31 research outputs found

    A novel hybrid approach for automated detection of retinal detachment using ultrasound images

    Get PDF
    Retinal detachment (RD) is an ocular emergency, which needs quick intervention to preclude permanent vision loss. In general, ocular ultrasound is used by ophthalmologists to enhance their judgment in detecting RD in eyes with media opacities which precludes the retinal evaluation. However, the quality of ultrasound (US) images may be degraded due to the presence of noise, and other retinal conditions may cause membranous echoes. All these can influence the accuracy of diagnosis. Hence, to overcome the above, we are proposing an automated system to detect RD using texton, higher order spectral (HOS) cumulants and locality sensitive discriminant analysis (LSDA) techniques. Our developed method is able to classify the posterior vitreous detachment and RD using support vector machine classifier with highest accuracy of 99.13%. Our system is ready to be tested with more diverse ultrasound images and aid ophthalmologists to arrive at a more accurate diagnosis

    Automated Glaucoma Detection Using Hybrid Feature Extraction in Retinal Fundus Images

    Get PDF
    Glaucoma is one of the most common causes of blindness. Robust mass screening may help to extend the symptom-free life for affected patients. To realize mass screening requires a cost-effective glaucoma detection method which integrates well with digital medical and administrative processes. To address these requirements, we propose a novel low cost automated glaucoma diagnosis system based on hybrid feature extraction from digital fundus images. The paper discusses a system for the automated identification of normal and glaucoma classes using higher order spectra (HOS), trace transform (TT), and discrete wavelet transform (DWT) features. The extracted features are fed to a support vector machine (SVM) classifier with linear, polynomial order 1, 2, 3 and radial basis function (RBF) in order to select the best kernel for automated decision making. In this work, the SVM classifier, with a polynomial order 2 kernel function, was able to identify glaucoma and normal images with an accuracy of 91.67%, and sensitivity and specificity of 90% and 93.33%, respectively. Furthermore, we propose a novel integrated index called Glaucoma Risk Index (GRI) which is composed from HOS, TT, and DWT features, to diagnose the unknown class using a single feature. We hope that this GRI will aid clinicians to make a faster glaucoma diagnosis during the mass screening of normal/glaucoma images

    The Contour Extraction of Cup in Fundus Images for Glaucoma Detection

    Get PDF
    Glaucoma is the second leading cause of blindness in the world; therefore the detection of glaucoma is required. The detection of glaucoma is used to distinguish whether a patient's eye is normal or glaucoma. An expert observed the structure of the retina using fundus image to detect glaucoma. In this research, we propose feature extraction method based on cup area contour using fundus images to detect glaucoma. Our proposed method has been evaluated on 44 fundus images consisting of 23 normal and 21 glaucoma. The data is divided into two parts: firstly, used to the learning phase and secondly, used to the testing phase. In order to identify the fundus images including the class of normal or glaucoma, we applied Support Vector Machines (SVM) method. The performance of our method achieves the accuracy of 94.44%

    Automated detection of calcified plaque using higher-order spectra cumulant technique in computer tomography angiography images

    Get PDF
    Cardiovascular disease continues to be the leading cause of death globally. Often, it stems from atherosclerosis, which can trigger substantial variations in the coronary arteries, possibly causing coronary artery disease (CAD). Coronary artery calcification is known to be a strong and independent forecaster of CAD. Hence, coronary computer tomography angiography (CTA) has become a fundamental noninvasive imaging tool to characterize coronary artery plaques. In this article, an automated algorithm is presented to uncover the presence of a calcified plaque, using 2060 CTA images acquired from 60 patients. Higher-order spectra cumulants were extracted from each image, thereby providing 2448 descriptive features per image. The features were then reduced using numerous well-established techniques, and ranked according to t value. Subsequently, the reduced features were input to several classifiers to achieve the best diagnostic accuracy with a minimum number of features. Optimal results were obtained using the support vector machine with a radial basis function, having 22 features obtained with the multiple factor analysis feature reduction algorithm. The accuracy, positive predictive value, sensitivity, and specificity obtained were 95.83%, 97.05%, 94.54%, and 97.13%, respectively. Based on these results, the technique could be useful to automatically and accurately identify calcified plaque evident in CTA images, and may therefore become an important tool to help reduce procedural costs and patient radiation dose

