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Abstract 

Background: Glaucoma is a major public health problem that can lead to an optic nerve lesion, 

requiring systematic screening in the population over 45 years of age. The diagnosis and 

classification of this disease have had a marked and excellent development in recent years, 

particularly in the machine learning domain. Multimodal data have been shown to be a significant 

aid to the machine learning domain, especially by its contribution to improving data driven decision-

making.  

Method: Solving classification problems by combinations of classifiers has made it possible to 

increase the robustness as well as the classification reliability by using the complementarity that may 

exist between the classifiers. Complementarity is considered a key property of multimodality. A 

Convolutional Neural Network (CNN) works very well in pattern recognition and has been shown to 

exhibit superior performance, especially for image classification which can learn by themselves 

useful features from raw data. This article proposes a multimodal classification approach based on 

deep Convolutional Neural Network and Support Vector Machine (SVM) classifiers using 

multimodal data and multimodal feature for glaucoma diagnosis from retinal fundus images from 

RIM-ONE dataset. We make use of handcrafted feature descriptors such as the Gray Level Co-

Occurrence Matrix, Central Moments and Hu Moments to co-operate with features automatically 

generated by the CNN in order to properly detect the optic nerve and consequently obtain a better 

classification rate, allowing a more reliable diagnosis of glaucoma. 

Results: The experimental results confirm that the combination of classifiers using the BWWV 

technique is better than learning classifiers separately. The proposed method provides a 

computerized diagnosis system for glaucoma disease with impressive results comparing them to the 

main related studies that allow us to continue in this research path. 

Keywords: Multimodal, Deep Learning, Convolutional Neural Networks, Image Classification, 

Ensemble Learning, Glaucoma diagnosis. 

 

I. Introduction: 

Glaucoma is considered the second reason for visual deterioration after age-related macular 

degeneration (AMD). Over 70 million people would be affected worldwide by 2020 [1]. Glaucoma 

can be managed, but can also cause blindness if not detected in time. Glaucoma is an eye disease that 

primarily affects people over 45 years of age. This illness can cause optic nerve lesion; the nerve 

begins with the retina in the back of the eye and carries the images to the brain. When this nerve is 
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damaged, the visual field is reduced, the vision is then modified and this can lead to long-term 

blindness. In most cases, glaucoma is linked to an increase in the pressure inside the eye, also termed 

intraocular hypertension or intraocular pressure (IOP). 

Intraocular pressure is usually measured with a tonometry test, which is an elementary test, 

as an elevated IOP is an important risk factor of the appearance of glaucoma. However, an elevated 

IOP is not always synonymous with glaucoma, and normal IOP does not necessarily mean a patient 

will never have glaucoma. 

Glaucoma is a tricky disease, so it very difficult for a person to notice any glaucoma-related 

visual impairment because of the complete absence of symptoms. When glaucoma is diagnosed in 

time it can be treated and vision can be stabilized. Therefore, if it is not detected and is not taken care 

of early, glaucoma can evolve and can result in complete blindness. On the other hand, the reduction 

of the catch rate of this silent and severe disease is one of the main interests of public health, in order 

to take charge at the first appearance and control its progression, thus providing improved diagnosis 

of glaucoma. 

In order to help ophthalmologists to detect glaucoma at an early stage, several research 

studies have been directed towards automated decision making of glaucoma. The main objective of 

automated systems is to improve diagnostic accuracy. In fact, they are used as a second opinion by 

doctors to get the final diagnosis [2], which can decrease human errors, in order to provide a uniform 

large-scale screening at a better price. 

Once trained, computers can obtain much faster classifications, so this helps doctors in their real-

time classification. Glaucoma classification has undergone excellent development in recent years, 

particularly in machine learning domain. Generally, the issues in classification reduce to finding a 

better decision area that separates objects into categories or classes. In order to define the best 

separation, we introduce the concept of margin or plane between two categories. To simplify the 

idea, we show an example in a two-dimensional space to explain how each classifier finds its margin 

separating two classes. The red points represent the first class samples and the blue points represent 

the second class. This idea can be generalized to a space of high dimensions. The idea is illustrated 

in figure 1. 

 
Figure 1 : Different separation surfaces generated by different classifiers1. 

                                                           
1 https://scikit-learn.org/  

https://scikit-learn.org/


We notice that each classifier has its own way of generating the margin that separates the 

classes and the resulting model differs from one classifier of another; generally, it is not possible to 

build a perfect partition of space, so the role of the classifier will often be to give a probability of 

belonging to an object to a class. Therefore the choice of the classifier is not obvious because we do 

not have a single classifier that is considered the best to solve all the problems; this choice is 

influenced by the database content and the dispersion of data. 

Recently, a combination of classifiers has been proposed as a research path to enable more 

reliable recognition by using the complementarity that can exist between classifiers. While the first 

experiments in classifiers combination date back to the 1980s [3], this technique has become an 

increasingly used way to improve the quality of recognition systems in several applications, namely 

medical image recognition [4], handwritten digits recognition [5], face recognition [6] and speech 

recognition [7]; these systems differ by output type of the classifiers combined and by the nature of 

the classifiers used. 

The main reason why the pattern recognition community has a real interest in the 

combination of classifiers is its ability to take into account a large number of features used by 

different classifiers through exploiting the marginal performance and behavior of each of these 

classifiers. In the machine learning domain and disease diagnosis, features are considered the most 

important information in pattern recognition. In recent years, classification systems have used feature 

extraction techniques such as shape and texture primitives. Such results are encouraging [8, 9, 10], 

but remain insufficient because we are not sure to have the optimum representation according to the 

base used, and we do not know if the handcrafted characteristics are optimal in their performance. 

Classical methods of classification from shapes use feature extraction techniques to represent 

the shape -while testing/ analyzing different families according to the processed basis-. The choice of 

the latter is not justifiable and in no way guarantees the ability of the characteristics chosen to 

represent new images; indeed, the modification of the initial base or its enrichment calls into 

question the already adapted characteristics and imperatively involves redoing the feature extraction 

phase. 

Recently, the Convolutional Neural Network (CNN) has become widespread and represents 

a deep learning architecture that generates features in an automatic way [11]. In other words, CNN 

learns and extracts the most discriminative characteristics from the forming data. It has been shown 

to give statistically impressive results in image recognition applications [12-14]. The main benefit of 

using the Deep Convolutional Neural Network (CNN) is to take the entire image instead of the 

defective part, which avoids the sophisticated design of handcrafted features, which is a tedious step; 

this saves a lot of time and memory.  Thus, as a second benefit of using CNN, it avoids segmentation 

and provides powerful features to properly classify sick patients and patients who are not sick [12-

14]. Another benefit of CNN is that it does not require any pretreatment step that may affect 

performance. 

However, with the major problem of the data limit and the choice of hyper-parameters, such 

as the filter number, shape, and the max-pooling shape...etc., for this purpose, it is not really known 

whether the features considered by a CNN are the most representative, Therefore, an improvement 

would be to merge them with other families of characteristics to give improved results. 

In pattern recognition field, and more particularly that of medical diagnosis by the content of 

images, benefit can be gained from considering several modalities into decision-making. Indeed, 

multimodality can provide comprehensive information about image content, by increasing 

interpretation capabilities, the characteristics improvement for analysis, and by producing more 

reliable results. However, most existing research has focused on a single modality to diagnose a 

disease such as glaucoma [15], although recent studies have shown that learning using multimodal 



data can provide complementary information [16] in order to obtain better performance [17] of 

extracting features and classification. 

In this paper, we propose a multimodal classification approach to glaucoma disease based on 

two types of commonly used classifiers, namely the deep Convolutional Neural Network (CNN) and 

the Support Vector Machine (SVM). We investigated the use of two types of modalities, on the one 

hand considering resources and on the other hand to consider features in order to obtain the most 

representative features of the classification phase and subsequently increase diagnostic performance. 

In this work, we are the first to propose two levels of multimodality for glaucoma 

classification: 

- We rely on two modalities for the input images, the original RGB images and other binary 

modality using the Otsu technique; where each modality brings a certain types of information to 

be added to the system that cannot be inferred or obtained from other modalities. In mathematical 

terms, this added information is known as diversity. 

- The use of two image representation modalities (RGB and binary), which are the characteristics 

automatically generated by CNN and the texture and shape characteristics used with SVM, we 

want to benefit from these representations by using the ensemble learning techniques. Indeed, 

each representation generates its own vision of the image and the combination of several points of 

view certainly increases the performance of the diagnosis. 

