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Aim: To design an automated glaucoma detection system for early detection of
glaucoma using fundus images.

Background: Glaucoma is a serious eye problem that can cause vision loss and
even permanent blindness. Early detection and prevention are crucial for effective
treatment. Traditional diagnostic approaches are time consuming, manual, and
often inaccurate, thus making automated glaucoma diagnosis necessary.

Objective: To propose an automated glaucoma stage classification model using
pre-trained deep convolutional neural network (CNN) models and classifier
fusion.

Methods: The proposed model utilized five pre-trained CNN models: ResNet50,
AlexNet, VGG19, DenseNet-201, and Inception-ResNet-v2. Themodel was tested
using four public datasets: ACRIMA, RIM-ONE, Harvard Dataverse (HVD), and
Drishti. Classifier fusion was created to merge the decisions of all CNN models
using the maximum voting-based approach.

Results: The proposed model achieved an area under the curve of 1 and an
accuracy of 99.57% for the ACRIMA dataset. The HVD dataset had an area under
the curve of 0.97 and an accuracy of 85.43%. The accuracy rates for Drishti and
RIM-ONE were 90.55 and 94.95%, respectively. The experimental results showed
that the proposed model performed better than the state-of-the-art methods in
classifying glaucoma in its early stages. Understanding the model output includes
both attribution-based methods such as activations and gradient class activation
map and perturbation-based methods such as locally interpretable model-
agnostic explanations and occlusion sensitivity, which generate heatmaps of
various sections of an image for model prediction.

Conclusion: The proposed automated glaucoma stage classification model using
pre-trained CNN models and classifier fusion is an effective method for the early
detection of glaucoma. The results indicate high accuracy rates and superior
performance compared to the existing methods.
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1 Introduction

Glaucoma can gradually impair the optic nerves, whichmay lead
to blindness and permanent vision loss. The damage to the optic
nerve is commonly caused by an increase in the intraocular pressure
(IOP), which is the fluid pressure in the eye (Sommer et al., 1991).
For those over the age of 60, glaucoma is one of the major causes of
blindness. It can occur at any age, but is more common in elders.
Glaucoma is estimated to affect 80 million people in 2020, with that
number rising to 111 million by 2040 (Tham et al., 2014). The
majority of glaucoma-related visual loss can be averted with early
detection and treatment. As a result, detecting glaucoma at an early
stage is essential. Manual glaucoma screening for all suspects is
difficult and time consuming due to the shortage of experienced
ophthalmologists. It is necessary to develop an automated glaucoma
diagnosis system that is both accurate and efficient. There are
different methods for the detection and classification of glaucoma
using fundus images (Shabbir et al., 2021). One way to detect
glaucoma is to look for structural changes in the eye.
Ophthalmologists examine the inner features of the eye with
fundoscopy and optical coherence tomography (OCT) (Chan
et al., 2019) to diagnose abnormalities (Sułot et al., 2021). In the
other way, the ratio of the size of the optic cup (OC) to the size of the
optic disc (OD) and the structure of these two regions are crucial
markers in fundus imaging used to diagnose glaucoma.

The machine learning methods such as artificial neural networks
(ANNs), support vector machine (SVM) (Roy et al., 2016;
Raghavendra et al., 2018), k-nearest neighbor (k-NN) (Sharma
and Sunkaria, 2018; Sharma et al., 2021), and random forest (RF)
are other ways for detection and classification in medical imaging
problems. The OC and OD can be examined with machine learning
algorithms (Mookiah et al., 2012; De La Fuente-Arriaga et al., 2014;
Kausu et al., 2018; Soltani et al., 2018; Tulsani et al., 2021). As a
result, prior studies suggested calculating glaucoma-related
characteristics such the cup-to-disc ratio (CDR) (Haleem et al.,
2018), the inferior superior nasal temporal (ISNT) rule, the
glaucoma risk index (GRI), and the neuroretinal rim (NRR). All
of these include manually labeling the cup and disc in each image. As
a result, it takes time and is labor intensive. Many image processing
tasks, such as classification and diagnosis, can be carried out with
deep learning models (Anwar et al., 2018; Islam et al., 2018; Shorten
et al., 2021). Such models can detect various attributes in incoming
images without the use of pre-processing techniques such as
segmentation (Cheng et al., 2013; Krishnan and Faust, 2013;
Mohamed et al., 2019; Zulfira et al., 2021) and texture feature-
based approaches (Bock et al., 2007; Acharya et al., 2011; Haleem
et al., 2016). Deep learning approaches (Christopher et al., 2018;
Serener and Serte, 2019; Sreng et al., 2020) are the better option for
image classification problems. They perform admirably in a variety
of fields, particularly image classification. These algorithms have
significantly improved the performance of fine-grained classification
tasks that aim to differentiate between subclasses.

The motivation of this paper is to address the critical issue of
glaucoma, an eye problem that can lead to vision loss and even
permanent blindness, if left undiagnosed and untreated. Traditional
glaucoma diagnosis techniques are frequently labor intensive,
inaccurate, and time consuming, which can postpone the
disease’s discovery and have more serious consequences. Hence,

there is a need for automated glaucoma diagnosis with high accuracy
to enable early detection and prevention of the disease. To address
this need, the authors proposed a model for automated glaucoma
stage classification using pre-trained deep convolutional neural
network (CNN) models (ResNet50, AlexNet, VGG19, Dns201,
and IncRes). The model is tested on four public datasets, and a
classifier fusion technique is employed to improve the overall system
performance.

The main contributions of this paper are as follows: (i) Three-
class glaucoma classification. (ii) k-fold cross-validation is used for
each model, and performance metrics are discussed. (iii) For
performance improvement, classifier fusion is used. (iv)
Visualization techniques are used to determine which part of the
image is used more to predict the class the most.

The rest of the paper is organized as follows. We discuss the state
of the art on glaucoma detection and classification in Section 2, the
collection and preprocessing of the dataset in Section 3, and basic
CNN architecture and also the classifier fusion in Section 4. The
results of all CNNs and classifier fusion are discussed and all output
graphs and related tables are shown in Section 5. In Section 7, the
conclusion of the proposed work is discussed.

