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Abstract 

The gum arabic belt in Sudan plays a significant role in environmental, social and 
economical aspects. The belt has suffered from deforestation and degradation due to 
natural hazards and human activities. This research was conducted in North Kordofan 
State, which is affected by modifications in conditions and composition of vegetation cover 
trends in the gum arabic belt as in the rest of the Sahelian Sudan zone. The application of 
remote sensing, geographical information system and satellites imageries with multi-
temporal and spatial analysis of land use land cover provides the land managers with 
current and improved data for the purposes of effective management of natural resources 
in the gum arabic belt. This research investigated the possibility of identification, 
monitoring and mapping of the land use land cover changes and dynamics in the gum 
arabic belt during the last 35 years. Also a newly approach of object-based classification 
was applied for image classification. Additionally, the study elaborated the integration of 
conventional forest inventory with satellite imagery for Acacia senegal stands. The study 
used imageries from different satellites (Landsat and ASTER) and multi-temporal dates 
(MSS 1972, TM 1985, ETM+ 1999 and ASTER 2007) acquired in dry season (November). 
The imageries were geo-referenced and radiometrically corrected by using ENVI-FLAASH 
software. Image classification (pixel-based and object-based), post-classification change 
detection, 2x2 and 3x3 pixel windows and accuracy assessment were applied. A total of 
47 field samples were inventoried for Acacia senegal tree’s variables in Elhemmaria 
forest. Three areas were selected and distributed along the gum arabic belt. Regression 
method analysis was applied to study the relationship between forest attributes and the 
ASTER imagery. Application of multi-temporal remote sensing data in gum arabic belt 
demonstrated successfully the identification and mapping of land use land cover into five 
main classes. Also NDVI categorisation provided a consistent method for land use land 
cover stratification and mapping. Forest dominated by Acacia senegal class was 
separated covering an area of 21% and 24% in the year 2007 for areas A and B, 
respectively. The land use land cover structure in the gum arabic belt has obvious 
changes and reciprocal conversions between the classes indicating the trends and 
conditions caused by the human interventions as well as ecological impacts on Acacia 
senegal trees. The study revealed a drastic loss of Acacia senegal cover by 25% during 
the period of 1972 to 2007.The results of the study revealed to a significant correlation (p 
≤ 0.05) between the ASTER bands (VNIR) and vegetation indices (NDVI, SAVI, RVI) with 
stand density, volume, crown area and basal area of Acacia senegal trees. The derived 
2x2 and 3x3 pixel windows methods successfully extracted the spectral reflectance of 
Acacia senegal trees from ASTER imagery. Four equations were developed and could be 
widely used and applied for monitoring the stand density, volume, basal area and crown 
area of Acacia senegal trees in the gum arabic belt considering the similarity between the 
selected areas. The pixel-based approach performed slightly better than the object-based 
approach in land use land cover classification in the gum arabic belt. The study come out 
with some valuable recommendations and comments which could contribute positively in 
using remotely sensed imagery and GIS techniques to explore management tools of 
Acacia senegal stands in order  to maintain the tree component in the farming and the 
land use systems in the gum arabic belt. 
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Zusammenfassung 

Der Gummi- arabicum- Gürtel im Sudan spielt eine bedeutende Rolle in ökologischen, 
sozialen und ökonomischen Aspekten. Abholzung und Degradation sind einerseits auf 
natürliche Gefahren andererseits auch auf menschliche Einflüsse zurückzuführen. Die 
vorliegende Forschungsarbeit wurde im Bundesstaat North Kordofan, welcher von den 
Veränderungen der klimatischen und sozio-ökonomischen Bedingungen in bezug auf die  
Zusammensetzung der Vegetationsbedeckung sowohl im Gummi- arabicum- Gürtel als 
auch im Rest der sudanesischen Sahelzone betroffen ist, durchgeführt. Die Anwendung 
von Fernerkundung und Geoinformationssystemen (GIS), insbesondere von Methoden 
der multitemporalen raumbezogenen Analyse von Landnutzung und Landbedeckung 
mittels Satellitenbilddaten soll aktuelle und genauere Daten zum Zwecke einer effektiven 
Nutzung der natürlichen Ressourcen des Gummi- arabicum- Gürtels liefern. Diese Arbeit 
befasst sich mit der Identifikation, Überwachung und Kartierung von Veränderungen der 
Landbedeckung und Landnutzung im Gummi- arabicum- Gürtel innerhalb der letzten 35 
Jahre. Insbesondere wurde die Methodik der objektbasierten Klassifikation für die 
Bildanalyse verwendet. Zusätzlich wurde in der Studie ein Ansatz für die Berücksichtigung 
von Acacia senegal  bei der konventionellen Waldinventur mit Hilfe von Satellitendaten 
erarbeitet. Dieser Ansatz beinhaltet die Nutzung multi-sensoral unterschiedlicher 
Satellitenbilddaten (Landsat and ASTER) als multi-temporale Datensätze (MSS 1972, TM 
1985, ETM+ 1999 and ASTER 2007), die jeweils im November aufgenommen wurden 
(Trockenzeit). 

Die Bilddaten wurden georeferenziert und mit Hilfe der Software ENVI-FLAASH 
radiometrisch korrigiert. Anschließend wurden die Bildklassifikation (pixel-basiert und 
objekt-basiert), die Change Detection und eine Genauigkeitsanalyse durchgeführt. 
Insgesamt wurden 47 Feldproben für Acacia senegal -Parameter im Elhemmaria –Forest 
inventarisiert. Die drei ausgewählten Untersuchungsgebiete sind entlang des Gummi- 
arabicum- Gürtels verteilt. Um die Beziehungen zwischen Waldattributen und den 
ASTER- Daten herzustellen, wurde eine Regressionsanalyse durchgeführt. Die 
Verwendung von multi-temporalen Fernerkundungsdaten kann erfolgreich für die 
Identifizierung und Kartierung der Landnutzung und Bodenbedeckung in fünf 
Hauptklassen angewandt werden. Auch die NDVI-Kategorisierung stellt ein brauchbares 
Verfahren zur Gliederung und Kartierung von Landnutzung dar. Die Bestände, die durch 
Acacia senegal dominiert werden, bedeckten 2007 in den Untersuchungsgebieten A und 
B eine Fläche von 21% bzw. 24%. Die Landnutzungsstruktur im Gummi- arabicum- Gürtel 
unterliegt offensichtlichen Veränderungen und wechselseitigen Umwandlungen zwischen 
den Klassen, die Tendenzen und Bedingungen widerspiegeln, die sowohl auf 
menschliche Eingriffe als auch auf ökologische Einflüsse auf die Bestände von  Acacia 
senegal zurückzuführen sind. 