- We have also added a fifth system (combining the features extracted by the convolution layers of 

the two image modalities using the SVM classifier). 

- We suggest a new fusion approach called hybrid fusion: the features concatenation of different 

modalities (early fusion) and the multimodality classification (late fusion) using the best-worst 

weighted vote (BWWV) technique in order to generate the final decision of our multimodal 

system.  

This paper is structured as follows: an overview of the related work presented in Section 2. 

In section 3, the paper presents the background in fusion techniques and proposes a hybrid fusion 

approach. Basic concepts on the Deep CNN are described in Section 4. Section 5 represents our 

CNN architecture and explains the different steps of our method to classify retinal fundus images 

into glaucoma or normal. Section 6 illustrates the experimental results from this work. Finally, a 

conclusion of this study presented in section 7. 

 

II. Related studies:  

Several studies have been conducted to develop tools to diagnose glaucoma. The automated 

detection of glaucoma was obtained using different machine learning (ML) techniques.  

1) Glaucoma Diagnosis Using Classical Computer Vision Techniques 

In recent years, many glaucoma diagnostic systems have been proposed using various 

traditional computer vision strategies to extract characteristics that will represent fundus images in 

classification. Texture and Shape features are the most used such as Gray Level Co-Occurrence 

Matrix (GLCM) features [8, 9], fractal dimension (FD) features [18], higher order spectra (HOS) 

features [19, 20], Wavelet-Based Features [20, 21, 22], local configuration pattern (LCP) features 

[23], correntropy features [22], fast Fourier transform (FFT) features [24] and GIST feature 

descriptor [25]. Most of these works [8, 18, 20, 24, 25] used support vector machine (SVM) as a 

classifier technique. Maheshwari et al. [22] used a variant of the SVM classifier which is the Least 

Squares SVM (LS-SVM) classifier with Radial Basis Function (RBF), Morlet wavelet and Mexican-

hat wavelet kernels. The accuracy of the proposed approach is 98.33% using 3-fold cross-validation. 

Acharya et al. [23] tested several classifiers for glaucoma diagnosis, namely probabilistic neural 

network (PNN), decision tree (DT), k-nearest neighbor (kNN), support vector machine (SVM) and 

discriminant classifiers; the KNN classifier gave a better accuracy of 95.7%. Noronha et al. [19] 



employed the SVM and Naïve Bayesian (NB) classifiers based on HOS cumulant characteristics to 

classify digital fundus images into three classes: normal, mild glaucoma and moderate/severe 

glaucoma. Dua et al. [21] formed several classifiers such as LibSVM, SMO, random forest, and 

naïve Bayes based on DWT and texture characteristics, which were computed from diverse wavelet 

filters. An accuracy of 93.00% is obtained using an SMO classifier with the ten-fold cross-validation 

method. 

In 2003, Zheng and Essock [26] proposed a computer aided diagnosis system for glaucoma, 

using Fisher’s Linear Discriminant Function (LDF) in the classification phase, and a novel Wavelet-

Fourier Analysis (WFA) technique for the features extraction phase in order to obtain a better 

classification result. The results showed a sensitivity of 77.5%, a specificity of 96.5% and a Receiver 

Operating Characteristics (ROC) area of 94.1%. 

In 2007, Meier et al. [27] proposed a two-stage classification system for the diagnosis of 

glaucoma without the segmentation stage. They used four feature extraction techniques, namely 

Principal Component Analysis (PCA) to select the relevant features directly from the image, Gabor 

filters, Fast Fourier Transform (FFT) and the Histogram features, and used the SVM-classifier (nu-

SVM) to make the classification. The results showed an accuracy of 86%. 

In 2009, Nayak et al. [28] proposed an automatic system for glaucoma diagnosis. They 

passed by the classical features extraction step using digital fundus images, then through the 

classification step that used the neural network classifier; they segment optical disk and cup by 

morphological operations in order to compute the cup-to-disc ratio. The results showed an accuracy 

of 90%. 

In 2011, Acharya et al. [29] presented a glaucoma diagnostic system based on a fusion of 

higher order spectra (HOS) and texture features from digital fundus images using a random forest 

classifier, merged with z-score normalization and feature selection techniques. The results showed an 

accuracy of 91.7%.  

In 2012, Mookiah et al. [20] used two techniques for features extraction, the Discrete 

Wavelet Transform (DWT) and Higher Order Spectra (HOS) using digital fundus images in order to 

automatically classify glaucoma and the normal class using SVM classifier with kernel function of 

polynomial order 2; the classification rate is 95%. 

In 2014, Kumbhare et al. [30] used Naïve Bayes (NB) and minimum distance classifiers for 

automatic diagnosis of glaucoma using Higher Order Spectrum (HOS) and texture (Gray Level Co-

Occurrence Matrix (GLCM) and Run Length Matrix (RLM)) features; the classification rate is 91%. 

In 2016, Singh et al. [31] proposed a glaucoma diagnostic system using five of the most used 

automatic learning algorithms, Random Forest, NB, k-Nearest Neighbor (KNN), SVM and Artificial 

Neural Network (ANN) in order to choose the classifier that gave best results. The proposed 

approach used evolutionary attribute selection for feature selection and PCA as the feature reduction 

technique using wavelet features from the segmented optic disk. The results showed an accuracy of 

94.7%. 

In 2017, Maheshwari et al. [32] used the LS-SVM classifier for automatic diagnosis of 

glaucoma disease. The Binary Relief algorithm was used to extract relevant features. The recognition 

rate was 95.19% using the 3-fold cross-validation method. 

In 2018, Kausu et al. [33] suggested an automatic glaucoma detection method using wavelet 

and morphological characteristics from the fundus images. This study proposed a system for 

glaucoma classification based on the segmentation of the region of interest (ROI). An accuracy of 

97.67% is obtained using an MLP classifier with the 10-fold cross-validation technique. 

All the above-mentioned approaches have shown better results for automatic glaucoma 

classification that require a traditional prior step of extracting features prior to the main recognition 

step, which costs a lot of energy and resource; therefore they are not applicable in real time. 



2) Glaucoma Diagnosis Using Deep Learning Models 

Recently, Deep Convolutional Neural Networks (CNNs, or ConvNets) are widespread 

because of finding themselves the best representation of the image. In fact, CNNs automatically 

extract the feature map using its Convolutional and Pooling layers. CNNs representing Deep 

Learning (DL) architectures have encouraging results for image recognition applications, including 

medical imaging [12, 13]. In addition, DL models have also demonstrated impressive results for 

difficult applications such as handwritten character recognition [34], object detection [35], natural 

language processing [36], and speech recognition [37]. 

Numerous studies have shown superior performance using deep convolutional neural 

networks for glaucoma diagnosis. Chen et al. [38] used convolutional neural network (CNN) for 

glaucoma detection using six layers. CNN is formed using segmented images of the region of 

interest (ROI). This work employs 1,676 images of SCES dataset and 650 images of ORIGA 

dataset in order to validate the efficiency of CNN. The results of this approach are based on area 

under curve (AUC) values, which respectively represent 83.1% and 88.7% of the ORIGA and 

SCES datasets. Chai et al. [39] proposed a glaucoma classification system using a Two-Branch 

Convolutional Neuron Network (CNN) in order to analyze both the entire image and the optic 

disc region automatically extracted using the Faster-RCNN model. The authors add a fusion 

layer to combine the characteristics extracted from two branches and a fully connected layer for 

the classification phase. The best classification rate is 81.69% using five convolutional layers. 

Zilly et al. [40] used ensemble learning to segment optic cup and disc from retinal images using 

CNN architectures and computed the cup-to-disc ratio for automatic classification of glaucoma. 

In order to reduce computational complexity and provide better performance, an entropy 

sampling technique is used. Orlando et al. [41] suggested a CNN model for automatic 

classification of glaucoma using two different architectures namely OverFeat and VGG-S from 

fundus images. The segmentation of the optic nerve head (ONH) area and the technique of vessel 

inpainting were applied to fundus images to improve the quality of the image and thus assess the 

improvement of the characteristic discrimination. The performance of this method is evaluated 

according to the area under ROC curve (AUC). The AUC values of the two CNN architectures 

(OverFeat and VGG-S) used are 76.3% and 71.8%, respectively. Raghavendra et al. [42] 

proposed a computer-aided diagnosis (CAD) system for automatic classification of glaucoma 

using CNN and the linear discriminant analysis (LDA) classifier. In this study, the authors used 

1,426 fundus images to form CNN using eighteen layers and showed good diagnostic 

performance. For more details about Computer-Aided Diagnosis (CAD) systems of Glaucoma, 

authors can be referred to the recent review [43]. In our previous study [13], we trained two 

CNNs using different modalities, namely original color fundus images and binary images 

converted by the Otsu method in order to distinguish well between glaucomatous cases and non-

glaucomatous cases. The cooperation of two fully automated CNNs has led to better results. 