    Multi-modal classifier fusion with feature cooperation for glaucoma diagnosis

    Get PDF
    Background: Glaucoma is a major public health problem that can lead to an optic nerve lesion, requiring systematic screening in the population over 45 years of age. The diagnosis and classification of this disease have had a marked and excellent development in recent years, particularly in the machine learning domain. Multimodal data have been shown to be a significant aid to the machine learning domain, especially by its contribution to improving data driven decision-making. Method: Solving classification problems by combinations of classifiers has made it possible to increase the robustness as well as the classification reliability by using the complementarity that may exist between the classifiers. Complementarity is considered a key property of multimodality. A Convolutional Neural Network (CNN) works very well in pattern recognition and has been shown to exhibit superior performance, especially for image classification which can learn by themselves useful features from raw data. This article proposes a multimodal classification approach based on deep Convolutional Neural Network and Support Vector Machine (SVM) classifiers using multimodal data and multimodal feature for glaucoma diagnosis from retinal fundus images from RIM-ONE dataset. We make use of handcrafted feature descriptors such as the Gray Level Co-Occurrence Matrix, Central Moments and Hu Moments to co-operate with features automatically generated by the CNN in order to properly detect the optic nerve and consequently obtain a better classification rate, allowing a more reliable diagnosis of glaucoma. Results: The experimental results confirm that the combination of classifiers using the BWWV technique is better than learning classifiers separately. The proposed method provides a computerized diagnosis system for glaucoma disease with impressive results comparing them to the main related studies that allow us to continue in this research path

    Machine Learning Techniques, Detection and Prediction of Glaucoma– A Systematic Review

    Get PDF
    Globally, glaucoma is the most common factor in both permanent blindness and impairment. However, the majority of patients are unaware they have the condition, and clinical practise continues to face difficulties in detecting glaucoma progression using current technology. An expert ophthalmologist examines the retinal portion of the eye to see how the glaucoma is progressing. This method is quite time-consuming, and doing it manually takes more time. Therefore, using deep learning and machine learning techniques, this problem can be resolved by automatically diagnosing glaucoma. This systematic review involved a comprehensive analysis of various automated glaucoma prediction and detection techniques. More than 100 articles on Machine learning (ML) techniques with understandable graph and tabular column are reviewed considering summery, method, objective, performance, advantages and disadvantages. In the ML techniques such as support vector machine (SVM), and K-means. Fuzzy c-means clustering algorithm are widely used in glaucoma detection and prediction. Through the systematic review, the most accurate technique to detect and predict glaucoma can be determined which can be utilized for future betterment

    Multi-stage glaucoma classification using pre-trained convolutional neural networks and voting-based classifier fusion

    Get PDF
    Aim: To design an automated glaucoma detection system for early detection of glaucoma using fundus images.Background: Glaucoma is a serious eye problem that can cause vision loss and even permanent blindness. Early detection and prevention are crucial for effective treatment. Traditional diagnostic approaches are time consuming, manual, and often inaccurate, thus making automated glaucoma diagnosis necessary.Objective: To propose an automated glaucoma stage classification model using pre-trained deep convolutional neural network (CNN) models and classifier fusion.Methods: The proposed model utilized five pre-trained CNN models: ResNet50, AlexNet, VGG19, DenseNet-201, and Inception-ResNet-v2. The model was tested using four public datasets: ACRIMA, RIM-ONE, Harvard Dataverse (HVD), and Drishti. Classifier fusion was created to merge the decisions of all CNN models using the maximum voting-based approach.Results: The proposed model achieved an area under the curve of 1 and an accuracy of 99.57% for the ACRIMA dataset. The HVD dataset had an area under the curve of 0.97 and an accuracy of 85.43%. The accuracy rates for Drishti and RIM-ONE were 90.55 and 94.95%, respectively. The experimental results showed that the proposed model performed better than the state-of-the-art methods in classifying glaucoma in its early stages. Understanding the model output includes both attribution-based methods such as activations and gradient class activation map and perturbation-based methods such as locally interpretable model-agnostic explanations and occlusion sensitivity, which generate heatmaps of various sections of an image for model prediction.Conclusion: The proposed automated glaucoma stage classification model using pre-trained CNN models and classifier fusion is an effective method for the early detection of glaucoma. The results indicate high accuracy rates and superior performance compared to the existing methods

    Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State

    Get PDF
    Glaucoma is a multifactorial neurodegenerative illness requiring early diagnosis and strict monitoring of the disease progression. Current exams for diagnosis and prognosis are based on clinical examination, intraocular pressure (IOP) measurements, visual field tests, and optical coherence tomography (OCT). In this scenario, there is a critical unmet demand for glaucoma-related biomarkers to enhance clinical testing for early diagnosis and tracking of the disease’s development. The introduction of validated biomarkers would allow for prompt intervention in the clinic to help with prognosis prediction and treatment response monitoring. This review aims to report the latest acquisitions on biomarkers in glaucoma, from imaging analysis to genetics and metabolic markers
    corecore