Die Untersuchungen offenbaren einen dramatischen Rückgang der Acacia senegal-
Bestände um 25% zwischen 1972 und 2007. Die Untersuchen weisen eine signifikante 
Korrelation zwischen den ASTER- Kanälen (VNIR) und Vegetationsindizes (NDVI, SAVI, 
RVI) und den Parameter Standdichte, Baumvolumen, Baumkronenfläche und Grundfläche 
von Acacia senegal  nach.  Auch mit Hilfe der 2x2- und 3x3-Pixel-Fenster-Methode konnte 
der spektrale Reflexionsgrad von Acacia senegal erfolgreich aus den ASTER- Daten 
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bestimmt werden.  Es wurden vier Gleichungen entwickelt, welche unter Berücksichtung 
der Ähnlichkeiten der ausgewählten Bereiche auf das Monitoring des Volumens, der 
Standdichte, der Grund- und Kronenfläche von Acacia senegal im Gummi- arabicum- 
Gürtel anwendbar sind. 

Der pixelbasierte Ansatz der Landnutzungsklassifikation im Gummi- arabicum- Gürtel 
liefert etwas bessere Ergebnisse als der objektbasierte Ansatz. Die vorliegende Arbeit 
ermöglicht eine Reihe wertvoller Empfehlungen und Vorschläge, welchen Beitrag der 
Einsatz von Fernerkundungsdaten, GIS- Technologien und die darauf aufbauende 
Entwicklung von raumbezogenen Management-Tools für die Bestände von Acacia 
senegal leisten können, um den Baumbestand im Landwirtschafts- und 
Landnutzungssystem des Gummi- arabicum- Gürtels aufrechtzuerhalten. 
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Chapter One 

Introduction 

 

1.1 Background 

Although the terms land cover and land use are often used interchangeably in change 

detection studies, their actual meanings are quite distinct (Seto et al., 2002; Shao and 

Reynolds, 2006). Land cover refers to the surface cover on the ground, whether 

vegetation, urban infrastructure, water, bare soil or other. Identifying, delineating and 

mapping of land cover are important for global monitoring studies, resource management, 

and planning activities (Foody and Atkinson, 2002; Aspinall and Hill, 2008). Identification 

of land cover establishes the baseline from which monitoring activities (change detection) 

can be performed, and provides the ground cover information for baseline thematic maps. 

Land use refers to the purpose of land reserves, for example, recreation, wildlife habitat, 

or agriculture. Land use applications involve both baseline mapping and subsequent 

monitoring, since timely information is required to know which current quantity of land and 

which type of use and to identify the land use changes from year to year (Sabins, 1997; 

Read and Lam, 2002; Campbell, 2002). This knowledge helps to develop strategies to 

balance conservation, conflicting uses, and developmental pressures.  

Remote sensing techniques are important in acquiring useful data of the earth or its 

surface by mean of sensors. These remotely collected data will be analysed to obtain 

information about the objects, areas or phenomena being investigated (Schowengerdt, 

2007; Lillestand et al., 2008). Also it includes the analysis and interpretation of the 

acquired data and imagery, which are the most aspects for environmental scientists to 

provide relevant information for monitoring earth resources (Landgrebe, 2003; Chuvieco 

and Huete, 2010). Multi-spectral imagery can be used for quantification of resources and 

monitoring resources during a period of time. Remote sensing techniques help in 

developing areas in studying deforestation of changes in vegetation cover. Also 

geographic information systems are very powerful tool when applied to earth sciences and 

land use studies (Barredo and Sendra, 1998). 

Sudan is the largest country in Africa, with an area of approximately one square million 

miles (2.5 million km2), and lies entirely in the subtropical arid zone of Africa within the 

tropical zone between latitudes 3° and 22°N and longitudes 22° and 38°E. Seven 

vegetation zones are recognized in Sudan, according to rainfall from 0 mm in the north to 
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1500 mm in the south, and there is a wide range of soil types (Harrison and Jackson, 

1958). This vast area of land covers a number of different ecological and climatic zones, 

from desert in the north to the tropics in the south (Badi, 1989). The country’s population 

is estimated about 39 million, according to 2008 census (CBS, 2009a). The country is 

bounded on the east by the Red Sea and on the other directions by nine African countries; 

Eritrea, Ethiopia, Kenya, Uganda, Zaire, Central African Republic, Chad, Libya and Egypt. 

It is administratively divided into 25 states. 

1.2 Forest Resources in Sudan 

1.2.1 Overview 

The importance of forests and natural resources is indisputable, when considering the 

developing countries especially areas situated in the arid and semi-arid climatic zones. 

The woody species provide the main parts of the population with firewood and charcoal 

(Plaza and Chang, 2008). In the mid-fifties, forests in Sudan constituted about 36% of the 

total area (Harrison and Jackson, 1958). Sudan is classified as a moderately forested 

country with about 28% (67 million ha) forest and woodlands cover (FRA, 2005). The 

scarcity of forest resources in Sudan is further aggravated by a high deforestation rate. 

FAO (2005) ranked Sudan as the third country following Brazil and Indonesia in terms of 

net forest loss per year between 2000 and 2005. Many factors are attributed to the 

deforestation in Sudan such as agricultural expansion, fires, overgrazing and illicit felling 

of trees for fuel wood. Forest resources in Sudan are inversely proportional to population 

density, 68% of Sudan’s forests are in the south where 15% of the population lives, and 

only 32% of the forests in the northern states in Sudan where 85% of the population lives. 