2 Related work

Medical diagnostic systems, especially in current
ophthalmology, are increasingly repleted with image processing
techniques. The retinal images reveal information about the
health of the visual system. A computerized system enables
standardized wide-scale screening at a lesser cost, minimizes
human mistakes, and can extend services to rural and isolated
places when an ophthalmologist is not available, as well as when
numerous patients need to be diagnosed. Over the last couple of
decades, research has been carried out to create automated
approaches. Cheng et al. (2013) presented the approach of
superpixel classification for glaucoma detection in the optic cup
and optic cup segmentation. In optical disc division, histograms and
focus encompass insights are used to classify every superpixel as a
disc or non-disc. Hatanaka et al. (2009) suggested a technique for
computing the CDR using a vertical profile on the optic disc. By
evaluating the second-order differential values of the vertical profile
on the disc area, the boundary between the cup and disc regions was
discovered. The CDR was calculated at that moment, and that was
used to determine if the patient had glaucoma. Parashar and
Agrawal (2020a) also proposed a novel approach for the
automatic classification of glaucoma stage categorization based
on 2D tensor empirical wavelet transform (2D-T-EWT). Parashar
and Agrawal (2020b) proposed a novel approach for glaucoma stage
categorization based on the flexible analytic wavelet transform
(FAWT).

A large portion of the proposed approaches for automated
glaucoma recognition used underlying elements (CDR, RDR, and
ISNT) (Cheng et al., 2013; Mohamed et al., 2019) or intensity-based
features independently. Glaucoma classification, based on structural
variations, can sometimes produce incorrect results due to
erroneous cup or disc segmentation due to the presence of light
lesions. Using a combination of texture and higher-order spectra
(HOS) data from digital fundus pictures, Acharya et al. (2011)
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proposed a unique approach for glaucoma identification. Support
vector machines, sequential minimal optimization, naive Bayesian,
and random-forest classifiers are utilized for supervised
classification. Diaz-Pinto et al. (2019a) proposed a new retinal
image synthesizer and a semi-supervised learning approach for
glaucoma assessment based on deep convolutional generative
adversarial networks (GANs). This system can not only create
images synthetically but it can also dynamically supply labels.
Sreng et al. (2020) described an automated two-stage glaucoma
assessment method that reduces ophthalmologist’s work. Using a
DeepLabv3+ architecture, the device first segmented the optic disc
region but replaced the encoder module with multiple deep CNNs.
Olivas et al. (2021) proposed a transfer learning technique for
glaucoma detection using the MobileNet and Inception
V3 models with images of the retina. Li et al. (2019) offered an
attention-based CNN (AG-CNN) for glaucoma detection that
addresses the drawback that existing techniques can easily reduce
excessive redundancy in fundus pictures for glaucoma identification,
possibly lowering glaucoma detection reliability and accuracy.
Imran et al. (2021) proposed a new hybrid convolutional and
recurrent neural network (CRNN) for cataract classification
based on fundus images. They have used AlexNet, GoogLeNet,
ResNet, and VGGNet to extract multilevel feature representation
and assess how effectively these model works in cataract
classification when combined with transfer learning. G´omez-
Valverde et al. (2019), in their proposed study, have used several
CNN schemes to demonstrate the impact of significant aspects such
as dataset size, architecture, and the usage of transfer learning vs.
newly created architectures on performance. Diaz-Pinto et al.
(2019b) used five ImageNet-trained models for autonomous
glaucoma assessment utilizing fundus images in this research
(VGG16, VGG19, Inception V3, ResNet50, and Xception). The
results of a thorough validation employing cross-validation and
cross-testing methodologies were compared to those of previous
studies. Sułot et al. (2021) designed a novel task-specific CNN
architecture for glaucoma image categorization. Five machine
learning algorithms for classifying glaucoma based on retinal
nerve fiber layer (RNFL) thickness—a well-known biomarker in
glaucoma diagnostics—an ensemble classifier based on Inception

v3 architecture, and classifiers based on image attributes were all
investigated.

Deep learning algorithms have increased the state of the art in
medical image classification and also ophthalmic image
classification, segmentation (Sreng et al., 2020), and detection of
diseases over the last few years. In ophthalmology, deep CNNs (Liao
et al., 2019; Serte and Serener, 2019) were employed for a variety of
tasks, such are detecting glaucoma and analyzing and segmenting
optical coherence tomography (OCT) images. Transfer learning has
become an important strategy for applying features acquired to
execute one task to other tasks in order to lessen these needs.

3 Collection of databases

In this section, dataset collection and preprocessing steps are
used for fine-tuning the fundus image for further processing. The
data preprocessing is essential for the transfer learning approach
because each pre-trained deep CNN is trained for a specific input
image size. In the image pre-processing phase, we have carried out
image resizing and data augmentation, which are important
techniques used in image classification, especially when working
with pre-trained CNNmodels. These are typically trained on images
of a specific size. If the images to be classified are of different sizes,
they must be resized to match the input size of the CNNmodel. Data
augmentation helps to increase the size and diversity of the training
data. Both techniques help to optimize the performance of the pre-
trained CNN model and increase its accuracy. The suggested model
is trained and tested on both two-class datasets (ACRIMA and RIM-
ONE) and three-class datasets (Harvard and Drishti), and the details
of the datasets are shown in Table 1.

The ACRIMA database has 705 fundus images altogether,
including 396 glaucomatous and 309 normal images. As part of
the ACRIMA experiment, they were collected with the agreement of
glaucomatous and healthy patients (Diaz-Pinto et al., 2019b). The
eyes were dilated and centered in the optic disc when the majority of
the fundus photos in this collection were taken. All the images from
the ACRIMA database were annotated by two glaucoma specialists
with 8 years of experience. No additional clinical information was

TABLE 1 Datasets used in this work.

