9,571 research outputs found

    An Automated Design-flow for FPGA-based Sequential Simulation

    Get PDF
    In this paper we describe the automated design flow that will transform and map a given homogeneous or heterogeneous hardware design into an FPGA that performs a cycle accurate simulation. The flow replaces the required manually performed transformation and can be embedded in existing standard synthesis flows. Compared to the earlier manually translated designs, this automated flow resulted in a reduced number of FPGA hardware resources and higher simulation frequencies. The implementation of the complete design flow is work in progress.\u

    An Intermediate Language and Estimator for Automated Design Space Exploration on FPGAs

    Full text link
    We present the TyTra-IR, a new intermediate language intended as a compilation target for high-level language compilers and a front-end for HDL code generators. We develop the requirements of this new language based on the design-space of FPGAs that it should be able to express and the estimation-space in which each configuration from the design-space should be mappable in an automated design flow. We use a simple kernel to illustrate multiple configurations using the semantics of TyTra-IR. The key novelty of this work is the cost model for resource-costs and throughput for different configurations of interest for a particular kernel. Through the realistic example of a Successive Over-Relaxation kernel implemented both in TyTra-IR and HDL, we demonstrate both the expressiveness of the IR and the accuracy of our cost model.Comment: Pre-print and extended version of poster paper accepted at international symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART2015) Boston, MA, USA, June 1-2, 201
    corecore