Sudan’s forests provide a variety of goods including timber in the round and sawn forms, 

arboreal biomass for domestic energy supplies and building material and a large number 

of non-wood forest products (NWFPs) which are consumed, traded locally for a variety of 

uses or exported for external markets. National energy surveys indicated that forests 

contribute 70.8% of the country national energy balance (4.01 million tons of oil 

equivalents) (FAO, 2003). Sudan forests also contribute 33% of the total feed requirement 

of the national herds. In addition, forestry activities provide significant opportunities for 

employment and income generation in almost all rural areas of Sudan. It was estimated 

that one out of seven of the population is engaged in forest related activities (Ballal, 2002).  

Salih (2000) reported that the forest and woodland area in Sudan amount to 68.90 million 

ha, which is continuously being encroached upon by agriculture and urbanisation or 

otherwise degraded by uncontrolled felling. The natural forests under reservation and 
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proposed for reservation are approximately 8 million ha, that equivalent to 3.6% of the 

total area of the country, of which about 7,738,000 ha are in the Northern States (FNC, 

2000). In Kordofan state, there are 88 forest reserved areas which cover an area of 

410,304 ha. The proportion of land covered by forest in the state is very small, mainly 

because the area lies in a desert and semi-desert zone (FNC, 2007). 

Forests represent a valuable resource providing food, shelter, wildlife habitat, fuel, and 

daily supplies such as medicinal ingredients and paper. It plays an important role in 

balancing the earth's CO2 supply and exchange. The main issues concerning forest 

management are depletion due to natural causes (droughts, desert encroachment, loss of 

ground water, insect damage and fire) or human activity (clear-cutting, cropping, burning 

and land conversion), and monitoring of health and growth for effective commercial 

exploitation. Tropical forests are important to rural people in developing countries as they 

provide them with fuel and other essential goods and services, with food and benefit to the 

environment (Badi, 1989).  

1.2.2 Gum arabic belt location and role 

The term ‘gum arabic belt’ is used to indicate a zone of mainly 520,000 km2 in an area 

which extends across central Sudan between latitudes 10° and 14° N, accounting for one 

fifth of the country’s total area (IIED and IES, 1990). The African gum arabic belt covers    

a part of Ethiopia, a small part of Eritrea, comes down across Sudan, Chad, part of 

Nigeria, Burkina Faso, Senegal and Mauritania (Fig 1.1). Acacia senegal (L.) Willdenow, 

the tree commonly known as ‘hashab’, grows naturally in this belt on sandy soils and dry 

regions, between 280 and 450 mm annual rainfall. The tree is also found in Ivory Coast, 

Iran, Pakistan and western India (Ross, 1968; NAS, 1979). In Sudan the gum arabic belt 

extends in six states from the east to the west, North Kordofan state where the study area 

is located is one of them (Fig. 1.2). FAO (1956) reported that the origin of the Acacia 

senegal tree is the dry area of tropical and sub tropical Africa, while El Amin, (1976) 

pointed out that southern Sudan could be the centre from which the species distributed. 

The tree has an important role in supplying household wood energy and fodder demands, 

besides enriching the soil fertility (Sahni, 1968; Barbier, 1992). The tree is also used in the 

traditional Acacia senegal-based agro-forestry system, which is recognised and 

considered as one of the most successful forms of natural forest management in the 

tropical dry lands (Fries, 1990). The tree is regarded as sustainable in terms of its 

environmental, social and ecological benefits (Ballal, 2002). 

The country is considered as the world leader in gum arabic production followed by Chad 

and Nigeria (Verbeken et al., 2003). It contributes by 80% of the total production of the  
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Fig. 1.1 Gum arabic belt of Acacia senegal in Africa  
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Fig. 1.2 Location of gum arabic belt in Sudan (ASTER image 2007 B,G,R 1, 2, 3) 
 
 
World (GAC, 1996). However, according to national statistics the total production from 

Sudan is decreasing and becoming increasingly varied. The average production in Sudan 

has declined from 46,000 metric tons in the sixties to 28,000 metric tons in the nineties 

(Abdel Rahim, 2006). Sudan, the world's biggest producer of gum arabic, in 2009 has 

ended the monopoly rights held by the Gum Arabic Company (GAC) to buy the raw resin 

drawn by farmers from certain types of acacia trees. In addition the gum arabic belt in 

Sudan is suffering from increased deforestation due to drought, fluctuation in gum prices, 

 

Sudan 

(Source: Adapted by the author from Elmqvist et al., 2005) 
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unsuitable economic incentives and the correlated changes in the international market for 

gum arabic (Keddeman 1994; Macrae and Merlin, 2002).  

Gum arabic or gum acacia is the most important non-wood forest products (NWFPs) and 

has been an important article of commerce since ancient times. About 87% of the land 

allocated to gum production is privately owned. The Joint FAO/WHO Expert Committee on 

Food Additives (JECFA) defines the gum as "a dried exudation obtained from the stems 

and branches of Acacia senegal (L) Willdenow or related species of Acacia (Family. 

Leguminosae) (FAO, 1986). JECFA in FAO (1990) suggested the introduction of the word 

'closely' (related) species and to limit acceptable gum arabic only to those gums which 

have specific optical rotations between 26° and 34° and nitrogen compositions between 

the limits of 0.27 and 0.39%. Gum from Acacia senegal is characterized as a highly quality 

product, while gum from Acacia seyal var. seyal Delile (Talah) provides as inferior quality 

product. Both trees occur widely in the gum arabic belt of the Sudan in the woodland 

savannah zone of low rainfall (Badi, 1989). Acacia seyal mainly grows on clay soils and 

on water accumulating sites such as depressions, or in fairly high-rainfall areas, while 

Acacia senegal generally grows in lower rainfall areas and on sandy soils (Badi et al., 

1989; Elmqvist et al., 2005). The gum is produced from the stems and branches of Acacia 

senegal tree (4-15 years old) by a biosynthesis process (gummosis), when subjected to 

stress conditions such as drought, poor soil or wounding (i.e tapping; removal of the 

section of the bark with sonki1 tool without damaging the tree) (Barbier, 1992). Annual 

yields from young trees may range from 188 to 2856 g (avg. 900 g), from older trees or 

379 to 6754 g (avg. 2,000 g) from younger trees (NAS, 1980). 