Two-class datasets

Dataset name Image format Resolution Normal Glaucoma

Affected

ACRIMA; Diaz-Pinto et al. (2019b) JPG 2048 × 1536 309 396

RIM-ONE; Fumero et al. (2011) JPG 2144 × 2144 255 200

Three-class datasets

Dataset name Image format Resolution Normal Early Advanced

Harvard PNG 240 × 240 788 289 467

dataverse (HVD); Kim. (2018)

Drishti; Sivaswamy et al. (2014) PNG 2048 × 2048 29 15 83
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taken into account while labeling the images. Another popularly
used, freely accessible dataset is the RIM-ONE dataset for glaucoma
classification and glaucoma detection (Fumero et al., 2011). To
create the database, three Spanish hospitals Hospital
Universitario de Canarias, Hospital Clinico San Carlos, and
Hospital Universitario Miguel Servet worked together. There are
200 glaucoma images, 255 normal photos, and 455 fundus images in
total. The Harvard dataset was originally collected from Kim’s Eye
Hospital (Kim, 2018). The dataset was uploaded by Ungsoo Kim.
There are 788 normal images, 289 early glaucoma images, and
467 advanced glaucoma images in the dataset. The dataset has
already been preprocessed and is ready for deep learning tasks. It
is available on the Harvard Dataverse and can be downloaded at
Kim, Ungsoo, 2018, “Machine learn for glaucoma,” and Harvard
Dataverse V1. The Drishti dataset was originally collected at
Aravind Eye Hospital, Madurai, and consists of a total of
101 images (Sivaswamy et al., 2014). There are 50 training
images and 51 test images. Clinical investigators chose their

glaucoma patients based on their examination’s clinical findings.
Male and female patients that were chosen for treatment ranged in
age from 40 to 80. Each image was evaluated and classified as normal
or glaucoma by a team of four glaucoma experts with varying levels
of clinical experience. This dataset is available in two classes as
normal and glaucoma. However, with reference to the work of Raja
et al. (2021), we have modified it as the three-class dataset. Their
research paper utilizes the white pixel-containing separated optic
disc and cup region to determine the area and calculate the CDR
value. Based on these values, three stages of glaucoma are classified.
The CDR values are used to determine different stages of glaucoma.
A CDR value less than 0.41 indicates normalcy, whereas a value
greater than 0.41 indicates abnormality. An early-stage prediction is
made if the CDR value falls between 0.41 and 0.5, whereas an
advanced-stage prediction is made if the CDR value is greater
than 0.5.

Figure 1A depicts the structure of the eye, representing CDR
and NRR. The total color intensity and textural information rise

FIGURE 1
(A) Structure of the eye representing CDR and NRR. (B–D) Sample images of the HVD dataset to show the variation in the cup and disc ratio. (E–H)
Sample glaucoma-affected images of datasets used in our work.
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in glaucoma images as the size of the cup and disc grow. We can
see the variation of cup and disc ratio changes in images of the

HVD dataset, as shown in Figures 1B–D. Some sample images of
datasets that are used in this work are shown in Figures 1E–H.

FIGURE 2
(A) Workflow diagram for glaucoma classification. (B) Basic CNN architecture.
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4 Proposed methodology

The proposed system workflow is shown in Figure 2A, and it
consists of the following steps: data collection and
preprocessing, pre-trained CNNs selection for transfer
learning, multi-stage classification, voting-based fusion, and
performance evaluation. The aim of the transfer learning
stage is to apply the knowledge of different pre-trained CNNs
for glaucoma classification.

• Data collection and preprocessing: Four different datasets of
retinal images are collected from various sources. The images
are resized before being fed to the CNN to model since the
CNN model is designed for specific input image sizes. Then,
we applied data augmentation to increase the size and diversity
of training data. The data collection and preprocessing steps
were already discussed in Section 3.

• Pre-trained CNN selection: Different pre-trained CNNs such
as ResNet50, AlexNet, VGG19, Dns201, and InsRes are
selected. The selected pre-trained CNNs are used to extract
high-level features from the retinal images.

• Multi-stage classification: Through transfer learning, the pre-
trained CNNs are used for multi-stage classification. The
images are classified as normal, early, or advanced glaucoma.

• Voting-based fusion: The results from multi-stage
classification are fused using a voting-based approach. The
final diagnosis is based on the majority of votes of different
classifiers.

• Performance evaluation: The performance of the proposed
methodology is evaluated using various metrics such as
accuracy, sensitivity, specificity, and area under the curve
(AUC). The results are compared with the state-of-the-art
methods for glaucoma diagnosis.

4.1 Basic architecture of CNN

The basic architecture of CNN is shown in Figure 2B. The
concept of simple and complex cells in the visual cortex in the
brain- inspired the CNN, which is a basic type of deep learning
approach (Liu et al., 2018; Alghamdi and Abdel-Mottaleb, 2021).
Basically, the process of CNN will be performed through three
layers: 1) convolutional, 2) pooling, and 3) fully connected (FC).
The FC layers are trained for the final classification after multiple
alternating convolutional and pooling layers. CNN has been
frequently used in image classification tasks with great
effectiveness.

The basic CNN operation for three layers deep can be expressed
as a mathematical equation as follows:

f x( ) � sign 2σsoftmax W3σrelu W2σrelu W1x + b1( ) + b2( ) + b3( ) − 1( )
(1)

In Eq. 1, “x” is the input to the CNN which is to be given for the
first convolutional (Conv) layer with rectified linear unit (Relu);
then, this result is the input for second Conv layer with Relu and
finally a third layer with softmax activation function, which is used

FIGURE 3
Comparison of augmented images of glaucoma class of each dataset.

TABLE 2 Data augmentation details.

Option Value

RandScale (0.05 and 1)

RandRotation (−45 and 45)

RandXReflection 1

RandYReflection 1

RandXTranslation (−50 and 50)

RandYTranslation (−50 and 50)

RandXShear (−30 and 30)
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for classification. Here, Wl1, Wl2, and Wl3 are matrices which relate
to hidden layers and b1, b2, and b3 are the bias functions.

4.1.1 Convolutional layer
There are three operations in the Conv layer, namely, (i)

convolution, (ii) batch normalization, and (iii) Relu.

