4 research outputs found

    Fusion and Analysis of Multidimensional Medical Image Data

    Get PDF
    Analýza medicínských obrazů je předmětem základního výzkumu již řadu let. Za tu dobu bylo v této oblasti publikováno mnoho výzkumných prací zabývajících se dílčími částmi jako je rekonstrukce obrazů, restaurace, segmentace, klasifikace, registrace (lícování) a fúze. Kromě obecného úvodu, pojednává tato disertační práce o dvou medicínsky orientovaných tématech, jež byla formulována ve spolupráci s Philips Netherland BV, divizí Philips Healthcare. První téma je zaměřeno na oblast zpracování obrazů subtrakční angiografie dolních končetin člověka získaných pomocí výpočetní X-Ray tomografie (CT). Subtrakční angiografie je obvykle využívaná při podezření na periferní cévní onemocnění (PAOD) nebo při akutním poškození dolních končetin jako jsou fraktury apod. Současné komerční metody nejsou dostatečně spolehlivé už v předzpracování, jako je například odstranění pacientského stolu, pokrývky, dlahy, apod. Spolehlivost a přesnost identifikace cév v subtrahovaných datech vedoucích v blízkosti kostí je v důsledku Partial Volume artefaktu rovněž nízká. Automatické odstranění kalcifikací nebo detekce malých cév doplňujících nezbytnou informaci o náhradním zásobení dolních končetin krví v případě přerušení hlavních zásobujících cév v současné době rovněž nesplňují kritéria pro plně automatické zpracování. Proto hlavním cílem týkající se tohoto tématu bylo vyvinout automatický systém, který by mohl současné nedostatky v CTSA vyšetření odstranit. Druhé téma je orientováno na identifikaci patologických změn na páteři člověka v CT obrazech se zaměřením na osteolytické a osteoblastické léze u jednotlivých obratlů. Tyto změny obvykle nastávají v důsledků postižení metastazujícím procesem rakovinového onemocnění. Pro detekci patologických změn je pak potřeba identifikace a segmentace jednotlivých obratlů. Přesnost analýzy jednotlivých lézí však závisí rovněž na správné identifikaci těla a zadních segmentů u jednotlivých obratlů a na segmentaci trabekulárního centra obratlů, tj. odstranění kortikální kosti. Během léčby mohou být pacienti skenováni vícekrát, obvykle s několika-mesíčním odstupem. Hodnocení případného vývoje již detekovaných patologických změn pak logicky vychází ze správné detekce patologií v jednotlivých obratlech korespondujících si v jednotlivých akvizicích. Jelikož jsou příslušné obratle v jednotlivých akvizicích obvykle na různé pozici, jejich fúze, vedoucí k analýze časového vývoje detekovaných patologií, je komplikovaná. Požadovaným výsledkem v tomto tématu je vytvoření komplexního systému pro detekci patologických změn v páteři, především osteoblastických a osteolytických lézí. Takový systém tedy musí umožnovat jak segmentaci jednotlivých obratlů, jejich automatické rozdělení na hlavní části a odstranění kortikální kosti, tak také detekci patologických změn a jejich hodnocení. Ačkoliv je tato disertační práce v obou výše zmíněných tématech primárně zaměřena na experimentální část zpracování medicínských obrazů, zabývá se všemi nezbytnými kroky, jako je předzpracování, registrace, dodatečné zpracování a hodnocení výsledků, vedoucími k možné aplikovatelnosti obou systému v klinické praxi. Jelikož oba systémy byly řešeny v rámci týmové spolupráce jako celek, u obou témat jsou pro některé konkrétní kroky uvedeny odkazy na doktorskou práci Miloše Malínského.Analysis of medical images has been subject of basic research for many years. Many research papers have been published in the field related to image analysis and focused on partial aspects such as reconstruction, restoration, segmentation and classification, registration (spatial alignment) and fusion. Besides the introduction of related general concepts used in medical image processing, this thesis deals with two specific medical problems formulated in cooperation with Philips Netherland BV, Philips Healthcare division. The first topic is focused on subtraction angiography in patients’ lower legs utilizing image data from X-Ray computed tomography (CT). CT subtraction angiography (CTSA) is typically used for indication of the Peripheral Artery Occlusive Disease (PAOD) and for examination of acute injuries of lower legs such as acute fractures, etc. Current methods in clinical praxis are not sufficient regarding the pre-processing such as masking of patient desk, cover, splint, etc. The subtraction of blood vessels adjacent to neighboring bones in lower legs is of low accuracy due to the Partial Volume artifact. Masking of calcifications and detection of tiny blood vessels complementing necessary information about the alternative blood supply in lower legs in case of obstruction in main arteries is also not reliable for fully automated process presently. Therefore, the main aim regarding this topic was to develop an automated framework that could overcome current shortcomings in CTSA examination. The second topic is oriented on the identification and evaluation of pathologic changes in human spine, focusing on osteolytic and osteoblastic lesions in individual vertebrae in CT images. Such changes occur typically as a consequence of metastasizing process of cancerous disease. For the detection of pathologic changes, an identification and segmentation of individual vertebrae is necessary. Moreover, the analysis of individual lesions in vertebrae depends also on correct identification of vertebral body and posterior segments of each vertebra, and on segmentation of their trabecular centers. Patients are typically examined more than once during their therapy. Then, the evaluation of possible tumorous progression is based on accurate detection of pathologies in individual vertebrae in the base-line and corresponding follow-up images. Since the corresponding vertebrae are in mutually different positions in the follow-up images, their fusion leading to the analysis of the lesion progression is complicated. The main aim regarding this topic is to develop a complex framework for detection of pathologic lesions on spine, with the main focus on osteoblastic and osteolystic lesions. Such system has to provide not only reliable segmentation of individual vertebrae and detection of their main regions but also the masking of their cortical bone, detection of their pathologic changes and their evaluation. Although this dissertation thesis is primarily oriented at the experimental part of medical image processing considering both the above mentioned topics, it deals with all necessary processing steps, i.e. preprocessing, image registration, post-processing and evaluation of results, leading to the future use of both frameworks in clinical practice. Since both frameworks were developed in a team, there are some chapters referring to the dissertation thesis of Milos Malinsky.