The term arabic was added because the gum reached Europe from the Arabian ports. Its 

organized trade started in Sudan in 1820 (Awouda, 1988), which still dominates the world 

gum arabic production and produces the best food stuff grades. The first known uses of 

gum arabic were in the ancient Egypt as early as 2000 BC in embalming mummies and 

paints for hieroglyphic inscriptions (Seif el Din and Zaroug 1996; Elmqvist et al., 2005).  

Gum arabic is a complex mixture of polysaccharides and glycoprotein which give the 

properties of a glue and binder. Gum arabic is edible by humans and used in food industry 

(e.g. confectionery, beverages, soft drinks) (Chikamai, 1996) and as a stabilizer. Gum 

arabic is used in printing, paint production, glue, cosmetics and various industrial 

applications (e.g. pharmaceuticals, textile industry, and photography) (Barbier, 1992). 

Some people used it as a famine food (Freudenberger, 1993).  

1Sonki: Traditional developed tool used for tapping Acacia senegal trees  
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In Sudan, the main zone of production of gum arabic is Kordofan region, which is located 

in the centre of the country. Gum production is continued to be an important source of 

income for smallholders in central Sudan and to improve environmental and 

socioeconomic sustainability. However, it is essential that policies assist in price 

stabilisation, so as to avoid over-tapping and neglect of trees by the smallholders 

(Elmqvist, et al., 2005). 

Acacia senegal has effectively been ‘domesticated’ through the development of an 

indigenous bush-fallow system, whereby agricultural cropping and forest regeneration are 

practiced in sequence. With the completion of the forest rotation (the bush period), the 

land is cleared for crop farming. At the same time, important trees such as Balanites 

aegyptiaca (Hejlij) are left intact. Acacia senegal is a nitrogen-fixing tree (NAS, 1980), and 

the cultivation can continue for five to seven years before the land is changed to other 

bush rotation. Traditionally, farmers would organize their land into five blocks under a 

system managed on a twenty five year of rotation. 

1.3   Problem Statement and Justification 

The Gum arabic belt is one of the most important forests in Sudan, which lies within the 

low-rainfall savannah zone. The belt is considered as an important area because it 

accommodates around one fifth of the population of the Sudan and two thirds of its 

livestock population. The belt acts as a natural barrier to protect more than 50% of the 

total area of Sudan from desert encroachment (Ballal, 2002). 

Gum arabic is one of the main crops produced in the traditional rain-fed agricultural sub-

sector. It contributes to the backbone of the gum trade in quality and quantity and 

represents 90% of the total value of the gum exported (GAC, 2000). Gum arabic provides 

an average of 12% of the GDP of the country and also accounts for about 15.3 % and 

10% of the household income of the gum producers and other farmers in the gum belt 

across Sudan, respectively (Taha, 2000). In the mid-60s gum was exported in great 

volumes, of around 50,000 tons per annum, but the export has decreased steadily to 

18.000 tons during the 90s (Eldukheri, 1997). Over the last two decades and since the 

inception of the drought years during the 70’s, gum arabic production has decreased 

significantly (Fig. 1.3). The continuous decrease in production has been attributed to low 

rainfall and to the reduction of hashab tree populations. The reduction in hashab stock is 

caused by cutting and selling the tree as wood or charcoal on the one hand, on the other 

hand by the expansion of areas of field crops on the expense of forest lands. Gum arabic 

production from Acacia senegal (L.) Willd. is an integral component of the traditional 

production system in the semi-arid zone of Sudan. The bulk of this production is found in 
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the sandy soils within the gum belt in Kordofan region, which produce about 50% of the 

total production of Sudan between 1970 and 1997 according to the Gum Arabic Company 

(GAC) (Taha, 2000; Elmqvist, et al., 2005) as shown in Fig.1.3. The agricultural sector 

employs about 80% of the population, and considered as the main economic activity in the 

Kordofan region, the proposed area of the study. Kordofan region contributes significantly 

to the national economy by producing cash exportable crops, such as gum arabic, 

groundnut, sesame, watermelon and karkadeh. Kordofan region produces the best quality 

of gum arabic (Imeson, 1992). However, the trend of gum production is steadily declining 

in the last years. Degradation of arid and semi-arid lands has been a field of intensive 

research in the last two decade. The State of Kordofan, like the rest of the Sahelian 

Sudan zone, suffered from the increasing frequency and severity of drought that occurred 

from 1970 to 1996. Deforestation and forest degradation coupled with difficult ecological 

conditions, has seriously reduced forest cover in many tropical countries of the world (IIED 

and IES, 1990). 
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Fig. 1.3 Gum arabic production in Sudan by regions (1970-2008) 

 

Data bases of land cover and vegetation can be used to develop maps of habitat 

suitability (digital vegetation map) including information on forest cover and canopy 

structure. Land use land cover classification of vast areas by traditional methods is a time 

consuming and expensive process. Remote sensing offers a quick and efficient approach 

to the classification and mapping of land use land cover in a basis for future planning. This 

study is using remotely sensed imagery to identify and delineate various land use land 

cover categories and types of vegetation cover present in the gum arabic belt in Kordofan 

(Source: GAC 1996 and CBS, 2009b) 
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region. Therefore, the study will establish advanced monitoring activities (change 

detection) which can be performed. Also it provides the ground cover information for 

baseline thematic maps and for future land management in the gum arabic belt in 

Kordofan region using recent methodologies of land use land cover classification such as 

sub-pixel approach using object based approach. 

Remote sensing data are capable of capturing changes in vegetation cover by multi-

temporal monitoring through time series. Remote sensing is also one of the most reliable 

devices having high capability in research work for spatial information and data collection 

concerning different fields. As remote sensing has routinely provided a newly quality of 

imagery of the earth's surface, it has become intertwined with GIS as a means to 

constantly and inexpensively update some of the data such as land use and land cover. 