(i) Convolution: The Convolution operation between input and
filter weights is as follows:

yi � wi pxi + bi for i � 1, 2, . . . , N (2)
where yi is the output corresponding i

th layer,wi is the weight of i
th layer,

xi is the input for i
th layer, and bi is the i

th bais. N is the number of filters.

(ii) Batch normalization: During the training of deep neural
networks, batch normalization is used to standardize the
inputs to a layer for each mini-batch. This technique helps
stabilize the learning process and reduces the number of
training epochs required to create deep CNNs significantly.
Typically, batch normalization is performed after
the convolution operation to accelerate the training
process.

′
i � σ p ̂i + β (3)

where σ and β are the scale and shift factors, respectively, and x̂i is the
normalized input.

(iii) Relu: It is defined as it gives “0” for all negative input values,
and it gives “x” for all positive input values. This is the
frequently used activation function in most applications.

y � max 0, x( ) (4)
where y is the output of relu function and x is the input.

4.1.2 Pooling layer
To reduce the spatial size of the input, this layer is employed

after a convolution layer. It is applied to each of the input volume’s
depth slices separately. The pooling operation is performed by
sliding a 2D kernel over each channel of the feature map,
summarizing the features that fall inside the filter’s coverage zone
(Rahul and Sharma, 2022). There are three types of pooling layers:
max pooling, average pooling, and global pooling.

If the feature map has dimensions nh × nw × nc, then the output
dimensions we get after the pooling layer are as follows:

TABLE 3 Summarized glaucoma classification results of ACRIMA and HVD datasets by classifier fusion.

ACRIMA

ResNet50 VGG19 AlexNet Dns201 IncRes Fusion

Normal N (309) N (307) N (302) N (308) N (309) N (309)

(309) G (0) G (2) G (7) G (1) G (0) G (0)

Glaucoma N (1) N (8) N (31) N (6) N (50) N (3)

(396) G (395) G (388) G (365) G (390) G (346) G (393)

HVD

Normal (788) N (715) N (682) N (674) N (670) N (728) N (710)

E (48) E (70) E (75) E (74) E (34) E (48)

A (25) A (38) A (39) A (44) A (26) A (30)

Early (289) N (75) N (61) N (73) N (60) N (141) N (71)

E (155) E (167) E (137) E (183) E (104) E (166)

A (59) A (61) A (79) A (46) A (44) A (52)

Advanced (467) N (26) N (20) N (16) N (21) N (81) N (16)

E (24) E (29) E (21) E (37) E (54) E (8)

A (417) A (418) A (430) A (409) A (332) A (443)

FIGURE 4
Classifier fusion to improve the performance of the system in
glaucoma classification.
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TABLE 4 Performance metric of the HVD dataset using different CNN models.

CNN model AUC ACC SEN SP PRE FM GM

ResNet50 0.9703 0.8335 0.5363 0.9019 0.5467 0.5575 0.6955

VGG19 0.9680 0.8206 0.5778 0.8764 0.5466 0.5186 0.7116

AlexNet 0.9600 0.8038 0.8553 0.8797 0.4749 0.4757 0.6458

Dns201 0.9642 0.8174 0.8758 0.7920 0.6461 0.7436 0.8329

IncRes 0.9324 0.7539 0.7109 0.7725 0.5754 0.6306 0.7411

Fusion — 0.8543 0.8080 0.9214 0.8275 0.8129 0.8628

Bold values are showing the model results after applying classifier fusion operation.

TABLE 5 Performance metric of the Drishti dataset using different CNN models.

CNN model AUC ACC SEN SP PRE FM GM

ResNet50 0.9436 0.8898 0.9398 0.7955 0.8966 0.9176 0.8646

VGG19 0.9339 0.8740 0.9639 0.7045 0.8602 0.9091 0.8241

AlexNet 0.8771 0.8425 0.9880 0.5682 0.8119 0.8913 0.7492

Dns201 0.9480 0.8661 0.9277 0.7500 0.8750 0.9006 0.8341

IncRes 0.9102 0.8346 0.9277 0.6591 0.8370 0.8800 0.7819

Fusion — 0.9055 0.7770 0.9259 0.8841 0.7770 0.8271

Bold values are showing the model results after applying classifier fusion operation.

TABLE 6 Performance metric of the HVD + Drishti dataset using different CNN models.

CNN model AUC ACC SEN SP PRE FM GM

ResNet50 0.9671 0.8288 0.8636 0.8118 0.6924 0.7686 0.8373

VGG19 0.9653 0.8306 0.8855 0.8037 0.6888 0.7749 0.8346

AlexNet 0.9479 0.7917 0.9455 0.7163 0.6205 0.7493 0.8230

Dns201 0.9671 0.8145 0.8400 0.8020 0.6754 0.7488 0.8208

IncRes 0.9318 0.7522 0.7600 0.7484 0.5971 0.6688 0.7542

Fusion — 0.8518 0.7992 0.9252 0.7969 0.7992 0.7980

Bold values are showing the model results after applying classifier fusion operation.

TABLE 7 Performance metric of the ACRIMA dataset using different CNN models.

CNN model AUC ACC SEN SP PRE FM GM

ResNet50 1.0000 0.9986 0.9975 1.0000 1.0000 0.9987 0.9987

VGG19 0.9989 0.9858 0.9798 0.9935 0.9949 0.9873 0.9866

AlexNet 0.9890 0.9461 0.9217 0.9773 0.9812 0.9505 0.9491

Dns201 0.9998 0.9901 0.9848 0.9968 0.9974 0.9911 0.9908

IncRes 0.9984 0.9291 0.8737 1.0000 1.0000 0.9326 0.9347

Fusion — 0.9957 0.9962 1.0000 0.9952 0.9962 0.9957

Bold values are showing the model results after applying classifier fusion operation.
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nh − f + 1( )
s

×
nw − f + 1( )

s
× nc (5)

where nh is the height, nw is the width, nc is the number of channels
of the feature map, f is the filter size, and s is the length of stride.

4.1.3 Softmax layer
The softmax layer is the layer after the last convolution layer

and is used to generate the probability distribution function for
the output classification. The softmax function can be written as
follows:

σ ( )i � exi

Σk
j�1exj

for i � 1, 2, . . . , K and x � x1, x2, . . . , xk (6)

where x is the input vector for softmax, xi is the elements of the input
vector, and K is the number of output classes.

