17 research outputs found

    Landsat Program

    Get PDF
    Landsat initiated the revolution in moderate resolution Earth remote sensing in the 1970s. With seven successful missions over 40+ years, Landsat has documented - and continues to document - the global Earth land surface and its evolution. The Landsat missions and sensors have evolved along with the technology from a demonstration project in the analog world of visual interpretation to an operational mission in the digital world, with incremental improvements along the way in terms of spectral, spatial, radiometric and geometric performance as well as acquisition strategy, data availability, and products

    Remote Sensing of Water Quality in Rotorua and Waikato Lakes

    Get PDF
    Remote sensing has the potential to monitor spatial variation in water quality over large areas. While ocean colour work has developed analytical bio-optical water quality retrieval algorithms for medium spatial resolution platforms, remote sensing of lake water is often limited to high spatial resolution satellites such as Landsat, which have limited spectral resolution. This thesis presents the results of an investigation into satellite monitoring of lake water quality. The aim of this investigation was to ascertain the feasibility of estimating water quality and its spatial distribution using Landsat 7 ETM+ imagery combined with in situ data from Rotorua and Waikato lakes. For the comparatively deep Rotorua lakes, r² values of 0.91 (January 2002) and 0.83 (March 2002) were found between in situ chlorophyll (chl) a and the Band1/Band3 ratio. This technique proved useful for analysing the spatial distribution of phytoplankton, especially in lakes Rotoiti and Rotoehu. For the more bio-optically complex shallow lakes of the Waikato, a linear spectral unmixing (LSU) approach was investigated where the water surface reflectance spectrum is defined by the contribution from pure pixels or endmembers. The model estimates the percentage of the endmember within the pixel, which is then used in a final regression with in situ data to map water quality in all pixels. This approach was used to estimate the concentration of chl a (r² = 0.84). Total suspended solid (TSS) concentration was mapped using the traditional Band 3 regression with in situ data, which combined atmospherically corrected reflectance for both images into a single relationship (r² = 0.98). The time difference between in situ data collection and satellite data capture is a potential source of error. Other potential sources of error include sample location accuracy, the influence of dissolved organic matter, and masking of chl a signatures by high concentrations of TSS. The results from this investigation suggest that remote sensing of water quality provides meaningful and useful information with a range of applications and could provide information on temporal spatial variability in water quality

    Remote sensing satellite image processing techniques for image classification: a comprehensive survey

    Get PDF
    This paper is a brief survey of advance technological aspects of Digital Image Processing which are applied to remote sensing images obtained from various satellite sensors. In remote sensing, the image processing techniques can be categories in to four main processing stages: Image preprocessing, Enhancement, Transformation and Classification. Image pre-processing is the initial processing which deals with correcting radiometric distortions, atmospheric distortion and geometric distortions present in the raw image data. Enhancement techniques are applied to preprocessed data in order to effectively display the image for visual interpretation. It includes techniques to effectively distinguish surface features for visual interpretation. Transformation aims to identify particular feature of earth’s surface and classification is a process of grouping the pixels, that produces effective thematic map of particular land use and land cover

    Development of cloud removal and land cover Change extraction algorithms for remotely-sensed Landsat imagery

    Get PDF
    Land cover change monitoring requires the analysis of remotely-sensed data. In the tropics this is difficult because of persistent cloud cover, and data availability. This research focuses on the elimination of cloud cover as an important step towards addressing the issue of change detection. The result produced clearer images, whereas some persistent cloud remains. This persistent cloud and the cloud adjacency effects diminish the quality of image product and affect the change detection quality

    Integration of remote sensing and GIS in studying vegetation trends and conditions in the gum arabic belt in North Kordofan, Sudan

    Get PDF
    The gum arabic belt in Sudan plays a significant role in environmental, social and economical aspects. The belt has suffered from deforestation and degradation due to natural hazards and human activities. This research was conducted in North Kordofan State, which is affected by modifications in conditions and composition of vegetation cover trends in the gum arabic belt as in the rest of the Sahelian Sudan zone. The application of remote sensing, geographical information system and satellites imageries with multi-temporal and spatial analysis of land use land cover provides the land managers with current and improved data for the purposes of effective management of natural resources in the gum arabic belt. This research investigated the possibility of identification, monitoring and mapping of the land use land cover changes and dynamics in the gum arabic belt during the last 35 years. Also a newly approach of object-based classification was applied for image classification. Additionally, the study elaborated the integration of conventional forest inventory with satellite imagery for Acacia senegal stands. The study used imageries from different satellites (Landsat and ASTER) and multi-temporal dates (MSS 1972, TM 1985, ETM+ 1999 and ASTER 2007) acquired in dry season (November). The imageries were geo-referenced and radiometrically corrected by using ENVI-FLAASH software. Image classification (pixel-based and object-based), post-classification change detection, 2x2 and 3x3 pixel windows and accuracy assessment were applied. A total of 47 field samples were inventoried for Acacia senegal tree’s variables in Elhemmaria forest. Three areas were selected and distributed along the gum arabic belt. Regression method analysis was applied to study the relationship between forest attributes and the ASTER imagery. Application of multi-temporal remote sensing data in gum arabic belt demonstrated successfully the identification and mapping of land use land cover into five main classes. Also NDVI categorisation provided a consistent method for land use land cover stratification and mapping. Forest dominated by Acacia senegal class was separated covering an area of 21% and 24% in the year 2007 for areas A and B, respectively. The land use land cover structure in the gum arabic belt has obvious changes and reciprocal conversions between the classes indicating the trends and conditions caused by the human interventions as well as ecological impacts on Acacia senegal trees. The study revealed a drastic loss of Acacia senegal cover by 25% during the period of 1972 to 2007.The results of the study revealed to a significant correlation (p ≤ 0.05) between the ASTER bands (VNIR) and vegetation indices (NDVI, SAVI, RVI) with stand density, volume, crown area and basal area of Acacia senegal trees. The derived 2x2 and 3x3 pixel windows methods successfully extracted the spectral reflectance of Acacia senegal trees from ASTER imagery. Four equations were developed and could be widely used and applied for monitoring the stand density, volume, basal area and crown area of Acacia senegal trees in the gum arabic belt considering the similarity between the selected areas. The pixel-based approach performed slightly better than the object-based approach in land use land cover classification in the gum arabic belt. The study come out with some valuable recommendations and comments which could contribute positively in using remotely sensed imagery and GIS techniques to explore management tools of Acacia senegal stands in order to maintain the tree component in the farming and the land use systems in the gum arabic belt