Population growth is leading to an increasing demand of basic needs such as food, 

employment and cash income. Moreover, a large proportion of the population lives in rural 

areas, and as a matter of fact this has not only positive but also negative impacts such as 

deforestation and soil erosion, particularly if natural exploitation is executed without proper 

spatial planning. Therefore, this study aims to develop a management plan for land use 

allocation in rural areas in the gum arabic belt. The plan should help to maximise benefit 

and minimise the risk of future exploitation of natural resources by applying technologies 

and methods of remote sensing and GIS analysis.  

In Sudan, there is great need for timely information on the agricultural and forestry 

resources. Increasing availability of high resolution satellite imagery on land information 

adds to the potential of remote sensing and GIS for use in information gathering and 

updating. A detailed vegetation map will be derived as an approach for vegetation 

evaluation, which is required for the effective management of natural resources in 

Kordofan region. Land cover modifications in condition and composition of vegetation 

cover are important aspects of change that need to be considered in current research, as 

well as providing forest managers with more current and improved data for the purposes 

of forest inventory. 

 In this study some questions are raised to be answered: 

 What are the changes in land cover and/or land use? (Monitoring/ mapping). 

 What are the main ecological and socio-economical factors and causes which 

drive the land cover and land use changes in the gum arabic belt? (Explanatory 

analysis). 
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 Where are the areas affected by land cover land use changes located in the gum 

arabic belt? (Spatial analysis). 

 At what rate does the land cover land use change progress and when did it start? 

(Temporal analysis). 

 Are there any spatio-temporal sequences of changes? (Analysis and modelling of 

the change process). 

 How is the gum arabic belt being transformed and how can such information be 

used to predict future changes?  

1.4 Research Objectives  

The overall objective of this study is to analyse and model the past and current situation of 

vegetation trends and conditions in the gum arabic belt of North Kordofan State, using 

remotely sensed imagery and GIS techniques, and to explore management tools for 

Acacia senegal forests to maintain the tree component in the farming and the land use 

system. 

The specific objectives of this study are: 

1. Monitoring, mapping and modelling of land use land cover changes and dynamics 

over a period of thirty five (1972-2007) years in the gum arabic belt in North 

Kordofan State, Sudan. 

2. Monitoring the impacts of socio-economic activities on the gum arabic belt. 

3. Integration of satellite imageries and the conventional forest inventory data for 

quantitative estimation of Acacia senegal tree’s parameters. 

4. Comparison of pixel-based and object-based classification approaches in land use 

land cover mapping in semi-arid areas of the gum arabic belt. 

5. Providing forest managers with advanced, accurate and improved data for the 

purposes of forest management in the gum arabic belt. 

1.5 Research Hypotheses 

 Land use land cover and related trends in the gum arabic belt during the last 35 

year (1972-2007) have been undergone significant variations. 

 Integration of remotely sensed data and terrestrial forest inventory of Acacia 

senegal (L.) Willd. trees in the gum arabic belt indicates a relationship between 

them. 
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 Application of object-based classification in the semi-arid areas in the gum arabic 

belt in Sudan gives reliable and better results compared to a pixel-based 

classification (maximum likelihood classification).  

1.6 Organisation of the Thesis 

The content of the thesis is presented in seven chapters. A short introduction and 

overview of the forest resources and gum arabic belt in Sudan, problem statement and 

justification, research objectives and hypotheses were presented in chapter one. Chapter 

two described the background and literature review of remote sensing, geographical 

information system, land use land cover and forest inventory. In chapter three the study 

area and the material methods used and applied in the research were described. Chapter 

four focused on presentation of the multi-temporal change analysis in the gum arabic belt 

from 1972-2007. This chapter includes some maps and tables for the illustration of the 

results. While the integration of the remote sensing data with the terrestrial forest 

inventory of Acacia senegal tree was presented in chapter five, including the regression 

models, evaluation and validation of these models. Chapter six provides the comparison 

of the object-based and pixel-based approaches in classification of land use land cover in 

gum arabic belt. In this chapter the two methods were applied, analysed and compared. 

Chapter seven, the last chapter presents the research findings, highlights the research 

limitations and provides recommendations for the application of remote sensing and 

geographical information system in arid and semi-areas in the gum arabic belt in Sudan. 
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Chapter Two 

Remote Sensing and GIS in Vegetation Mapping and Monitoring 

 

2.1 Historical Overview of Remote Sensing and GIS  

Remote sensing is formally defined as the science and art of obtaining information about 

an object, area or phenomenon through the analysis of data acquired by a device that is 

not in contact with the object, area, or phenomenon under investigation (Campbell, 2002; 

Lillesand, et al., 2008; Chuvieco and Huete, 2010). Remote sensing activities encompass 

a multitude of activities, includes the operation of satellite systems, image data acquisition 

and storage, the subsequent data processing, interpretation, dissemination of the 

proceeded data and image products (Chuvieco and Huete, 2010).  

Remote sensing, as an applied tool and methodology, has evolved historically parallel 

with other technological advancement, such as the improvement in optics, sensors 

electronics, satellite platforms, transmission systems and computer data processing. The 

earliest remote sensing event is traced to the mid 1800’s with the development of 

photography. In 1839 the first ever a photo was taken in France. In 1858, the first known 

aerial photograph was taken from a height of 80 m in France using cameras mounted in 

air balloon (Lillesand et al., 2008). The greatest development in aerial reconnaissance and 

photo interpretation were made by the military during the World War I and World War II, 

and then later this innovation was made available to the civilian, leading to the first 

application of it in the management of natural resources. In 1960, NASA launched the 

Television and Infrared Observation Satellite (TIROS-1), which enabled a deeper 

understanding of atmosphere conditions. The term remote sensing was first utilized in the 

early 1960s to describe any means of observing the earth from far and introducing digital 

technologies by NASA (Chuvieco and Huete, 2010). The modern era of earth remote 

sensing from satellite began when the Landsat Multispectral Scanner System (MSS) 

provided for the first time in 1972, The MSS is characterised by multi-spectral bands (4 

bands) with responsibly high spatial resolution for that time (80m), large area (185 by 185 

km), and repeating  coverage (every 18 days) (Sabins, 1997; Schowengerdt, 2007). Since 

1972, there have been four additional systems of Landsat, two thematic Mapper (TM) 

systems, and the Enhanced Thematic Mapper Plus (ETM+) in the Landsat series. TM and 

ETM+ sensors are advanced multi-spectral scanning devices designed to achieve higher 

image resolution with a spatial resolution of 30 meters for bands 1 to 5, and band 7, and  
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a spatial resolution of 120 meters for band 6 in TM. The ETM+ has an additional 

panchromatic band with 15 meters spatial resolution (Lillesand et al., 2008). 