The standard exponential function is applied on each xi of the
input vector x, and these values are normalized by dividing by the
sum of all exponentials. The sum of all output vectors is equal to
zero, i.e., Σ σ (x) = 0.

4.1.4 Classification layer
This layer performs the classification of each image according to

its probability distributions. The output size of the preceding layer is
used to estimate the number of classes. To specify the three classes,
we have to set a fully connected layer for output size to three and
then a softmax layer is used. To use deep neural networks for
classification tasks, the last fully connected layer of the CNN was
replaced with an average pooling layer, followed by a fully connected

layer that has three output nodes for three classes (normal, early, and
advanced), two output nodes for two classes (normal and glaucoma),
and a softmax classifier.

ResNet50 is a CNN that has 48 convolutional layers, along with
one max pool and one average pool layer. This network input image
size is 244 × 244. It learned from over a million images in the
ImageNet collection. It has the ability to categorize images into
1,000 different object types. VGG19 is a CNN that has been
trained on over a million images from the ImageNet dataset.
There are 19 layers in total. VGG19 requires a 244 × 244 input
image. It has sixteen convolutional layers, three fully connected layers,
and a softmax layer at the end. AlexNet is made up of eight levels. It
was trained on the ImageNet dataset, which has over 14 million
images classified into 1,000 classes. It consists of five layers along with
max-pooling layers followed by three fully connected layers, and they
use the relu function in each of these layers other than the output

TABLE 8 Performance metric of the RIMONE dataset using different CNN models.

CNN model AUC ACC SEN SP PRE FM GM

ResNet50 0.9721 0.9253 0.9200 0.9294 0.9109 0.9154 0.9247

VGG19 0.9330 0.8747 0.8900 0.8627 0.8357 0.8620 0.8763

AlexNet 0.9089 0.7604 0.4950 0.9686 0.9252 0.6450 0.6924

Dns201 0.9513 0.8945 0.8450 0.9333 0.9086 0.8756 0.8881

IncRes 0.9509 0.8989 0.8600 0.9294 0.9053 0.8821 0.8940

Fusion — 0.9495 0.9447 0.9843 0.9540 0.9447 0.9493

Bold values are showing the model results after applying classifier fusion operation.

TABLE 9 Accuracies of each CNN model for the ACRIMA dataset for different epoch sizes.

CNN model Accuracy (%)

Epoch = 20 Epoch = 30 Epoch = 40 Epoch = 50

ResNet50 97.58 97.73 98.01 99.86

VGG19 96.81 97.62 97.89 98.58

AlexNet 92.82 93.42 93.86 94.61

Dns201 97.53 97.81 98.34 99.01

InsRes 90.32 90.54 91.63 92.91

Bold values are showing the model results after applying classifier fusion operation.

TABLE 10 Training time of CNN models on the ACRIMA dataset.

CNN model Training time (in minutes)

Fold1 Fold2 Fold3 Fold4 Fold5

ResNet50 154.46 162.3 159.47 160.29 159.54

VGG19 338.20 343.36 343.48 350.13 334.48

AlexNet 69.52 69.41 69.5 70.11 70.19

Dns201 300.42 324.13 349.30 328.30 316.41

InsRes 472.22 509.16 496.26 488.47 518.59
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layer, which also has two dropout layers. The input image size of
VGG19 is 227 × 227. Dns201 is a CNN that is 201 layers deep.We can
download a pre-trained version of the network from the ImageNet

database that was trained on more than a million photos. It can
categorize photos into 1,000 different object categories. The network
can accept images up to 224 × 224 pixels. A CNN named InsRes was

FIGURE 5
(A–E) Confusion matrices of two-class and three-class datasets using CNN models. (F) Training graph of ResNet50 for the ACRIMA dataset.
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trained using more than a million photos from the ImageNet
collection. The network has 164 layers and can categorize images
into 1,000 object types, including keyboard, mouse, pencil, and
numerous animals. The network has, therefore, acquired rich
feature representations for a variety of images. The size of the
network’s image input is 299 × 299 pixels.

4.1.5 Data augmentation
Every dataset was resized to the default input size of each CNN

model and also used data augmentation to increase the size of the
dataset with augmentation options random scale, random
translations and reflections about horizontal and vertical axes,
random rotation to escape from overfitting, and boost the
stability of the models. These augmentation options which we
applied are shown in Table 2, and the comparison of augmented
images corresponding to the glaucoma class of each dataset is shown
in Figure 3.

The purpose of all these options is to make the model more robust
to changes in the orientation, position, or shape of the input images. The
abovementioned options are commonly used because they are simple to
implement, computationally efficient, and can help to increase the
diversity of the training data without fundamentally changing the
underlying content of the images. There are other image data
augmentation options like noise, brightness, contrast, and saturation,
but we have avoided them because the images in the datasets are already
well-lit and have high contrast, so it may not be necessary to apply
brightness or contrast adjustments. Also, adding noise is not a good
decision because it may make the model difficult to extract meaningful
features from the image.

The training options used in the training process are discussed as
follows. The optimizer of adaptive moment estimation (Adam) is
used in our program, given the batch size of 64 for three-class
datasets and 8 for two-class datasets. We have set the execution
environment to “CPU” and a learning rate of 1e-5 (0.00001). We
have run the experiment with different epoch sizes, such as 20, 30,
40, and 50. Furthermore, we observed good performance when the
epoch size is 50. The hyperparameters are adjusted to provide
beneficial results in our tests. In addition to these tests, we
measured the performance of the CNNs using the k-fold cross-
validation approach with k = 5.

