783 research outputs found

    Computing large market equilibria using abstractions

    Full text link
    Computing market equilibria is an important practical problem for market design (e.g. fair division, item allocation). However, computing equilibria requires large amounts of information (e.g. all valuations for all buyers for all items) and compute power. We consider ameliorating these issues by applying a method used for solving complex games: constructing a coarsened abstraction of a given market, solving for the equilibrium in the abstraction, and lifting the prices and allocations back to the original market. We show how to bound important quantities such as regret, envy, Nash social welfare, Pareto optimality, and maximin share when the abstracted prices and allocations are used in place of the real equilibrium. We then study two abstraction methods of interest for practitioners: 1) filling in unknown valuations using techniques from matrix completion, 2) reducing the problem size by aggregating groups of buyers/items into smaller numbers of representative buyers/items and solving for equilibrium in this coarsened market. We find that in real data allocations/prices that are relatively close to equilibria can be computed from even very coarse abstractions

    A marriage between adversarial team games and 2-player games: enabling abstractions, no-regret learning, and subgame solving

    Get PDF
    Ex ante correlation is becoming the mainstream approach for sequential adversarial team games,where a team of players faces another team in a zero-sum game. It is known that team members’asymmetric information makes both equilibrium computation APX-hard and team’s strategies not directly representable on the game tree. This latter issue prevents the adoption of successful tools for huge 2-player zero-sum games such as, e.g., abstractions, no-regret learning, and sub game solving. This work shows that we can re cover from this weakness by bridging the gap be tween sequential adversarial team games and 2-player games. In particular, we propose a new,suitable game representation that we call team public-information, in which a team is repre sented as a single coordinator who only knows information common to the whole team and pre scribes to each member an action for any pos sible private state. The resulting representation is highly explainable, being a 2-player tree in which the team’s strategies are behavioral with a direct interpretation and more expressive than he original extensive form when designing ab stractions. Furthermore, we prove payoff equiva lence of our representation, and we provide tech niques that, starting directly from the extensive form, generate dramatically more compact repre sentations without information loss. Finally, we experimentally evaluate our techniques when ap plied to a standard testbed, comparing their per formance with the current state of the art

    Lossy stochastic game abstraction with bounds

    Full text link

    Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    This thesis investigates artificial agents learning to make strategic decisions in imperfect-information games. In particular, we introduce a novel approach to reinforcement learning from self-play. We introduce Smooth UCT, which combines the game-theoretic notion of fictitious play with Monte Carlo Tree Search (MCTS). Smooth UCT outperformed a classic MCTS method in several imperfect-information poker games and won three silver medals in the 2014 Annual Computer Poker Competition. We develop Extensive-Form Fictitious Play (XFP) that is entirely implemented in sequential strategies, thus extending this prominent game-theoretic model of learning to sequential games. XFP provides a principled foundation for self-play reinforcement learning in imperfect-information games. We introduce Fictitious Self-Play (FSP), a class of sample-based reinforcement learning algorithms that approximate XFP. We instantiate FSP with neuralnetwork function approximation and deep learning techniques, producing Neural FSP (NFSP). We demonstrate that (approximate) Nash equilibria and their representations (abstractions) can be learned using NFSP end to end, i.e. interfacing with the raw inputs and outputs of the domain. NFSP approached the performance of state-of-the-art, superhuman algorithms in Limit Texas Hold’em - an imperfect-information game at the absolute limit of tractability using massive computational resources. This is the first time that any reinforcement learning algorithm, learning solely from game outcomes without prior domain knowledge, achieved such a feat

    Patrolling security games: Definition and algorithms for solving largeinstances with single patroller and single intruder

    Get PDF
    Security games are gaining significant interest in artificial intelligence. They are characterized by two players (a defender and an attacker) and by a set of targets the defender tries to protect from the attacker\u2bcs intrusions by committing to a strategy. To reach their goals, players use resources such as patrollers and intruders. Security games are Stackelberg games where the appropriate solution concept is the leader\u2013follower equilibrium. Current algorithms for solving these games are applicable when the underlying game is in normal form (i.e., each player has a single decision node). In this paper, we define and study security games with an extensive-form infinite-horizon underlying game, where decision nodes are potentially infinite. We introduce a novel scenario where the attacker can undertake actions during the execution of the defender\u2bcs strategy. We call this new game class patrolling security games (PSGs), since its most prominent application is patrolling environments against intruders. We show that PSGs cannot be reduced to security games studied so far and we highlight their generality in tackling adversarial patrolling on arbitrary graphs. We then design algorithms to solve large instances with single patroller and single intruder

    Discovering logical knowledge in non-symbolic domains

    Get PDF
    Deep learning and symbolic artificial intelligence remain the two main paradigms in Artificial Intelligence (AI), each presenting their own strengths and weaknesses. Artificial agents should integrate both of these aspects of AI in order to show general intelligence and solve complex problems in real-world scenarios; similarly to how humans use both the analytical left side and the intuitive right side of their brain in their lives. However, one of the main obstacles hindering this integration is the Symbol Grounding Problem [144], which is the capacity to map physical world observations to a set of symbols. In this thesis, we combine symbolic reasoning and deep learning in order to better represent and reason with abstract knowledge. In particular, we focus on solving non-symbolic-state Reinforcement Learning environments using a symbolic logical domain. We consider different configurations: (i) unknown knowledge of both the symbol grounding function and the symbolic logical domain, (ii) unknown knowledge of the symbol grounding function and prior knowledge of the domain, (iii) imperfect knowledge of the symbols grounding function and unknown knowledge of the domain. We develop algorithms and neural network architectures that are general enough to be applied to different kinds of environments, which we test on both continuous-state control problems and image-based environments. Specifically, we develop two kinds of architectures: one for Markovian RL tasks and one for non-Markovian RL domains. The first is based on model-based RL and representation learning, and is inspired by the substantial prior work in state abstraction for RL [115]. The second is mainly based on recurrent neural networks and continuous relaxations of temporal logic domains. In particular, the first approach extracts a symbolic STRIPS-like abstraction for control problems. For the second approach, we explore connections between recurrent neural networks and finite state machines, and we define Visual Reward Machines, an extension to non-symbolic domains of Reward Machines [27], which are a popular approach to non-Markovian RL tasks
    • …
    corecore