There have also been five higher resolution French SPOT systems, several lower 

resolutions AVHRR and GOES systems and NASA’s sensor suites on the Earth 

Observing Systems (EOS), Terra and Aqua satellites as well as a wide variety of other 

multi-spectral sensors on aircraft and satellites. Also the hyperspectral sensors were 

developed and characterized with the large number of bands, these sensors are 

advanced Visible/InfraRed Imagine Spectrometer (AVIRIS), the European Space 

Agency’s Medium Resolution Imaging Spectrometer (MERIS) and the MODerate Imaging 

Spectroradiometer (MODIS) (Schowengerdt, 2007). Some sensors have been lunched in 

the development to achieve a better spatial resolution of 4 m. Among these are SPOT-5, 

IKONOS, QuickBird, OrbView-3 and GeoEye-1 (Schowengerdt, 2007; Lillesand et al., 

2008). In addition to the mentioned optical remote sensing sensors, new active remote 

sensing sensors of long-wavelengths microwaves (RADAR), short wavelength laser light 

(LIDAR), ESA’s Envisat and PALSAR systems on Japan’s ALOS satellite are known. 

These sensors produce continuous strips of imagery depicting extensive ground areas 

that parallel to the platform’s flight line. Today there are an increase number of satellite 

sensor systems being used to observe and monitor earth with an enormous quantity of 

data applying a variety of new ways for studying dynamics of earth’s surface (Sabins, 

1997).  

There are many different definitions of GIS (Clark, 2001), but the basic concept common 

to all definitions is that GIS is a set of programs that store, manage, manipulate and 

represent data with some kind of spatial components (Richards and Jia, 2006; Chuvieco 

and Huete, 2010). This geographical reference information includes maps and statistics. 

The GIS was firstly designed in Canada in the 1960s by Roger Tomlinson of the Canada 

Land Inventory in environmental conservation by focusing on the integration of spatial 

data from different sources (ERDAS, 2003). The development of digital image 

interpretation techniques after 1972 increased the connection of satellite data with other 

geographic variables. At first, the integration of both techniques intended to support digital 

classification through the use of auxiliary data. In the 1980s, the quick propagation of GIS 

in planning and academic institutions led to centering the management of spatial data on 

this technology. In 1990 remote sensing integrated with GIS, providing input variables to 

the spatial database. The growing availability of high-spatial resolution sensors at the 

beginning of this century has further blurred the border between these technologies. 

Remote sensing technology has emerged as a potentially powerful tool for providing 

information on natural resources at various spatial and temporal resolutions.  
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2.2 Integration of Remote Sensing and GIS  

Remote sensing, in conjunction with parallel development in Geographical Information 

Systems (GIS), Global Positioning System (GPS) and other ground data collection 

systems, now provide vast amount of information about the land, to improve the 

understanding of the earth systems and better contribute for preserving it (Chuvieco and 

Huete, 2010). GIS is needed for obtaining a more comprehensive view for the remote 

sensing results of a particular area of interest. Therefore, the integration of spatial 

information has been remarkably favoured by most users of satellite remote sensing. The 

use of GIS and remote sensing has gained much recognition as environmental resources 

management tools for data collation and analysis (Rindfuss et al., 2004). Remote sensing 

and GIS are known to be not only powerful, but also cost-effective tools for assessing the 

spatial distribution and dynamics of land cover (Tottrup and Rasmussen, 2004; Giridhar, 

2008; Wilson and Fotheringham, 2008; Zhiliang et al., 2008; Dewan and Yamahuchi, 

2009). 

In recent years, there has been an increasing interest in providing integration tools in the 

area of remote sensing, GIS and spatial models (Franklin, 2001). Nowadays, GIS is 

considered to be the nerve centre that handles geographic information because it can 

integrate all source of spatial data (RS, cartography, census data, GPS … etc) (Chuvieco 

and Huete, 2010). 

The increasing convergence between RS and GIS is justified, among other, for the 

following reasons: 

- Both have a clear territorial interest; 

- They have similar hardware and software requirements; 

- Many professional commonly use both technologies; 

- They have similar research demands, as in the case of error analysis, the structure 

of and access to the data, the development of computer hardware, and the 

interpretation methodology. 

The integration of RS and GIS also creates some problems, mainly related to data 

availability and hardware costs, but a trend towards the convergence of both technologies 

is evident. Integration of remote sensing data and GIS is facilitated by a number of 

developments (Congalton, 1988). 

Independently of the development degree of integration the combination of remote 

sensing, GIS and statistical models have allowed the development of applications in 
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solving forest management problems at local scales (Murray and Snyder, 2000) as well as 

landscape and coarser scales (Franklin, 2001). In this sense, the development and 

empirical applications to forest management problems showed an important contribution 

to its sustainable management. Also this integration showed different degrees of 

development from external models, where the integration with the GIS is carried out by 

means of ASCII or binary files, to the full integration, where the linkage operates like a 

homogeneous system. 

2.3 Spectral Reflectance of Vegetation  

Vegetation is important because it provides a basic foundation for all living beings. 

Classifying vegetation using remote sensing is valuable because it can determine 

vegetation distribution and occurrence and how it is influenced by physical soil and 

atmospheric factors. There are some difficulties in definition of vegetation classes based 

on their spectral responses alone, due to the common heterogeneity of the cover type and 

the factors affecting spectral responses. 