4.2 Classifier fusion

To enhance the classification performance of the system, a
combination of three CNN models is employed, and their
decisions are fused using a technique called classifier fusion
(CF). The CF approach combines the outputs of multiple
classifiers to arrive at a final decision. Different types of CFs
exist, differing in their structure and type of fusion operation. In
this study, the maximum voting-based fusion method is used.
This involves subjecting the output of each CNN to a CF and
taking the final decision based on the majority of votes. Majority
voting is the most commonly used technique in voting-based
decision-fusion methods. The CF operation is shown in
Figure 4, where X is the input image and C1(X), C2(X),
C3(X), C4(X), and C5(X) are the predicted output labels from
ResNet50, AlexNet, VGG19, DenseNet, and Inception-ResNet,

FIGURE 6
AUCs of CNN models for each dataset. (A) ACRIMA-ResNet50, (B) HVD+Drishti-VGG19, (C) HVD-ResNet50, (D) RIM-ONE-ResNet50, and (E)
Drishti-Inception-ResNet-v2.

Frontiers in Physiology frontiersin.org11

Velpula and Sharma 10.3389/fphys.2023.1175881

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1175881


respectively, for the input image X. The fusion output C(X) can
be expressed as follows:

C X( ) � F C1 X( ), C2 X( ), C3 X( ), C4 X( ), C5 X( )( ) (7)
where F (.) is the fusion rule. We have used the maximum voting-
based rule for CF. For input “X,” the outputs of five CNN models are
combined, and then, a maximum voting-based decision is considered
among all. As a result, the “X” output class was determined.

Summarized classifier fusion results and summary of
classification details of each class using CNN models of two-class
dataset ACRIMA and three-class dataset HVD are shown in Table 3.

5 Results

The proposed method is tested in MATLAB R2022a on a
Windows 10Pro system with an Intel (R) Xeon (R) W-2125 CPU
@4.00 GHz 4.01 GHz processor and 32 GB RAM.

For all CNN models with different epoch sizes, five-fold cross-
validation was used. It enables us to make better use of our data and
gives us a lot more information about how well our CNNs are
performing. Classification performance can be measured in

different ways. The following are the most widely used
performance measures for classification problems: confusion
matrix, accuracy, sensitivity, specificity, precision, recall,
f-measure, and gmean. The confusion matrix shows the
predicted class and the actual class values in a table structure
that allows visualization of the deep learning (Kim, 2018) model’s
performance metric for binary or multi-class classification.

When comparing the system’s efficiency, the accuracy calculation
is utilized. It considers the classifier’s total number of true predictions.
The accuracy is evaluated by the following equation:

Accuracy ACC( ) � TP + TN

TP + TN + FP + FN
(8)

Sensitivity (recall or the true positive rate) is the ratio of number
of true positive predictions and the total number of positive
predictions Sensitivity is evaluated as follows:

Sensitivity SN( ) � TP

TP + FN
(9)

Specificity (true negative rate) is the ratio of true negative
predictions and the total number of negative predictions. It is
given as follows:

TABLE 11 Comparison with the existing machine learning-based state-of-art methods of glaucoma classification.

Author Year Feature extraction Classifier Database No. of
classes

Accuracy (%)

Li et al. (2023) 2023 ML models SVM and RF Private dataset Two-class 79 for original data,

84 for Compensated
data

Khan et al. (2022) 2022 Wavelet-based SVM Private dataset Two-class 91.22

denoising and ML

Shinde. (2021) 2021 U-Net and L-Net SVM RIM-ONE, Drishti-GS, Two-class 99 for L-Net,

DRIONS-DB, JSIEC,
and DRIVE

98.67 for ROI

Huang et al. (2010) 2021 Entropy-based LDA ANN Private dataset Two-class NA,

AUC:
0.95 AUC:0.97

Noronha et al. (2014) 2020 HOS cumulant SVM and NB Private dataset Three-class 92.65 Average
accuracy

84.75 for mild stage

Mohamed et al. (2019) 2019 Histogram SVM RIM-ONE Two-class 98.6

and texture

Kishore and
Ananthamoorthy. (2020)

2020 Intra-class and extra-class discriminative
correlation analysis (IEDCA)

SVM, KNN
and RF

HRF and DRIVE Two-class 98.2 for HRF,

97.7 for DRIVE

Proposed method — Pre-trained CNNs and classifier fusion — HVD Three-class 85.43

Drishti Three-class, 90.55

HVD + Drishti Three-class 85.18

ACRIMA Two-class 99.57

RIMONE Two-class 94.95

Bold values are showing the model results after applying classifier fusion operation.
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TABLE 12 Comparison with the existing deep learning-based state-of-the-art methods of glaucoma classification.

Author Year Method and classifier Database No. of classes Accuracy (%)

Akbar et al. (2022) 2022 Transfer learning and fusion HRF, RIM-1, and ACRIMA Two-class 99.7, 89.3, and 99

Kumar and Gupta. (2022) 2022 Transfer learning models Private data Two-class 98.9

Rehman et al. (2021) 2021 Pre-trained deep CNN ACRIMA, ORIGA, RIM-ONE, Two-class 99.5

architectures AFIO, and HM

Ajitha et al. (2021) 2021 Customized CNN HRF, ORIGA, and Drishti-GS1 Two-class 93.86

Olivas et al. (2021) 2021 CNNs (MobileNet and Collected from ZeissOCT machine Two-class 90

Inception V3) at the Instituto de la Vision

Li et al. (2019) 2020 Attention-based CNN CGSA, Beijing Tongren and used Two-class 96.2 for LAG,

LAG and RIM-ONE for validation 85.2 for RIM-ONE

G´omez-Valverde et al. (2019) 2019 CNNs ESPERANZA, Drishti and Two-class 88.05

RIM-ONE

Diaz-Pinto et al. (2019b) 2019 Pre-trained CNNs ACRIMA, HRF, Drishti, RIM-ONE, Two-class 90.29

and sjchoi86-HRF

Proposed method — Pre-trained CNNs and classifier fusion HVD Three-class 85.43

Drishti Three-class, 90.55

HVD + Drishti Three-class 85.18

ACRIMA Two-class 99.57

RIMONE Two-class 94.95

Bold values are showing the model results after applying classifier fusion operation.

FIGURE 7
Networkpredictions for class detectionusing visualization techniques. (A) Input image, (B) activationsof L1, (C) activations of L2, (D)GCAM, (E) LIME, and (F)OS.
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Specificity SP( ) � TN

TN + FP
(10)

Precision is the number of positive class predictions that really
belong to the positive class. The following equation can be used to
calculate it:

Pr ecision PRE( ) � TP

TP + FP
(11)

F-measure generates a single score that combines precision and
recall issues into a single value.