    Automated Model-Based Rib Cage Segmentation and Labeling in CT Images

    No full text

    Quantitative Poly-energetic Reconstruction Schemes for Single Spectrum CT Scanners

    Get PDF
    <p>X-ray computed tomography (CT) is a non-destructive medical imaging technique for assessing the cross-sectional images of an object in terms of attenuation. As it is designed based on the physical processes involved in the x-ray and matter interactions, faithfully modeling the physics in the reconstruction procedure can yield accurate attenuation distribution of the scanned object. Otherwise, unrealistic physical assumptions can result in unwanted artifacts in reconstructed images. For example, the current reconstruction algorithms assume the photons emitted by the x-ray source are mono-energetic. This oversimplified physical model neglects the poly-energetic properties of the x-ray source and the nonlinear attenuations of the scanned materials, and results in the well-known beam-hardening artifacts (BHAs). The purpose of this work was to incorporate the poly-energetic nature of the x-ray spectrum and then to eliminate BHAs. By accomplishing this, I can improve the image quality, enable the quantitative reconstruction ability of the single-spectrum CT scanner, and potentially reduce unnecessary radiation dose to patients.</p><p>In this thesis, in order to obtain accurate spectrum for poly-energetic reconstruction, I first presented a novel spectral estimation technique, with which spectra across a large range of angular trajectories of the imaging field of view can be estimated with a single phantom and a single axial acquisition. The experimental results with a 16 cm diameter cylindrical phantom (composition: ultra-high-molecular-weight polyethylene [UHMWPE]) on a clinical scanner showed that the averaged absolute mean energy differences and the normalized root mean square differences with respect to the actual spectra across kVp settings (i.e., 80, 100, 120, 140) and angular trajectories were less than 0.61 keV and 3.41%, respectively</p><p>With the previous estimation of the x-ray spectra, three poly-energetic reconstruction algorithms are proposed for different clinical applications. The first algorithm (i.e., poly-energetic iterative FBP [piFBP]) can be applied to routine clinical CT exams, as the spectra of the x-ray source and the nonlinear attenuations of diverse body tissues and metal implant materials are incorporated to eliminate BHAs and to reduce metal artifacts. The simulation results showed that the variation range of the relative errors of various tissues across different phantom sizes (i.e., 16, 24, 32, and 40 cm in diameter) and kVp settings (80, 100, 120, 140) were reduced from [-7.5%, 17.5%] for conventional FBP to [-0.1%, 0.1%] for piFBP, while the noise was maintained at the same low level (about [0.3%, 1.7%]).</p><p>When iodinated contrast agents are involved and patient motions are not readily correctable (e.g., in myocardial perfusion exam), a second algorithm (i.e., poly-energetic simultaneous algebraic reconstruction technique [pSART]) can be applied to eliminate BHAs and to quantitatively determine the iodine concentrations of blood-iodine mixtures with our new technique. The phantom experiment on a clinical CT scanner indicated that the maximum absolute relative error across material inserts was reduced from 4.1% for conventional simultaneous algebraic reconstruction technique [SART] to 0.4% for pSART.</p><p>Extending the work beyond minimizing BHAs, if patient motions are correctable or negligible, a third algorithm (i.e., poly-energetic dynamic perfusion algorithm [pDP]) is developed to retrieve iodine maps of any iodine-tissue mixtures in any perfusion exams, such as breast, lung, or brain perfusion exams. The quantitative results of the simulations with a dynamic anthropomorphic thorax phantom indicated that the maximum error of iodine concentrations can be reduced from 1.1 mg/cc for conventional FBP to less than 0.1 mg/cc for pDP.</p><p>Two invention disclosure forms based on the work presented in this thesis have been submitted to Office of Licensing & Ventures of Duke University.</p>Dissertatio
    corecore