Remote sensing systems offer four basic components to measure and to record data 

about an area from a distance. These components include the energy source, the 

transmission path, the target and the satellite sensor. The energy source (i.e. 

electromagnetic) is the crucial medium required to transmit information from the target to 

the sensor. Remote sensing technology makes use of the wide range Electro-Magnetic 

Spectrum (EMS) from the very short wave Gamma Ray to a very long Radio Wave. 

Wavelength regions of electro-magnetic radiation have different names ranging from 

Gamma ray, x-ray, Ultraviolet (UV), Visible Light, Infrared (IR) to Radio Wave (Stellingwerf 

and Hussin, 1997). Electromagnetic wavelength affects different parts of plant and trees. 

These parts include leaves, stems, stalks and limbs of the plants and trees. The length of 

the wavelengths also plays a role in the amount of reflection that occurs. Tree leaves and 

crop canopies reflect more in the shorter radar wavelengths, while tree trunks and limbs 

reflect more in the longer wavelengths. The density of the tree or plant canopy will affect 

the scattering of the wavelengths. 

Remote sensing provides important coverage, mapping and classification of land cover 

features, such as vegetation, soil, water and forests diagram of spectral reflectance 

curves for vegetation, soil and water (Fig. 2.1). 
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  (Source:  http://www.cps-amu.org/sf/notes/m_1r-1-8.htm) 
 
Fig. 2.1 Typical spectral reflectance curve (spectral signature) for vegetation, soil and 
water 
 

Vegetation curve shows low reflectance values at 0.4 µm (i.e., in the blue waveband), 

while the high reflectance values occur around the near-infrared and part of the mid-

infrared bands. The reflectance spectrum of bare soil, in contrast, shows reflectance 

increasing smoothly with wavelength. Its reflectance in the visible waveband is greater 

than that of vegetation, while in near-infrared and part of mid-infrared bands bare soil 

reflectance becomes less than that of vegetation (Mather and Brandt, 2009). Knowledge 

of surface material reflectance characteristics provides a principle which allows for the 

selection of suitable wavelength to scan the earth surface for a particular mission (e.g. for 

vegetation monitoring). 

There are several factors that influence the reflectance quality of vegetation on satellite 

and remote sensing imagery. These include brightness, greenness and moisture.  

2.4 Properties of Remotely Sensed Data 

The property of remotely sensed data most critical for their utility is their resolution. There 

are four types of resolution for remote sensing imagery: spatial, spectral, radiometric, and 

temporal.  
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2.4.1 Spatial resolution 

The spatial resolution is related to the instantaneous field of view (IFOV) of the sensor, 

which denotes the size of the area from which the sensor receives the energy at the given 

instant (Mather and Brandt, 2009). The finer the spatial resolution, the more detailed is the 

image. A fine spatial resolution reduces the number of mixed pixels, especially if the 

landscape is highly fragmented and land cover parcels have an irregular shape (Sabins, 

1997; Mather and Brandt, 2009).  

2.4.2 Spectral resolution 

Spectral resolution refers to the ability of a remote sensing system to separate the subtle 

difference in reflectance of the same ground object at different wavelengths. The total 

energy measured in each spectral band of a sensor is a spectrally-weighted sum of the 

image irradiance over the spectral pass band (Schowengerdt, 2007). The use of more 

spectral bands in a classification is conducive to the achievement of higher classification 

accuracy to a certain degree.  

2.4.3 Radiometric resolution 

Radiometric resolution or radiometric sensitivity refers to the number of digital quantization 

levels used to express the data collected by the sensor. In general, the greater the 

number of quantization levels the greater the radiometric detail in the information collected 

by the sensor (Mather, 2004). Radiometric resolution also refers to the ability of a remote 

sensing system to distinguish the subtle disparity in the intensity of the radiant energy 

from a target at the sensor.  

2.4.4 Temporal resolution 

Temporal resolution refers to the temporal frequency at which the same ground area is 

sensed consecutively by the same sensing system (Mather, 2004). A short period means 

more revolutions per time and is equivalent to a high temporal resolution. Temporal 

resolution of the same satellite varies with latitude of the geographic area being sensed 

(Gao, 2009). 

2.5 Image Classification  

The intent of the classification process is to categorize all pixels in a digital image into one 

of several land cover classes, or "themes". This categorized data may then be used to 

produce thematic maps of the land cover present in an image. Normally, multi-spectral 

data are used to perform the classification (Lillesand and Kiefer, 2004). Image 
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classification is perhaps the most important part of digital image analysis. The thematic 

map shows the spatial distribution of identifiable earth surface features and provides an 

informational description over a given area, rather than a data description (Schowengerdt, 

2007). Classification algorithms may be grouped into one of two types: parametric or 

nonparametric. Parametric algorithms assume a particular class statistical distribution, 

commonly the normal distribution. Nonparametric algorithms make no assumptions about 

the probability distribution and are often considered robust. 

Hard classification methods assume that each pixel represents a homogeneous area on 

the ground and showing only one land cover type (Markham and Townsend, 1981).  But in 

fact, the spatial structure and variation of land cover can cause numerous ‘mixed pixels’ in 

remotely sensed imagery also in semi-arid areas (e.g. gum arabic belt). 

There are mainly two approaches in traditional methods of classification namely 

unsupervised and supervised classification, which are often called hard classification. 

There are soft classification methods like sub-pixel classification and fuzzy classification. 

In hard classification two kind of uncertainty are distinguished, firstly, in most of the cases 

there are no fixed boundaries between two land cover classes. Secondly, there may be 

more than one class in a pixel. These problems have led to the concept of soft 

classification (Key et al., 2002; Foody and Atkinson, 2002). 

2.5.1 Hard classification 

Hard classification uses statistical methods that attempt to map each pixel by assigning it 

exclusively to one specific class. The spectrally similar data will describe thematically 

similar objects; and is a dominant scene component for each pixel (Jensen, 2004; 

Lillesand and Kiefer, 2004). The traditional hard classifiers use binary logic to determine 

class membership, in that each observation can belong to one category (Foody, 1999). 

Due to the heterogeneity of land cover features and the limitation in spatial resolution of 

remote sensing imagery, mixed pixels are common in medium- and coarse-spatial-

resolution data. The presence of mixed pixels has recognised a major problem that affects 

the effective use of remotely sensed data in per-pixel based classification (Fisher, 1997; 

Hu and Weng 2010). 