F −measure FM( ) � 2 Pr ecision( ) Recall( )
Pr ecison + Recall( ) (12)

The geometric mean (Gmean) is a metric that measures the
balance between classification performances on both the majority
and minority classes. A low Gmean is an indication of poor
performance in the classification of the positive cases, even if the
negative cases are correctly classified as such.

Gmean GM( ) � �������
SN p SP

√
(13)

where SN is the sensitivity and SP is the specificity.
In all the aforementioned equations, true positive (TP) is the

number of positively predicted labels when actual labels are positive,
true negative (TN) is the number of negatively predicted labels when
actual labels are negative, false positive (FP) is the number of
positively predicted labels when actual labels are negative, and
false negative (FN) is the number of negatively predicted labels
when actual labels are positive. Using the equations introduced
previously, the performance of each CNN model is evaluated and
tabulated in Tables 4–8, respectively.

The performance of the HVD dataset is shown in Table 4. The
ResNet50 dataset has given good accuracy when compared to the
remaining models. Similarly, Tables 5–8 show the performance of
the Drishti, HVD + Drishti, ACRIMA, and RIMONE dataset,
respectively. The accuracies of three-class datasets HVD, Drishti,
and HVD + Drishti by using ResNet50 are 83.35, 88.98, and 82.88%,
respectively. Similarly, the accuracies of two-class datasets ACRIMA
and RIMONE by ResNet50 are 99.86 and 92.53%, respectively.
Then, we applied CF, which combines the results of all the
CNNs, and that gives the output based on the maximum voting
rule. For this fusion task, we have taken predicted labels of every
CNN model and applied them to the CF and then made new
predicted labels from the CF output. Then, we calculated the
performance metric using these predicted labels and actual labels.
We observed that there was a significant increment in the accuracy
of all datasets when we applied a CF with accuracies of ACRIMA,
Drishti, HVD + Drishti, HVD, and RIMONE datasets after taking
fusion 99.57, 90.55, 85.18, 85.43, and 94.95%, respectively. The
experiment has been performed in several trials with different
numbers of fine-tuned training options and epochs to acquire
satisfactory results for each model. Then, we inspected the effect
of the number of epochs in which each design performed the best.
We have performed the training of each model for different epoch
sizes such that 20, 30, 40, and 50. The corresponding accuracies of all
trials for the ACRIMA dataset are shown in Table 9. The proposed
work for epoch size 50 has given the highest accuracy. The number
of fine-tuned layers and epochs were adjusted, while other

hyperparameters, such as optimizer, batch size, learning rate, and
execution environment, were maintained constant.

Time complexity of the training (training time) for individual
network models, especially model training on the ACRIMA dataset,
are provided in Table 10. An example training graph is shown in
Figure 5F, where we can see the time elapsed for completing a fold.
Generally, the time complexity of training a neural network depends
on several factors, such as the number of layers, the number of
neurons in each layer, the type of activation function used, and the
size of the training data. Advancements in hardware and software
technologies can significantly reduce the training time. For example,
the use of graphics processing units (GPUs) for parallel processing
can reduce the training time.

Confusion matrices (CMs) of each dataset for better accuracy
among the five used CNN models are shown in Figures 5A–E. CMs
of three-class dataset HVD, Drishti, and HVD + Drishti are shown
in Figures 5A–C, respectively, and CMs of two-class dataset
ACRIMA and RIMONE are shown in Figures 5D, E, respectively.
The progress of the training graph of for k-fold cross-validation for
k = 5, of ResNet50 for the ACRIMA dataset is shown in Figure 5F.
All the training options which we used are appearing on the training
graph as well. Time taken for completing one fold is also available in
the graph, i.e., 154 min and 46 s. Figure 6 displays the AUCs
obtained from the CNN models used in this study. An AUC
value of 1 indicates that the classifier can accurately distinguish
between all positive and negative class samples. Conversely, an AUC
value of 0 would indicate that the classifier has misclassified all
negative samples as positive and all positive samples as negative. For
the ACRIMA dataset with ResNet50, we achieved an AUC of 1,
which is shown in Figure 6A, AUC of the HVD + Drishti dataset for
VGG19 with value 0.9318 is shown in Figure 6B, AUC of the HVD
dataset for ResNet50 is 0.9324, shown in Figure 6C, AUC of the
RIM-ONE dataset for ResNet50 is 0.9509, shown in Figure 6D, and
an AUC of the Drishti dataset for Inception-ResNet with a value of
0.9102 is shown in Figure 6E.

6 Discussion

The discussion section includes the comparison of our results
with the state-of-the-art methods and a sub-section to explain the
network behavior with the help of deep learning visualization
techniques. The subsequent paragraphs focus on comparing the
outcomes of our proposed approach to those of the state-of-the-art
techniques in glaucoma classification. Prior research on this topic
mostly involved two-class glaucoma classification, whereas our
contribution in this study is the development of an automatic
glaucoma diagnostic system capable of three-class glaucoma
classification. To assess the effectiveness of our approach, we
compared our results to those of existing shallow learning-based
state-of-the-art methods in Table 11 and compared our outcomes
with deep learning-based state-of-the-art techniques in Table 12.