This article is a continuation of the work already done [8, 9, 13] using ensemble learning 

techniques by benefiting handcrafted feature descriptors and features automatically extracted by 

CNN in order to obtain a better representation of the image and therefore optimal performance. 

Based our knowledge, this is the first study to suggest a multimodal classification method for 

automated diagnosis of glaucoma using multimodal data and multimodal features from retinal 

fundus images. 

 

 

 

 

 



III. Basic Concepts of Deep Convolutional Neural Network (CNN): 

Deep Learning (DL) refers to a particular type of Artificial Intelligence (AI) using especially the 

Neural Network (NN) and certain models of particular algorithms such as the CNN model in order to 

generate intelligent models through learning. Just like a NN, the DL algorithm will take X inputs to 

return Y results. The input value will be processed and analyzed through many neuron successions 

that take as input the outputs of the previous neuron layers. DL models are built on the same model 

as Multilayer Perceptron (MP), however it should be noted that there are more numerous 

intermediate layers. Each of the intermediate layers maybe subdivided into sub-part, treating a sub-

problem, simpler and providing the result to the next layer, and so on. 

CNNs are multi-layered NNs that specialize in pattern recognition tasks. They are renowned 

for their robustness at low input variations, the low pretreatment rate necessary for their operation, 

and do not require any choice of a specific feature extractor. The proposed architecture is based on 

several deep NNs alternating between the convolution and the pooling layers. The architecture 

consists of a succession of convolutional layers, and aggregation is dedicated to the automatic 

extraction of features. While the second part is made up of layers of completely connected neurons, 

it is specifically dedicated to classification. 

A convolutional neural network architecture is formed by a stack of processing layers: 

- The Convolutional layer (Conv), which processes the data of a receiver field. 

- The Pooling layer (Pool), which compresses the information by reducing the size of the 

intermediate image (often by sub-sampling). 

- The correction layer (ReLU), refers to the activation function (linear rectification unit). 

- The Fully Connected (FC) layer, which is a perceptron type layer. 

- The loss layer (LOSS), specifies how network training penalizes the difference between the 

expected and actual signal, normally it is the last layer in the network. 

 

1)  Convolutional layer: 

A convolutional layerLi (layer i of the network) is characterized by its number N of convolution 

maps Mj
i(j Є{1, … N}), the size of convolution Kernel Kx × Ky(often square) and the connection 

schema to the previous layer Li-1. Each Mj
i convolution card is the result of a convolution sum of 

cards from the previous layer Mj
i − 1  by its respective convolution core. A bj

ibias is then added and 

the result is passed to a non-linear transfer function [44]. 

 

ɸ(𝑥) = 1.7159 𝑡𝑎𝑛ℎ (⅔𝑥) (1) 

 

In the case of a map completely connected to the previous layer maps, the result is then calculated 

by: 

𝑀𝑗
𝑖 = ɸ(𝑏𝑗

𝑖 + ∑ 𝑀𝑛
𝑖 − 1 ∗ 𝐾𝑛

𝑖

𝑁

𝑛=1

) (2) 

* is the convolution operator. 

Figure 2 presents an example of convolution. The sky blue grid represents the input feature map and 

in this example, just one map is represented to make the drawing easy to understand. A value (dark 

blue zone) kernel glides over the map with a kernel (k) size 3×3 applied to a 5×5 input (i) using 1×1 

strides (s). The final results of this operation are called output feature maps. 

  



 
 

 

Figure 2: An example of calculating the output values of a convolution. 

 

The schema in figure 3 shows an example of the first stage of convolution. 

 

Figure 3 : A stage of the convolution calculation. 

 

Stride defines how a filter slips around the input volume and zero-padding fills it with zeros around 

the border. So these stride and zero-padding are used to control the spatial dimension of the output 

volume. Figure4 illustrates an example of using padding and strides with clearer vision. 



 

Figure 4: Convolution with p=2, k=4, i=5 and s=1 

 

2)  Pooling layer 

Another important concept of CNNs is pooling, which is a form of sub-sampling of the image. In the 

CNN literature, convolutional layers are generally followed by sub-sampling layers in order to 

reduce over-learning. A sub-sampling layer reduces the size of the maps, reducing the number of 

parameters and calculation in the network. The pooling operation also created a form of invariance to 

(weak) rotations and translations that can appear as input. 

Max-pooling is a variant of this layer that has shown satisfactory results. The max-pooling 

layer output is given by the maximum activation value within the input layer for different regions of 

size Kx × Ky does not overlap. In a similar way to a convolutional layer, a bias is added and the 

result is passed to the transfer function ɸ() defined above, an example of calculating the output 

values of max-pooling is shown in figure 5. 

 

 

 

 

 

 



 

Figure 5: Example of a 3×3 max pooling procedure over a 5×5 input using 1×1 strides 

 

3)  Correction layer 

Frequently, it is preferable to interpose between the processing layers, a layer that will operate a 

mathematical function (termed an activation function) on the output signals in order to obtain major 

efficiency of the processing. In particular: 

- ReLU (Rectified Linear Unit) Correction: "non saturating activation function" 

 

𝑓(𝑥) = max (0, 𝑥) (3) 

- Hyperbolic Tangent Correction:  

𝑓(𝑥) = tanh (𝑥) (4) 

- The correction by the Sigmoid function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (5) 

 

Generally, the correction Relu is desirable; it allows a training of deep NNs several times faster and 

efficient on large databases. The graphical representations of these functions defined above are 

illustrated in figure 6. 

 

 

 

 

 

 

 

 

 

 



 

Figure 6 : Graphical representations of tanh, sigmoid and the rectified linear unit function. 

 

4) Fully connected layer 

At each ending of a convolution and pooling process, fully connected layers are added in order to 

realize the classification. The neurons that make up the fully connected layer have connections to all 

the outputs of the previous layer so that their activation functions can be calculated with a matrix 

product followed by a polarization shift. 

5) Loss layer 

This layer is considered as the last layer in the network. It defines how the formation of the network 

penalizes the difference between the expected and actual signal, one will find many functions 

adapted to specific tasks. In particular, the Softmax loss is widely used for classification which 

assigns a class to each object to be classified (in this work we have two classes, namely glaucoma 

and normal), Euclidean loss is used for regression, and Sigmoid cross-entropy loss is used to classify 

K probability values in the range [0,1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV. Multimodal fusion 

 
Today, many real-world applications require multimodal data processing. More and more 

information collected from the real world is composed by nature consisting of data with different 

modalities. The term multimodality refers to the use of several modalities for carrying out the same 

task. A modality is a particular concrete form of a communication mode (visual mode, sound mode, 

gestural mode, etc.). For example, noise, music, speech are modalities of the sound mode. 

Theoretically, a multimodal computer system is a system capable of integrating several modalities 

(even if it integrates only one mode). The use of a multimodal approach can give not only better 

performance but also more robustness when one of these modalities is acquired in a noisy 

environment. Because of the rich characteristics of natural phenomena, it is rare that a single 

modality provides a complete knowledge of interest phenomenon. 

The primary concept behind multimodality is complementarity, where each modality brings 

a certain types of information to be added to the system that cannot be deduced or obtained from 

other modalities. Mathematically, this added information is termed diversity [45]. Diversity allows 

supplying circumstances to a system to improve the uniqueness, the interpretability, the robustness, 

the performance, the decision-making and to obtain a global vision of the system. Multimodal data 

classification has become a very active area of research in recent years and has been used in many 

applications of practical interest [46], including the use of ensemble learning techniques [13]. 

Ensemble Learning is a machine learning technique that is considered a difficult task in the 

pattern recognition community [47, 48]. EL consists of training multiple basic models (multiple 

classifier systems (MCS)) as ensemble members and then combining their results into a single output 

in order to obtain an optimal predictive model with more accurate and reliable decisions; numerous 

studies have demonstrated the exceptional performance of EL for classification tasks [49, 50, 51, 52, 

53], that can outperform the ensemble’s individual members and several works have shown that 

multiple classifier systems generally generalize better than a unique classifier [54, 55, 56]. In 1965 

[57], the notion of ensembles appeared in the classification literature and has then been studied in 

various ways, such as bagging [58], boosting [59], model averaging [60], stacking [61] and the 

mixture of experts [62 ]. MCS, another name for the mixture of experts or ensembles of classifiers, 

are especially helpful when different classifiers are formed on various parts of the characteristic 

space or when heterogeneous sets of characteristics are available for use in a multimodal 

classification problem.  