    Global Forest Monitoring from Earth Observation

    Get PDF
    Covering recent developments in satellite observation data undertaken for monitoring forest areas from global to national levels, this book highlights operational tools and systems for monitoring forest ecosystems. It also tackles the technical issues surrounding the ability to produce accurate and consistent estimates of forest area changes, which are needed to report greenhouse gas emissions and removals from land use changes. Written by leading global experts in the field, this book offers a launch point for future advances in satellite-based monitoring of global forest resources. It gives readers a deeper understanding of monitoring methods and shows how state-of-art technologies may soon provide key data for creating more balanced policies

    Application of Remote Sensing to the Chesapeake Bay Region. Volume 2: Proceedings

    Get PDF
    A conference was held on the application of remote sensing to the Chesapeake Bay region. Copies of the papers, resource contributions, panel discussions, and reports of the working groups are presented

    An investigation into using textural analysis and change detection techniques on medium and high spatial resolution imagery for monitoring plantation forestry operations.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.Plantation forestry involves the management of man-made industrial forests for the purpose of producing raw materials for the pulp and paper, saw milling and other related wood products industries. Management of these forests is based on the cycle of planting, tending and felling of forest stands such that a sustainable operation is maintained. The monitoring and reporting of these forestry operations is critical to the successful management of the forestry industry. The aim of this study was to test whether the forestry operations of clear-felling, re-establishment and weed control could be qualitatively and quantitatively monitored through the application of classification and change detection techniques to multi-temporal medium (15-30 m) and a combination of textural analysis and change detection techniques on high resolution (0.6-2.4 m) satellite imagery. For the medium resolution imagery, four Landsat 7 multi-spectral images covering the period from March 2002 to April 2003 were obtained over the midlands of KwaZulu-Natal, South Africa, and a supervised classification, based on the Maximum Likelihood classifier, as well as two unsupervised classification routines were applied to each of these images. The supervised classification routine used 12 classes identified from ground-truthing data, while the unsupervised classification was done using 10 and 4 classes. NDVI was also calculated and used to estimate vegetation status. Three change detection techniques were applied to the unsupervised classification images, in order to determine where clear-felling, planting and weed control operations had occurred. An Assisted "Classified" Image change detection technique was applied to the Ten-Class Unsupervised Classification images, while an Assisted "Quantified Classified" change detection technique was applied to the Four-Class Unsupervised Classification images. An Image differencing technique was applied to the NDVI images. For the high resolution imagery, a series of QuickBird images of a plantation forestry site were used and a combination of textural analysis and change detection techniques was tested to quantify weed development in replanted forest stands less than 24 months old. This was achieved by doing an unsupervised classification on the multi-spectral bands, and an edge-enhancement on the panchromatic band. Both the resultant datasets were then vectorised, unioned and a matrix derived to determine areas of high weed. It was found that clear-felling operations could be identified with accuracy in excess of 95%. However, using medium resolution imagery, newly planted areas and the weed status of forest stands were not definitively identified as the spatial resolution was too coarse to separate weed growth from tree stands. Planted stands younger than one year tended to be classified in the same class as bare ground or ground covered with dead branches and leaves, even if weeds were present. Stands older than one year tended to be classified together in the same class as weedy stands, even where weeds were not present. The NDVI results indicated that further research into this aspect could provide more useful information regarding the identification of weed status in forest stands. Using the multi-spectral bands of the high resolution imagery it was possible to identify areas of strong vegetation, while crop rows were identifiable on the panchromatic band. By combining these two attributes, areas of high weed growth could be identified. By applying a post-classification change detection technique on the high weed growth classes, it was possible to identify and quantify areas of weed increase or decrease between consecutive images. A theoretical canopy model was also derived to test whether it could identify thresholds from which weed infestations could be determined. The conclusions of this study indicated that medium resolution imagery was successful in accurately identifying clear-felled stands, but the high resolution imagery was required to identify replanted stands, and the weed status of those stands. However, in addition to identifying the status of these stands, it was also possible to quantify the level of weed infestation. Only wattle (Acacia mearnsii) stands were tested in this manner but it was recommended that in addition to applying these procedures to wattle stands, they also are tested in Eucalyptus and Pinus stands. The combination of textural analysis on the panchromatic band and classification of multi-spectral bands was found to be a suitable process to achieve the aims of this study, and as such were recommended as standard procedures that could be applied in an operational plantation forest monitoring environment
    corecore