For the machine learning approaches, Li et al. (2023) proposed a
model for glaucoma detection using ML models with a two-class-
labeled private dataset, and achieved accuracies of 79 and 84% for
original and compensated datasets, respectively. Khan et al. (2022)
developed a glaucoma detection model using wavelet transform and
ML model. They tested their model on the private dataset and
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achieved 91.22% accuracy. Kishore and Ananthamoorthy (2020)
used k-nearest neighbors and random forest for feature extraction,
which are machine learning supervised algorithms and support
vector machine for the classification of glaucoma. They used
two-class datasets, HRF and DRIVE, and received 98.2%
accuracy for the HRF dataset and 97.7% accuracy for the DRIVE
dataset. Shinde (2021) developed U-net and L-net methods and
SVM classifier for glaucoma classification with two-class datasets
which are RIM-ONE, Drishti-GS, DRIONS-DB, JSIEC, and DRIVE
and received 99% accuracy for L-net. In the deep learning
approaches, Rehman et al. (2021) used two-class datasets for
their classification work such as ACRIMA, ORIGA, RIM-ONE,
AFIO, and HM. They used the knowledge of pretrained deep
CNN architectures and received 99.5% accuracy. Ajitha et al.
(2021) proposed customized CNN architecture for the
classification of glaucoma using two-class datasets HRF, ORIGA,
and Drishti-GS1. They achieved 93.86% accuracy. Olivas et al.
(2021) used CNNs (MobileNet and Inception V3) for the
classification task with a two-class dataset which is a private
dataset collected from Zeiss OCT machine at the Instituto de la
Vision and achieved 90% accuracy. Li et al. (2019) used attention-
based CNN in their work, and they used three different datasets
CGSA, the dataset collected from Beijing Tongren hospital and the
LAG dataset and the RIM-ONE dataset used for validation, and
achieved 96.2% accuracy for the LAG dataset and 85.2% for the
RIM-ONE dataset. G´omez-Valverde et al. (2019) used two-class
datasets ESPERANZA, DRISHTI- GS, and RIM-ONE for their work
and deep CNNs for glaucoma classification and achieved 88.05%
accuracy. Diaz-Pinto et al. (2019b) used pre-trained CNNs for
classification of glaucoma and achieved90.29% accuracy. They
used two-class datasets for their work such as ACRIMA, HRF,
Drishti- GS1, RIM-ONE, and sjchoi86-HRF. When comparing with
the abovementioned state-of-the-art methods, the proposed novel
method, which is a combination of transfer learning by deep CNNs
and a classifier fusion, achieved 99.57% accuracy for the two-class
dataset and achieved 90.55% for the three-class dataset.

6.1 Visualization techniques for
understanding the behavior of the network
to predict the input image class

Visualization techniques are used for investigating which
area in the image is useful for the classification of class
(Karaddi and Sharma, 2022). Every visualization technique has
a unique methodology that influences the results it generates. The
input to the network is perturbed through perturbation-based
algorithms, which also take into account how the perturbation
affects prediction. We have used input image from ACRIMA
dataset for discussing the visualization techniques for network
predictions by identifying the components more used for
classification and it is shown in Figure 7A.

6.1.1 Activations
A quick technique to comprehend the network behavior is to

visualize activations. In the first convolutional layer, CNNs
learn to recognize characteristics like color and edges. The
activations of the first convolution layer (L1 = conv1) of

ResNet50 are shown in Figure 7B, and it shows the edges
which are present in the input image. Edge detection allows
us to examine image features for significant changes in the grey
level. The network learns to detect increasingly complex
features as it moves through deeper convolutional layers. The
activations of the deeper layer (L2 = res2c branch2a) are shown
in Figure 7C.

6.1.2 Gradient-based class activation heatmap
It is a heatmap of class activation depending on gradients. An

extension of the CAM technique called gradient-weighted class
activation mapping (Grad-CAM) makes use of the classification
score’s gradient with regard to the convolutional features chosen by
the network to decide which areas of the image are most crucial for
classification. The final score is more strongly influenced by the data
in the regions where the gradient is the largest. The Grad-CAM
image corresponding to the input ACRIMA dataset is shown in
Figure 7D. The area that is more helpful for class identification is
shown by the red color. However, the yellow color region is involved
moderately for class prediction, and blue color is the area which is
not involved in the classification task.

6.1.3 Locally interpretable model-agnostic
explanations

LIME is a perturbation-based proxy model. It is a method for
identifying the components of an image that a network uses when
making a classification decision. The image LIME algorithm creates
multiple synthetic images by randomly inserting or excluding features
after segmenting an image into features. The excluded features are
rendered useless for the network by having each pixel replaced with
the average value of the image. The LIME image corresponding to the
input ACRIMA dataset is shown in Figure 7E.

6.1.4 Occlusion sensitivity
Occlusion sensitivity (OS) gauges how sensitive a network is even

to slight changes in the input data. The technique alters small portions
of the input by swapping out the original data for an occluding mask,
usually a gray square. The method assesses the variation in the
probability score for a specific class as the mask goes across the
image. The most crucial areas of the image for classification can be
highlighted using OS. OS visualization for the input image of the
ACRIMA dataset is shown in Figure 7F. Visualization methods are a
type of interpretability technique that uses visual representations of
what a network is looking at to explain network predictions. Each
visualization method has a distinct approach that determines the
output. The methods can be local, examining network behavior for a
single input, or global, examining network behavior over a dataset.

7 Conclusion

In conclusion, automated glaucoma diagnosis is crucial for the
early detection and prevention of the disease. Traditional methods
are time consuming, manual, and inaccurate. In this paper, a model
for automated glaucoma stage classification is proposed, which uses
five pre-trained deep CNN models and is tested with four public
datasets. The proposed model achieved excellent results, with an
AUC of 1 and an accuracy of 99.57% for the ACRIMA dataset, an
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AUC of 0.97 and an accuracy of 85.43% for the HVD dataset, and
accuracy rates of 90.55% and 94.95% for Drishti and RIMONE,
respectively. The proposed CF using the maximum voting-based
approach (MVB) further improved the overall system performance.
Furthermore, the activations, G-CAM, LIME, and OS approaches
were used to generate class-specific heatmap images in order to show
the area where the model is paying the most attention while making
a decision. The experimental findings demonstrate that the
proposed model outperforms the state-of-the-art methods in
classifying glaucoma in its early stages, indicating its potential in
improving the early detection and diagnosis of glaucoma, which can
help prevent vision loss and permanent blindness. Finally, the
proposed work could help ophthalmologists make a quick,
accurate, and efficient glaucoma diagnosis.

Further research can be conducted to improve the proposed
automated glaucoma diagnosis model, which would include
potential areas like larger datasets that gives generalizability,
integration of clinical data (patient age, sex, and medical history),
and real-world implementation.
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