There are two main types of commonly used ensemble methods: 

-Heterogeneous ensemble methods: Combine a set of hypotheses ℎ1 … ℎ𝑇, produced by different 

algorithms 𝐿1 … 𝐿𝑇 on the same learning set A. 

-Homogeneous ensemble methods: Combine a set of hypotheses ℎ1 … ℎ𝑇, produced by the same 

algorithm 𝐿1 … 𝐿𝑇 on a different learning set A. They use adaptive (boosting) or random (bagging) 

strategies. 

By providing complementary information, multimodal data is generally used for achieving a 

good performance in classification tasks. However, the different information combination comes 

from various modalities (multimodal data) is a complex task, especially when one is interested in 

heterogeneous data. The purpose of the fusion is to correlate the elements of each modality and 

improve the quality of what is displayed by choosing to display the best of each modality. There are 

two main types of commonly used architecture to combine multimodal information to distinguish: 

early fusion (feature fusion) and late fusion (decision fusion). 

 

 

 



 

1) Early fusion: 

Early fusion consists of directly using the features extracted from the modalities to be combined in 

order to make the final decision of the system. In this case, there is no intermediate decision phase of 

each modality. For example, in our case, this would mean that no decision is made on the 

classification of glaucoma disease once the features are extracted from multimodal and fused images.  

This process is illustrated in figure 7: 

 

 

 
 

Figure 7: Illustration of the general early fusion process: fusion is applied directly to characteristics 

extracted from different modalities. 

 

2) Late fusion: 

Late fusion consists of merging decisions made on those modalities, rather than the features 

extracted directly from the modalities. It enables semantic concepts to be learnt directly at the 

unimodal level. For example, in our study, we first apply separate classifiers for each modality by 

considering that the modalities are independent, and then merging their outputs by applying a fusion 

method such as the voting method, figure 8 illustrates this principle. 

 

 
 

Figure 6: Illustration of the general late fusion process: fusion is applied to a decision set taken at the 

unimodal level. 

 

In this study, we propose applying a new fusion approach, called the hybrid approach in order to 

benefit from two early and late fusion techniques, on the one hand by combining the different 

modalities before learning, and on the other hand we use separate classifiers for each modalities 

combination to really ensure the concept of multimodality (EL). We then merge the results using a 

voting method to obtain the final decision of our system. This principle is illustrated in figure 9.  



 
 

Figure 7 : A general illustration of our hybrid fusion approach. 

V. Proposed Method: 

The creation of our network by the proposed approach, illustrated in Figure 10, was obtained after 

several experiments and after a deep study of the literature for other tasks of pattern recognition and 

information fusion. 

 

 
    

   Figure 8 : Proposed Network Architecture for Glaucoma diagnosis 



Our proposed multimodal classification system is based on two multimodalities; on the one hand, of 

the resource type and on the other hand of the characteristic type, in order to cooperate to obtain a 

very performing system. Firstly, we train two CNNs using multimodal data namely the RBV color 

images modality and the binary images modality from retinal fundus images. Secondly, we apply the 

principle of early fusion, which consists in extracting relevant characteristics from the different 

modalities and merging them- bag of features-, to form only a single vector on which the learning is 

realized; on the one hand, we combine the characteristics automatically generated by the CNN from 

the two modalities (RGB images and binary images) and the characteristics manually produced by 

traditional techniques such as GLCM, Hu Moments and Central Moments in a single multimodal 

representation in order to obtain the most representative characteristics, while on the other hand we 

merge the characteristics generated directly by the CNN from two modalities in a single multimodal 

vector for better classification of images. Finally, after obtaining the multimodal representation of 

the unimodal characteristics, we then apply separate classifiers for each multimodal feature vector by 

merging the five multimodal outputs using the commonly used voting method to ensure the principle 

of late fusion, and thus obtain the final diagnosis. The use of the five different models allows the 

system to avoid the incompatibility problem in the final decision of our system. We adopt an SVM 

classifier in addition to a CNN classifier for the classification phase because it is considered the best 

binary separator in the medical field. 

 

1 Image preprocessing  

The preliminary pretreatment stage allows obtaining the binary image modality which represents 

another point of view of the database by using the commonly used Otsu method (see Figure 11) 

because of its better performance in many areas of image processing and which reveals a better 

contrast between retinal structures. 

 

 
 

Figure 11: An example of a Binarize image from the RIM-ONE dataset using the Otsu method. 

 

Binarization is an important step in any process of image processing and analysis. Binarization is an 

operation that produces two classes of pixels; in general, they are represented by black pixels and 

white pixels. The binarization of an image can be done using a threshold: pixels whose gray level is 

below the threshold become black, and those above become white. The binarisée image of good 

quality can produce more precision in pattern recognition by comparing with the source image 

because the binarisée image does not contain noise [63]. 

Otsu method is one of the automatic threshold calculation methods for the unavoidable 

binarization with that of Kittler & Illingworth. The principle of Otsu's thresholding method is to find 

the threshold that minimizes the intra-class weighted variance, as well as maximizes the interclass 

variance [64]. In another way, the Otsu method tries to find the threshold, t, which separates the 

histogram optimally into two segments. The Otsu method steps are presented below: 

 

 

 



1- The weighted intra-class variance to find the threshold is defined as follows: 

 

𝜎𝑤
2 (𝑡) = 𝑞1(𝑡)𝜎1

2(𝑡) + 𝑞2(𝑡)𝜎2
2(𝑡) (6) 

 

 The class probabilities are calculated according to: 

𝑞1(𝑡) =  ∑ 𝑝(𝑖)

𝑡 

𝑖=1

         𝑎𝑛𝑑       𝑞2(𝑡) = ∑ 𝑝(𝑖)

𝐿

𝑖=𝑡+1

 (7) 

 

Where 𝐿represents the bins of the histogram,𝑡is the threshold which separates these two classes and 

𝜎1
2 𝑎𝑛𝑑 𝜎2

2 are the variances of these latter. 

2- The class means are defined as follows: 

𝜇1(𝑡) = ∑
𝑖𝑝(𝑖)

𝑞1(𝑡)

𝑡

𝑖=1

         𝑎𝑛𝑑        𝜇2(𝑡) = ∑
𝑖𝑝(𝑖)

𝑞2(𝑡)

𝐿

𝑖=𝑡+1

 (8) 

 

 

3- The total mean level of the original image is defined as follows: 

 

𝜇𝑇 = 𝜇(𝐿) = ∑ 𝑖𝑝(𝑖)

𝐿

𝑖=1

 (9) 

 

4- The class variances are computed as follows: 

𝜎1
2(𝑡) =  ∑[𝑖 − 𝜇1(𝑡)]2

𝑝(𝑖)

𝑞1(𝑡)

𝑡

𝑖=1

 (10) 

     𝑎𝑛𝑑           

𝜎2
2(𝑡) =  ∑ [𝑖 − 𝜇2(𝑡)]2

𝑝(𝑖)

𝑞2(𝑡)

𝐿

𝑖=𝑡+1

 (11) 

 

5- The total variance of levels : 

𝜎𝑇
2(𝑡) = ∑(𝑖 − 𝜇𝑇)2𝑝(𝑖)

𝐿

𝑖=1

 (12) 

 

6- The between-class variance is given by: 

 

𝜎𝑏
2(𝑡) = 𝜎2 − 𝜎𝑤

2 (𝑡) = 𝑞1(𝜇1 − 𝜇𝑇)2 + 𝑞2(𝜇2 − 𝜇𝑇)2 = 𝑞1(𝑡)𝑞2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]2 (13) 

 

7- Finally, the𝜎𝑏
2(𝑡)maximum represents the desired threshold. 

 

2 CNN architecture and conception 

We used 6 layers in both CNN Architectures: convolutional layer C1, subsampling layer S1, 

convolutional layer C2, subsampling layer S2, dense layer D and output layer O (see figure 10).  



We developed a network with a CNN architecture that avoided the phase of extracting 

traditional handcrafted features by processing the extraction of features and classification at one time 

within the same network of neurons and therefore provide an automatic diagnosis. 

