset is and the weighting between the KL and L2 loss in
equation 3.

E. Importance of Multitask Learning

We study the effect different task weights have on the
overall performance of the model in Figure 7 where we
varied the pose weight λp from 0 to 1 and set the object
rotation weight λo to 1 − λp. The figure illustrates the
advantages of multi-task learning as the model shows an
improved performance on both tasks at the optimal weight of
λp = 0.8 and λo = 0.2, outperforming even their single-task
counterparts. It can also be observed that the object rotation
errors tend to worsen as we reduce the value of λp. This is
principally due to the fact that the object orientations were
defined with respect to a reference axes that points from the
receiver’s chest to the giver’s chest (Section V-A). As such,
a weight combination that deemphasizes the pose errors will
result in poorer pose predictions which ultimately results in
rotation estimates that are off.

VI. CONCLUSION

We have presented the first method that jointly models
the human pose and object orientation at handover. Our
method is an attractive alternative for learning the handover
problem when there is no need to model the spatiotemporal
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Fig. 5: The giver and receiver input poses are shown in transparent pink and white respectively, their predicted handover
poses shown via the brighter colors and the ground truth in purple. Our model has learnt to generate the typical human pose
that obeys social norms when giving an object to a receiver. Note that the lower half of the body from the hip downwards
have been manually drawn since the dataset only provides the upper half.

(a) mug (b) plate (c) umbrella (d) book (e) wrench

Fig. 6: The object’s X, Y and Z true axes are indicated by the thick red, green and blue lines respectively, and the thin lines
their predictions sampled through multiple runs. Our method can learn a diverse set of rotation vectors and is important
as it lets the learner replicate these behaviours without being too inflexible. We observe some errors although they are not
incorrect since the object is still appropriately oriented.



TABLE I: L1 errors in metres for the upper body joints and in radians for the object orientation. Our methods outperform
the autoregressive baselines for handover pose forecasting by approximately 20% from a summed total of 11.15m to 8.85m
over 42 joints or an average single joint error of 0.2m, with comparable results for orientation forecasting.

Receiver Giver Object
Left Half Spinal Column Right Half Left Half Spinal Column Right Half Rx Ry Rz

Mean Predictor 2.321 0.811 2.637 3.812 1.342 2.808 1.081 0.431 1.931
Martinez et al. [10] 1.592 0.469 1.540 3.616 1.235 2.924 0.976 0.447 1.757
Chung et al. [11] 1.559 0.452 1.527 3.580 1.200 2.838 0.994 0.430 1.798
Li et al. [12] 1.549 0.475 1.513 4.303 1.391 3.072 1.001 0.457 1.724
Ours (VAE) 1.562 0.445 1.558 2.494 0.738 2.054 0.961 0.452 1.749
Ours (AE) 1.554 0.450 1.551 2.495 0.743 2.045 0.960 0.460 1.781

TABLE II: Inference rates of the various methods in Hz for
a batch size of 64. Note that the runtimes for [10], [11], [12]
were recorded for a sequence of length 20 that will increase
with longer prediction lengths. Our method in contrast, has
an inference rate that is fixed.

Martinez et al. [10] 66
Chung et al. [11] 66
Li et al. [12] 100
Ours (VAE / AE) 500

TABLE III: L1 errors in metres for the predicted giver and
receiver poses and in radians for the object rotation with dif-
ferent types of object information. The results show the slight
boost in performance when including object information for
learning the appropriate rotations.

Receiver Giver Rx Ry Rz

Mean Predictor 5.770 7.962 1.081 0.431 1.931
None 3.581 5.292 1.097 0.499 2.041
One-Hot 3.559 5.271 0.982 0.484 1.761
GloVe [19] 3.565 5.286 0.961 0.452 1.749
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Fig. 7: Performance of the models at various task weights.
The green dashed line indicates the optimal weight combi-
nation of λp = 0.8 and λo = 0.2 and shows that the joint
learning of multiple tasks improves the model’s individual
task performance.

joint information. Because our method is general in that it
learns the direct mapping from the input pose and object
label to the output pose and orientations, the architecture
selected for forecasting can thus be replaced any existing
model. Finally, because the core of our method is a data-
driven, stochastic mapping from an observed variable to a
distribution over the output, it can thus be used on datasets
where either the receiver or the giver stands still without
requiring any modification. The former would be more useful
in a robot-to-human paradigm [22], [23], [24] where the
giver, for example, carries a heavy object over to the receiver
or to a person with some form of mobility impairment while
the latter in a human-to-robot paradigm [25], [26] where
the receiver is for example, a rehabilitative robot that assists
the practice of tasks relevant to daily life such as object
handover. The robot can then learn how a receiver behaves
by observing patient-physiotherapist mocap data, how the
physiotherapist orients his hand if the patient struggles to
pass the object in an appropriate orientation.

A limitation of our method is that because it is data-driven,
it cannot generalize to samples where the giver and receiver
are standing at distances far greater or where the object
classes are completely different than what is observed in the
dataset. Furthermore, the large variance in object rotations
and small number of classes also make it difficult for our
model to generalize to unseen classes. As such, in future
works, it would be beneficial to create a dataset - even
a synthetic one - where the participants are instructed on
the appropriate handover orientations in order to minimize
variance and ease learning. It would also be beneficial to
have the full body pose including the positions of the finger
joints as it would allow our model to learn how objects are
grasped in order to make the handover as natural as possible.
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