3 research outputs found

    Piping classification to metamorphic testing: an empirical study towards better effectiveness for the identification of failures in mesh simplification programs

    Get PDF
    Mesh simplification is a mainstream technique to render graphics responsively in modern graphical software. However, the graphical nature of the output poses a test oracle problem in testing. Previous work uses pattern classification to identify failures. Although such an approach may be promising, it may conservatively mark the test result of a failure-causing test case as passed. This paper proposes a methodology that pipes the test cases marked as passed by the pattern classification component to a metamorphic testing component to look for missed failures. The empirical study uses three simple and general metamorphic relations as subjects, and the experimental results show a 10 percent improvement of effectiveness in the identification of failures. © 2007 IEEE.Link_to_subscribed_fulltextThis research is supported in part by a grant of the Research Grants Council of Hong Kong (project no. 714504), a grant of City University of Hong Kong (project no. 200079), and a grant of The University of Hong Kong

    Finding failures from passed test cases: Improving the pattern classification approach to the testing of mesh simplification programs

    Get PDF
    Mesh simplification programs create three-dimensional polygonal models similar to an original polygonal model, and yet use fewer polygons. They produce different graphics even though they are based on the same original polygonal model. This results in a test oracle problem. To address the problem, our previous work has developed a technique that uses a reference model of the program under test to train a classifier. Using such an approach may mistakenly mark a failure-causing test case as passed. It lowers the testing effectiveness of revealing failures. This paper suggests piping the test cases marked as passed by a statistical pattern classification module to an analytical metamorphic testing (MT) module. We evaluate our approach empirically using three subject programs with over 2700 program mutants. The result shows that, using a resembling reference model to train a classifier, the integrated approach can significantly improve the failure detection effectiveness of the pattern classification approach. We also explain how MT in our design trades specificity for sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.link_to_subscribed_fulltex
    corecore