CNNs are currently the most powerful models for classifying images [12, 13]. They have two 

distinct parts. At the input, an image is provided in the form of a matrix of pixels. It has 2 dimensions 

(width and height) to a grayscale image and 3 dimensions for color image RGB (with 3 depth units, 

the third of which corresponds to the stacking of 3 images according to each color, red, green and 

blue). The first part of a CNN is the conventional part itself. It functions as an extractor of image 

characteristics. An image is passed through a succession of filters, or convoluted nuclei, creating new 

images called convolution maps. Some intermediate filters reduce the resolution of the image by a 

local maximum operation. In the end, the convolution maps are combined in a feature vector, called 

a CNN code. This code CNN got out of it from the convolutive party is then connected in the entry 

of a second part, constituted by completely connected layers (multilayer perceptron). The role of this 

part is to combine the characteristics of the code CNN to classify the image. The output is a last layer 

with one neuron per category. 

 

3 Training  

Since the images are generally too voluminous to be used directly in a CNN, consequently 

each image in our database is resized to 100 x 100 in order to reduce the computational complexity 

and ensure a standard scale for all images used in the training. 

Our neural network is performed after several performance tests. We start through the 

convolution blocks creation; a batch normalization step is applied after each convolutional layer to 

decrease the number of feature maps. A stochastic gradient descent is used with a momentum value 

of 0.9. L2 regularization method is also applied to weight and biases with a threshold equal to 

0.0005. Finally, a low learning rate is fixed at 0.0001 to train our neural network. We used two 

convolution layers and two sub-sampling layers, are structured one after the other with a ReLU and 

Identity activation function, for the convolution layers we perform a stride (1, 1), and for sub-

sampling layers we use size 2x2 for kernel Size and stride with the Max-pooling function. For the 

dense layer we used the ReLU and Cube functions, also the Square Mean Error (MSE) function has 

been used to optimize the loss function. Finally, for the classification we use the function Softmax 

widely used. Figure 12 shows the training process of our CNN. 



 
 

Figure 12: Supervised training process of CNN Classifier. 

  

4 Computational complexity  

Recently, there has been a growing interest in speeding up the execution of CNNs. the actual 

execution time may be responsive to implementations and equipment. Our models in this study have 

an affordable and low-cost computational cost, which takes only one day of forming on a single 

processor, but once our models are pre-forming (off-line), the concept of computational cost does not 

intervene in the real-time classification phase (on-line). The following figure shows that, from a 

number of iterations, our CNN classifiers converge; this figure presents model score versus iteration 

of the two CNNs, this is the value of the loss function on the current mini-batch. 

 
 

Figure 13: Model score versus iteration 

 



The main model parameters and training information of proposed CNN architecture are described in 

the tables below. 

 

Table 1: Model and Training Information of CNN1RGB. 

 
 

Table 2: Model and Training Information of CNN2Binary. 

 
 

Limiting network complexity is one way to understand the impacts of factors such as depth (number 

of layers), width (numbers of filters), filter sizes, and strides of the architectures in network 

conception. CNN's accuracy is evaluated using these factors and their increase increases the 

computational cost. 

The computational cost of the convolutional layer is 𝑂(𝐹𝐼𝑀𝑁𝑚𝑛𝐹𝑂), where 𝑀 × 𝑁 represents the 

feature map size of each input, 𝑚 × 𝑛 is the convolution kernel size and 𝐹𝐼 , 𝐹𝑂 are the input and 

output channels in a layer, respectively. The computational cost of the pooling layer is frequently 

highly low compared to that of the convolutional layer, which is defined as follows: 𝑂(𝐹𝐼𝑀𝑁) [65]. 

Finally, our method offers accurate recognition with limited computational complexity and 

affordable time cost. 

 

 

 



 

5 Handcrafted feature extraction 

 

In pattern recognition, characteristics are the measurable properties of an observed physical 

phenomenon. The discriminant characteristics extraction is a fundamental step in the recognition 

process prior to classification. The feature extraction phase consists of calculating a set of measures 

to represent each class as unique as possible and also to reduce dimensionality. The performance of 

recognition systems depends largely on the choice of descriptors used and the techniques associated 

with their extraction. Many descriptors are used in image search systems by content and more 

particularly in diagnostic aided systems to describe forms such as descriptors of colors, textures, and 

shape. Wen-Jie and Woo [66] proposed an automatic system for diagnosing breast tumors, using the 

characteristics of the auto-covariance texture and the morphological characteristics of solidity. These 

features are extracted and merged to introduce them into the SVM classifier to identify abnormalities 

in breast images. Bob et al. [67] used two-dimensional Gabor filter with different scales and 

orientations for extracting the texture features. The facial color gamut was used for extracting the 

color features; the color and texture characteristics extracted are combined to achieve a tool for facial 

diagnosis. The results showed an accuracy of 99.83%. Chang et al. [68] suggested combining the 

shape and color features to obtain an automatic tongue diagnosis system. The results showed that this 

combination can give better diagnostic accuracy. 

In this study, as regards the traditional feature extraction methods, we rely on two families of 

heterogeneous features commonly used namely the texture and shape in order to concatenate them 

with the features automatically generate by the CNN to ensure a better vector representation of the 

medical image features. In terms of texture features, we used the GLCM method, and we rely on 

both methods of shape features extraction: Central Moments and Hu Moments. These three adopted 

methods are widely used and have given better results in our related work compared to the literature 

[8, 69, 70]. 

 

1) Gray Level Co-Occurrence Matrix (GLCM): 

Because of their richness in texture information, Co-Occurrence Matrix has become the best known 

and most used to extract these textures features [71, 72]. The co-occurrences matrices consist in 

measuring the probability of appearance of pixel values pairs located at a certain distance in the 

image. It is based on the calculation of the probability p (i, j, d, θ) which represents the number of 

times a color level pixel i appears at a relative distance d of a color level pixel j and according to a 

given orientation θ. The angular directions θ conventionally used are 0, 45, 90 and 135 degrees. This 

matrix characterizes the identifiable patterns in gray levels of a pixels region. As co-occurrences 

matrices count a very large amount of information difficult to exploit directly to characterize the 

textures. Haralick et al. [73] proposed the first fourteen parameters, characterizing the textures, 

resulting from these matrices. Recently, in medical diagnosis, only the first thirteen most appropriate 

characteristics are commonly used [74, 75] and which are considered in our study. The Haralick 

features considered in this study are presented as follows: 

 

Angular Second Moment:  

𝑃1 =  ∑ ∑(𝑝(𝑖, 𝑗))2

𝑗𝑖

 
(14) 

 

Where p (i, j) are the elements of the matrix P. 

 

 



 

Contrast: 

𝑃2 =  ∑ 𝑛2

𝑁𝑔
−1

𝑛=0

(∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

) 

(15) 

 

The variable 𝑁𝑔 is the gray levels number used in the image. 

 

Correlation: 

𝑃3 =  
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦

 
(16) 

 

The variables 𝜇𝑥𝜎𝑥 represent the mean and standard deviation respectively measured for the vector𝑝𝑥(𝑖) 

 

Sum of squares (Variance): 

𝑃4 =  ∑ ∑(𝑖 − 𝜇)𝑝(𝑖, 𝑗)

𝑗𝑖

 
(17) 

Inverse Difference Moment: 

𝑃5 =  ∑ ∑
1

1 + (𝑖 − 𝑗)
𝑝(𝑖, 𝑗)

𝑗𝑖

 
(18) 

Sum Average: 

𝑃6 =  ∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

(19) 

Sum Variance: 

𝑃7 =  ∑(𝑖 − 𝑃𝑔)
2

𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

(20) 

 

Sum Entropy: 

𝑃8 =  ∑ 𝑝𝑥+𝑦(𝑖) log( 𝑝𝑥+𝑦(𝑖) + 𝜖)

2𝑁𝑔

𝑖=2

 

(21) 

Entropy: 

𝑃9 =  ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗)

𝑗𝑖

+ 𝜖) 
(22) 

Difference Variance: 

 

𝑃10 = variance (𝑝𝑥−𝑦) (23) 

 

𝑝𝑥−𝑦 represents the difference of two vectors 𝑝𝑥(𝑖) and 𝑝𝑦(𝑖). 

 

Difference Entropy: 

 

𝑃11 =  − ∑ 𝑝𝑥−𝑦(𝑖) log( 𝑝𝑥−𝑦(𝑖) + 𝜀)

2𝑁𝑔

𝑖=2

 (24) 

 

Information measures of Correlation (2): Expresses the measure of the linear dependence of gray level 

between pixels in specific positions. 

 

𝑃12 =  
𝑃9 − 𝐻𝑋𝑌1

max (𝐻𝑋, 𝐻𝑌)
 (25) 

 



𝑃13 = [1 − exp (−2.0(𝐻𝑋𝑌2 −  𝑃9))]2 (26) 

 

The variables𝐻𝑋and 𝐻𝑌represent the measured entropy on𝑝𝑥(𝑖) and 𝑝𝑦(𝑖) respectively. 

 

The variables HXY1 and HXY2 are computed as follows: 

 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑝(𝑖, 𝑗) log{𝑝𝑥(𝑖)𝑝𝑦(𝑗)}

𝑗𝑖

 (27) 

𝐻𝑋𝑌2 = − ∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗) log{𝑝𝑥(𝑖)𝑝𝑦(𝑗)}

𝑗𝑖

 (28) 

 

2) Central Moments: 

Moments are scalar quantities used to describe a function and to capture its important characteristics. 

The moments notion in mathematics, are projections of a function on a polynomial basis; different 

systems of moments can be recognized according to the polynomial base used. The Central Moments 

have become one of the most used shape descriptors in many fields [76-78], which have shown 

superior performance. A central moment is a moment of a probability distribution of a random 

variable on the mean of the random variable. Geometric moment (raw moment) of order (p+q) for a 

2-dimensional discrete function is calculated as follows: 

 

𝑀𝑝𝑞 = ∑ ∑ 𝑥𝑝

𝑦

𝑦𝑞  𝑓(𝑥, 𝑦)

𝑥

 

 

Where 𝑝, 𝑞 = 0,1,2, …, and (𝑥, 𝑦) the pixel position. 

(29) 

 

The central moments are generally used to substitute the raw moment which are defined as follows 

[79]: 

𝜇𝑝𝑞 =  ∫ ∫(𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

 (30) 

 

Where 𝑥̅ =  
𝑀10

𝑀00
and 𝑦̅ =  

𝑀01

𝑀00
 are the components of the centroid, 𝑓(𝑥, 𝑦) is the image function  

and𝑀00 is the area for binary images and for grey-tone images it is the sum of grey level.If ƒ(x, y) is 

a numerical image, then the precedent equation becomes: 

𝜇𝑝𝑞 =  ∑ ∑(𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞𝑓(𝑥, 𝑦)

𝑦𝑥

 (40) 

The central moments used of order up to 3 are: 

𝜇00 = 𝑀00 

 
(41) 

𝜇01 =  𝜇10 = 0 
 

(42) 

𝜇11 = 𝑀11 − 𝑥̅𝑀01 = 𝑀11 − 𝑦̅𝑀10 

 
(43) 

𝜇20 = 𝑀20 − 𝑥̅𝑀10 
 

(44) 

𝜇02 = 𝑀02 − 𝑦̅𝑀01 

 
(45) 

𝜇21 = 𝑀21 − 2𝑥̅𝑀11 − 𝑦̅𝑀20 + 2𝑥̅2𝑀01 
 

(46) 

𝜇12 = 𝑀12 − 2𝑦̅𝑀11 − 𝑥̅𝑀02 + 2𝑦̅2𝑀10 (47) 



 

𝜇30 = 𝑀30 − 3𝑥̅𝑀20 + 2𝑥̅2𝑀10 
 

(48) 

𝜇03 = 𝑀03 − 3𝑦̅𝑀02 + 2𝑦̅2𝑀01 (49) 

  

3) Hu Moments: 

A reformulation of the previously represented moments is necessary to allow the rotation invariance, 

the rotation Hu-moment invariants (HMI) was proposed by Hu [79] in 1962. Hu obtained these 

expressions thanks to algebraic invariants carried out at the generating function of the moment under 

a rotation transformation. An ensemble of nonlinear centralized moment expressions constitutes the 

HMIs, which are completely orthogonal (i.e. rotation) invariant. HMIs are frequently used in image 

processing and play a very important role in pattern recognition; they are calculated from normalized 

centralized moments up to order 3 and are described as follows: 

 

𝐼1 =  𝜂20 + 𝜂02 (50) 

𝐼2 =  (𝜂20 + 𝜂02)² + 4𝜂11
2  (51) 

𝐼3 = (𝜂30 + 3𝜂12)2 + (3𝜂21 − 𝜇03)2 (52) 

𝐼4 =  (𝜂30 + 𝜂12)2 + (𝜂21 + 𝜂03)² (53) 

𝐼5 = (𝜂30 + 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2]
+ (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03) [3(𝜂30 + 𝜂12)2  − (𝜂21 + 𝜂03)2] (54) 

𝐼6 =  (𝜂20 − 𝜂02)[(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2] + 4𝜂11(𝜂30 + 𝜂12)(𝜂21 + 𝜂03) (55) 

𝐼7 = (3𝜂21 − 𝜂03)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)²]
− (𝜂30 − 3𝜂12)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2] (56) 

 

In order to calculate the central moments and the Hu moments to extract the shape features, we need 

to convert the color images to binary images; for this purpose, we adopted the Otsu method as 

presented previously. The co-occurrence matrix is computed from grayscale images using the ImageJ 

tool2. 

 

6 Fusion and classification  

As there is no unique model for all pattern recognition problems and no unique method is 

applicable to all problems; in other words, there is no "best" classifier able to process (learn) any 

distribution of learning data. For this reason, it has not been possible to highlight the undeniable 

superiority of one classification method over another or of a feature extractor over another, which 

leads us to take an interest in Ensemble Learning (EL). 

As already mentioned in Section 4, we applied our approach to hybrid fusion: the features 

concatenation of different modalities (early fusion) and the multimodality classification (late fusion). 

In order to benefit from the complementarity that can exist between classifiers on the one hand, and 

of the set of features multimodal generated according to the adopted methods (CNN, GLCM, Central 

Moments and Hu Moments) on the other hand, five models have been used which are MLPRGB, 

SVMCNN1, MLPBinary, SVMCNN2 and SVMCNN3 (see figure 10). 

                                                           
2 http://imagej.net/Welcome  

http://imagej.net/Welcome


In this study, we adopt the parallel ensemble method where the five basic learners are 

generated in parallel. The basic motivation that we use the parallel method is to exploit the 

independence between the five basic classifiers because the merger/averaging can greatly reduce the 

error. An appropriate combination method should be used after the ensemble's formation algorithms 

(the multiple base learners) have been formed in order to combine their training outputs into a unique 

form as the final classifier. Despite a large number of combination methods existing in the literature, 

only three of them have been widely used and have shown considerable potential for amelioration in 

many applications of EL, which are linear combiner, product combiner, and vote combiner. 

To generate the final decision of our multimodal system, a vote-based merge technique is 

applied. Majority voting is considered to be one of the effective methods of fusion [80, 81]. In the 

process of majority voting method, a decision to choose the label of an input sample is produced by 

each classifier. The class that has the highest number of votes is determined as the representative 

class of all the classifiers in the set [82]. Let 𝐶 = [𝑐1, 𝑐2, … 𝑐𝐿] be a set of 𝐿 classifiers, 𝑥 is the input 

sample and 𝑐𝑖,𝑗 is the output of the 𝑖th classifier for the𝑗th class. The final decision using the majority 

voting can be defined as follows: 

𝑀𝑉(𝑥) =  𝑚𝑎𝑥𝑗∈ ∑ 𝑐𝑖,𝑗

𝐿

𝑖=1

 (57) 

 

However, the specific accuracy of each classifier is not considered in the final decision, which is 

considered to be the main flaw in the majority voting methods. In general, the chosen classifiers do 

not have a similar skill. Consequently, the weighted voting method is used to combine the decision 

of the chosen classifiers [83]. In this aggregated method, the result of each classifier is weighted by a 

coefficient that affects the combination process. Note that 𝑤𝑖 is the weight of the 𝑖𝑡ℎ  classifier, the 

weighted majority voting is defined as: 

𝑊𝑀𝑉(𝑥) =  𝑚𝑎𝑥𝑗∈ ∑ 𝑤𝑖𝑐𝑖,𝑗

𝐿

𝑖=1

 

and ∑ 𝑤𝑖 =𝐿
𝑖=1 1 

 

(58) 

 

Many schemes have been suggested to estimate the weights of classifiers [84]. Usually, these 

weights are estimated using the specific accuracy of each classifier. Let 𝑎𝑖 and 𝑎𝑗 be the accuracies 

of the 𝑖𝑡ℎ and 𝑗𝑡ℎclassifiers on the validation set. The weight 𝑤𝑖 is calculated by: 

 

𝑤𝑖 =
𝑎𝑖

∑ 𝑎𝑗𝒋

 (59) 

 

In this study, the best-worst weighted Vote (BWWV) scheme [83] is used as a measure to quantify 

the weights. The main idea behind this scheme is to identify the best and worst members of the set 

using their estimated error on the validation set; the 𝑎𝑖 values are determined using the following 

expression: 

𝑎𝑖 = 𝟏 −
𝑒𝑘 − 𝑒𝑏

𝑒𝑤 − 𝑒𝑏

 (60) 

 

Where 𝑒𝑤 indicates the maximum error among the classifiers, and 𝑒𝑏 is the minimum error.  

The 𝑎𝑖 value varies in [0,1], where 0 indicates the worst classifier and 1 corresponds to the best 

classifier. 



VI. Experimental results 

In order to evaluate our multimodal approach for the classification of glaucoma, we use the k-fold 

cross-validation method with k=10. The implementation of the proposed work was done with 

Deeplearning4j3, the first commercial-grade, open-source, distributed deep-learning library written 

for Java and Scala. In the sub-sections that follow, the details of the experiments and their results are 

represented. 

 

1 Used dataset  

The proposed method for glaucoma diagnosis uses a set of 455 images from the open Retinal Image 

Database for Optic Nerve Evaluation (RIM-ONE) database, of which 200 images represent 

glaucoma disease and 255 images are normal; they are centered on the ONH with a field-of-view 

(FOV) of 34°. Figure 14 shows examples of retinal fundus images. 

 

 
Figure 14: Examples of fundus images from RIM-One database: (a) and (b) glaucoma, (c) and (d) 

normal. 

 

2 Evaluation criteria 

In order to evaluate the performance of our system, we use evaluation criteria commonly used in the 

medical field which are described as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸𝑁) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(61) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃𝐸) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 
(62) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(63) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 

(64) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (65) 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶) =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (66) 

 

Where, 

True Positives (TP) describe the samples of sick people with a positive test. 

True Negatives (TN) describe the samples of non-sick people with a negative test. 

False Positives (FP) represent the samples of non-sick people with a positive test. 

False negatives (FN) represent the samples of sick people with a negative test. 

 

                                                           
3 https://deeplearning4j.org/ 

https://deeplearning4j.org/


 

3 Results  

In this work, five models are used: CNN1RGB based on the color fundus images (original images 

from Rim-One dataset), SVMCNN1 using all features (GLCM, Central Moments, Hu Moments and 

features map generated by CNN1RGB), CNN2Binary based on the binary images (original images from 

the Rim-One dataset converted by the Otsu algorithm), SVMCNN2 using all features (GLCM, Central 

Moments, Hu Moments and features map generated by CNN2Binary) and SVMCNN3 based on the 

CNN1RGB and CNN2Binary features. The following tables summarize the individual performance of 

each classifier used.  

Table3 (MLPRGB) illustrates that 197 images of glaucoma were formally recognized as glaucomatous 

images by the CNNRGB model, 252 normal images are properly classified as non-glaucomatous 

images. In summary, 449 images are accurately labeled, resulting in 98.68% Accuracy with 

Sensitivity 98.5%, Specificity 98.82%, Positive Predictive Value (PPV) 98.5%, Negative Predictive 

Value (NPV) 98.82% and Matthews Correlation Coefficient (MCC) 97.32%. 

 

Table 3: Confusion Matrix of CNN1RGB results 

 Glaucoma Healthy 

Glaucoma 197 3 
Healthy 3 252 

 

 

Table4 (MLPBinary) shows that 199 images of glaucoma were correctly recognized as glaucomatous 

images by the CNN2Binary model, 253 normal images are properly classified as non-glaucomatous 

images. In summary, 452 images are accurately labeled, resulting in 99.34% Accuracy with 

Sensitivity 99.5%, Specificity 99.22%, Positive Predictive Value (PPV) 99%, Negative Predictive 

Value (NPV) 99.61% and Matthews Correlation Coefficient (MCC) 98.66%. 

 

Table 4: Confusion Matrix of CNN2Binary results 

 Glaucoma Healthy 

Glaucoma 199 1 
Healthy 2 253 

 

In table 5 (SVMCNN1), we demonstrate that 198 images of glaucoma were correctly detected as 

glaucomatous images by the SVMRGB model, 253 normal images are properly classified as non-

glaucomatous images. In summary, 451 images are accurately labeled, resulting in 99.12% Accuracy 

with Sensitivity 98.50%, Specificity 99.61%, Positive Predictive Value (PPV) 99.49%, Negative 

Predictive Value (NPV) 98.83% and Matthews Correlation Coefficient (MCC) 98.22%. 

 

Table 5: Confusion Matrix of SVMRGB results 

 Glaucoma Healthy 

Glaucoma 197 3 
Healthy 1 254 

 

 

 

 



As shown in table 6 (SVMCNN2), 198 images of glaucoma were correctly detected as glaucomatous 

images by the SVMBinary model, 255 normal images are properly classified as non-glaucomatous 

images. In summary, 453 images are accurately labeled, resulting in 99.56% Accuracy with 

Sensitivity 99%, Specificity 100%, Positive Predictive Value (PPV) 100%, Negative Predictive 

Value (NPV) 99.22% and Matthews Correlation Coefficient (MCC) 99.11%. 

 

 

Table 6: Confusion Matrix of SVMBinary results 

 Glaucoma Healthy 

Glaucoma 198 2 
Healthy 0 255 

 

 

Table 7 (SVMCNN3) illustrates that 200 images of glaucoma were formally recognized as 

glaucomatous images by the SVMRGB&Binary model, 252 normal images are properly classified as non-

glaucomatous images. In summary, 452 images are accurately labeled, resulting in 99.34% Accuracy 

with Sensitivity 100%, Specificity 98.82%, Positive Predictive Value (PPV) 98.52%, Negative 

Predictive Value (NPV) 100% and Matthews Correlation Coefficient (MCC) 98.67%. 

 

Table 7: Confusion Matrix of SVMRGB&Binary results 

 Glaucoma Healthy 

Glaucoma 200 0 
Healthy 3 252 

 

 

A comparative study on the SVM classifier performance using several feature families combinations 

has been achieved with figure 15 illustrating the obtained results. Comparing the obtained results, we 

find that the combination of the three techniques of handcrafted characteristics extraction (GLCM, 

Central Moments and Hu Moments) with the characteristics automatically produced by CNN (from 

both modalities) is much better than using the separate combination of these last three techniques 

with CNN’s characteristics, which leads to the improvement of the diagnostic performance. 

 

 
Figure 15: Comparison of obtained results using combinations different from characteristics 

 

The important parameters to tune for the SVM classifier are defined as follows: Radial Basis 

Function (RBF) kernel with a gamma value of 0.5 and the c parameter equal to 4. 



 

The proposed approach was also evaluated according to the ROC curves [85]. The ROC curves of 

our models are plotted in figure 16.  

 

 
 

Figure 16: ROC Curve of five models used 

 

 

The areas under the curve (AUC) values for five models are given in table 8. 

 

Table 8: AUC values of five models used 

 
 

The next table summarizes the obtained results for each model. 

 

 

 

 

 

 



Table 9: Obtained results from five models used 

Model ACC(%) SEN(%) SPE(%) PPV(%) NPV(%) MCC(%) AUC(%) 

MLPRGB 98.68 98.50 98.82 98.50 98.82 97.32 97.30 

MLPBinary 99.34 99.50 99.22 99.00 99.61 98.66 97.90 

SVMCNN1 99.12 98.50 99.61 99.49 98.83 98.22 98.20 

SVMCNN2 99.56 99.00 100 100 99.22 99.11 98.70 

SVMCNN3 99.34 100 98.82 98.52 100 98.67 98.40 

 

4 Discussion 

In this study, several experiments are performed about the CNN's performance, notably on the 

number of epochs and the activation function. Figure 17 demonstrates the impact of the number of 

epochs on the accuracy of two CNN1RGB and CNN2Binary classifiers according to the activation 

function used. 

 

 
 

Figure 17: Plot of accuracy of two CNN1RGB and CNN2Binary models compared with the different 

epochs according to the Relu, Identity, Sigmoid and Tanh activation functions. 

 

In general, we observed that the increase in the number of epochs resulted in an increase in the 

accuracy of both CNNs (CNN1RGB and CNN2Binary) for the four activation functions considered. 

According to this figure, we found that the CNN1RGB and CNN2Binary classifiers achieved maximum 

performance when the number of epochs equals 60 for the four activation functions used: Relu, 

Identity, Sigmoid and Tanh; and that the accuracy is almost stable after 55 epochs. We also noted that 

the CNN1RGB model obtained better accuracy by using the Relu function with a 98.68% rate while 

CNN2Binary model by using the Identity function outperform all other activation functions with a 

99.38% accuracy. 

 



In order to improve the sensitivity and specificity of our multimodal classification and strengthen 

overall performance of diagnostic on the one hand, and to generate the final decision of our 

approach, on the other hand, three aggregation methods have been applied: Majority voting (MV), 

Weighted Majority Voting (WMV) and Best-Worst Weighted Vote (BWWV). Table 10 shows the 

total results obtained. 

 

 

Table 10: Obtained results from three aggregation methods used 

Model ACC(%) SEN(%) SPE(%) PPV(%) NPV(%) MCC(%) AUC(%) 

MV 99.12 99.00 99.22 99.00 99.22 98.22 98.60 

WMV 99.56 99.50 99.61 99.50 99.61 99.11 98.80 

BWWV 99.78 99.50 100 100 99.61 99.55 99.20 

 

 

Figure 18 illustrates the ROC curves [85]. The AUC values of three aggregation methods considered 

are given in table 11. According to the results presented above, we find that the Best-Worst 

Weighted Vote (BWWV) method gave the best result and with high accuracy, comparing with state-

of-the-art results using the same database (RIM-ONE). 

 

 
 

Figure 18: ROC Curve of three aggregation methods used 

 

 



Table 11: AUC values of three aggregation methods used 

 
 

The analysis of the experimental results led to the conclusion that the combination of classifiers 

using the BWWV method is preferable to the separate learning of classifiers, and that the 

combination of multimodal features has endorsed its effectiveness in classifying glaucoma. 

The main advantage of this work is access to the design of a CAD system of glaucoma that 

outperforms other systems of literature; this thanks to the fusion of two types of characteristics 

(handcrafted characteristics represented by GLCM, Central Moments and Hu Moments, and the 

characteristics automatically generated by CNN) in a multimodal architecture. 

Table 12 illustrates the main features suggested in the literature and presents a comparative study of 

the proposed method performance with the leading existing methods of glaucoma diagnosis in the 

literature. 

 

Table 12: Comparative study on the performance of the proposed method compared to other work 

for the glaucoma diagnosis. 

Authors 
N° of  

Classes 
Methods/Features 

Classification 

method 

Number 

of images 
ACC(%) SEN(%) SPE(%) 

Kolar et al. [18] 

Tow 

(Normal/ 

Glaucoma) 

Fractal Dimension (FD) SVM 30 93.80 - - 

Noronha et al. [19] 

Three (N, 

Mild G, 

severe G) 

HOS cumulant features  

and LDA 

Naïve Bayesian 

(NB) 
272 92.65 100 92.00 

Mookiah et al. [20] 

Tow 

(Normal/ 

Glaucoma) 

High Order Spectral 

(HOS) and wavelet 

features 

SVM 60 95.00 93.33 96.67 

Dua et al. [21] 

Tow 

(Normal/ 

Glaucoma) 
DWT and texture features  SMO 60 93.00 - - 

Bock et al. [24] 

Tow 

(Normal/ 

Glaucoma) 

Raw pixel intensities, 

FFT, B-spline and PCA 
SVM 575 80.00 73.00 85.00 

Raghavendra et al. 

[25] 

Tow 

(Normal/ 

Glaucoma) 

RT, MCT and GIST 

descriptor 
SVM 1000 97.00 97.80 95.80 

Nayak et al. [28] 

Tow 

(Normal/ 

Glaucoma) 

Morphological 

Discussed above 
ANN 61 90.00 100 80.00 

Acharya et al. [29] 

Tow 

(Normal/ 

Glaucoma) 

HOS and texture features Random Forest 60 91.70 - - 

Singh et al. [31] 

Tow 

(Normal/ 

Glaucoma) 

wavelet features 

Random Forest 

and ANN, 

SVM and 

 k-NN 

63 94.70 - - 



Maheshwari et al. 

[32] 

Tow 

(Normal/ 

Glaucoma) 

VMD, entropy and FD LS-SVM 488 95.19 93.62 96.71 

Kausu et al. [33] 

Tow 

(Normal/ 

Glaucoma) 

Morphological and  

wavele features 
MLP 86 97.67 98.00 97.10 

Chen et al. [38] 

Tow 

(Normal/ 

Glaucoma) 
Six layers CNN - 

1,676 

 
- - - 

Chai et al. [39] 

Tow 

(Normal/ 

Glaucoma) 

Two-branch CNN 

      (five-conv layers) 
- 3,554 81.69 - - 

Zilly et al. [40] 

Tow 

(Normal/ 

Glaucoma) 

CNN, Hough transform 

and entropy sampling 
- 155 94.10 92.30 95.60 

Orlando et al. [41] 

Tow 

(Normal/ 

Glaucoma) 
Eight layers CNN - 101 - - - 

Raghavendra et al. 

[42] 

Tow 

(Normal/ 

Glaucoma) 
Eighteen layers CNN LDA 1,426 98.13 98.00 98.30 

Deepti et al. [86] 

Tow 

(Normal/ 

Glaucoma) 

GLCM 
ART/ANN 

 
100 90.00 - - 

Kevin et al. [87] 

Tow 

(Normal/ 

Glaucoma) 
HOS 

NB/SVM 

 
272 92.60 100 92.00 

Rajendra et al. [88] 

Tow 

(Normal/ 

Glaucoma) 
Gabor Filters SVM 510 93.10 89.73 96.20 

Nagarajan et al. 

[89] 

Tow 

(normal/ 

Glaucoma 
MVEP ANN 399 94.00 95.00 94.00 

Ashish et al. [90] 

Tow 

(Normal/ 

Glaucoma) 

CDR, NRR and blood 

vessels in ISNT quadrants 
SVM and ANN 67 94.00 100 - 

Simonthomas [91] 

Tow 

(Normal/ 

Glaucoma) 
Haralick texture KNN 60 98.00 - - 

Issac et al. [92] 

Tow 

(Normal/ 

Glaucoma) 

morphological features 

(CDR, NRR, BV and IQ)  
SVM and ANN 67 94.11 100 90.00 

Acharya et al. [93] 

Tow 

(Normal/ 

Glaucoma) 

Gabor transform and 

entropy 
SVM 510 93.10 89.75 96.20 

Proposed 

Method 

Tow 

(Normal/ 

Glaucoma) 

 

Multimodal features 

fusion: GLCM, Central 

Moments, Hu Moments 

and CNN features 

Multimodal 

Classifications 

fusion: 

BWWV 

CNNMLP+SVM 

 

 

455 

 

 

99.78 

 

 

99.50 

 

 

100 

Conclusion  

Glaucoma is a tricky disease; it is the leading cause of visual impairment after age-related macular 

degeneration. Several studies have been conducted to develop tools to diagnose this disease.  

In this study, we presented a multimodal classification method for diagnosing glaucoma using 

multimodal data and multimodal features from retinal fundus images, as a first work using the 

multimodality concept. This approach uses the hybrid fusion technique that we proposed, based on 

the deep convolutional neural networks (CNN) and SVM classifier. 



One of the key benefits of using CNN is the elimination of traditional steps such as 

extraction and selection of features, by automatically generating the most informative features. The 

merge of the latter with the artisanal characteristics gave a highly robust and accurate system.  

In the future, in order to durably exploit our system, it would be interesting that each well 

classified and approved image by the doctor will be integrated/added to the original learning base. In 

this case, the proposed system will be able to recognize new cases (unknown cases). We also want to 

invest in the representation of the feature map generated by CNN by looking for the best structuring 

of the new convolutional layers. Another interesting future direction would be the possibility of 

further improving our system by including other types of modalities, mainly topographic map 

images, which is a new representation of the retina, as well as textual information (concerning the 

patient: age, with or without: diabetes, myopia...). 

In conclusion, the proposed method provides a more robust computer-aided diagnosis (CAD) 

system that enables ophthalmologists to quickly diagnose patients with glaucoma and is considered a 

second opinion by doctors with high accuracy.  
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