Deterministic/crisp classification can be further divided into four broad categories. These 

are: 1) Manual classification, 2) Semi-automated (supervised) digital classification 3) 

automated (unsupervised) digital classification and 4) expert knowledge-based 

classification. 
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2.5.1.1 Unsupervised classification 

Unsupervised classification is a means by which pixels in an image are assigned to 

spectral classes without the user having foreknowledge of the existence assignment or 

names of those classes. It is performed most often using clustering methods. These 

procedures can be used to determine the number and location of the spectral classes to 

determine the spectral class of each pixel (Richards and Jia, 2006). 

2.5.1.2 Supervised classification 

The supervised approach to pixel labeling requires the user to select representative 

training data for each of a predefined number of classes. Also supervised classification 

techniques use prior knowledge about the field, which is very much helpful in getting 

better classification (Key et al., 2002). Supervised classification based on the notion that   

a priori (known) information is used to classify image pixels by specifying various training 

areas representing land cover present in a scene. Supervised classification is preferred by 

most researchers because it generally gives more accurate class definitions and higher 

accuracy than unsupervised approaches (Fundamental of Remote Sensing, 1999). Three 

statistical classifiers are in general use, the parallelepiped method, minimum distance 

classifier, and the maximum likelihood algorithm (Mather and Brandt, 2009). 

Maximum likelihood approach 

The maximum likelihood procedure is a supervised statistical approach to pattern 

recognition. The probability of a pixel belonging to each of a predefined set of classes is 

calculated, and the pixel is then assigned to the class for which the probability is the 

highest (Mather and Brandt, 2009). Maximum Likelihood Classifier (MLC) is the most 

common supervised classification techniques for parametric input data. Maximum 

likelihood classifier assumes that a pixel has a certain probability of belonging to a 

particular class. These probabilities are equal for all classes and the input data in each 

band follows the gaussian (normal) distribution function (Lillesand et al., 2008). It is 

important to realise that the maximum likelihood method is based on the assumption that 

the frequency distribution of the class membership can be approximated by the 

multivariate normal probability distribution (Mather, 2004; Lillesand et al., 2008) 

Because supervised training does not necessarily result in class signatures that are 

numerically separable in feature space, and unsupervised training does not necessarily 

result in classes that are meaningful to the analyst, a hybrid approach might achieve both 

requirements (Schowengerdt, 2007). 
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2.5.1.3 Expert knowledge-based classification 

The expert classification software provides rules-based approach to multi-spectral image 

classification, post-classification refinement, and GIS modeling. In essence, expert 

classification system is a hierarchy of rules, or a decision tree, that describes the 

conditions under which a set of low level constituent information gets abstracted into a set 

of high level informational classes.  

2.5.2 Soft classification  

Soft classification algorithms are designed to deal with the problem of ‘mixed pixels’ by 

describing the spatially heterogeneous character of land cover in terms of continuous 

surfaces. This classification approach is an alternative to the standard ‘hard’ classifier and 

providing the user with a measure of the degree (termed membership grade) to which the 

given pixel belongs to some or all of the candidate classes, and leaves to the investigator 

the decision as to which category the pixel should be classified (Mather, 2004; Jensen, 

1996). Fuzzy set theory, developed by Zadeh (1965), has played a role in dealing with 

uncertainty in remote sensing and GIS. 

Soft classification may be more informative at the boundaries between land cover objects 

(where mixed pixels inevitably occur) and provides a more informative and potentially 

more accurate alternative than hard classification (Foody and Atkinson, 2002). 

The ‘soft’ or fuzzy classifier does not assign each image pixel to a single class in an 

unambiguous fashion. Instead, each pixel is given a ‘membership grade’ for each class. 

Membership grades range in value from 0 to 1, and provide a measure of the degree to 

which the pixel belongs to or resembles the specified class, just as the fractions or 

proportions used in linear mixture modelling (Mather, 2004). Thus, since the mid-1980s, 

soft classification has seen increasingly widespread use (Bezdek et al., 1984; Foody et 

al., 1992; Gillespie, 1992; Foody and Cox, 1994; Atkinson et al., 1997). A number of 

recent studies have attempted to ‘unmix’ the information from mixed pixels (Foody and 

Cox, 1994; Foody, 1995; Maselli et al., 1995; Van Kootwijk et al., 1995; Okamoto and 

Fukuhara, 1996; Foody, 1996). Baatz et al., (2000), developed an algorithm based on 

fuzzy mathematics. The mathematical approach of fuzzy logic is to replace the strict 

logical statement 0 and 1 (i.e. No or Yes) by a continuous range of [0…1], where 0 means 

“exactly No” and 1 means,” exactly Yes” (Baatz et al., 2001). 
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2.5.2.1 Object oriented image analysis 

Recently another type of classifier called an object-based, has emerged, and has 

generally had better success with narrow band, high spatial resolution data (Willhauck, 

2000).  Application of a classification based on an object oriented approach has several 

advantages instead of the pixel-driven approach. Image objects, besides the spectral 

information, contain additional attributes (e.g. shape, texture, relational and contextual 

information) that can be used for classification purposes (Baatz et al., 2000; Blaschke and 

Strobl, 2001; Laliberte et al., 2004). The classification process, in this case, begins with a 

segmentation of neighbouring pixels into homogenous units or objects (Baatz et al., 

2004). Object-oriented methods of image classification have become more popular in 

recent years due to the availability of software (eCognition®) developed by the German 

company Definiens Imaging. This software uses a region-growing approach at different 

scale levels from coarse to fine, applying both spectral properties and geometric attributes 

of the regions (Mather, 2004).  

Image Segmentation 

Image segmentation refers to the process of decomposing an input image into spatially 

discrete, contiguous, non-intersecting, and semantically meaningful segments or regions. 

These regions are patches comprising relatively homogeneous pixels. These pixels share 

a higher internal spectral homogeneity among themselves than external homogeneity with 

pixels in other regions (Ryherd and Woodcock, 1996). Image segmentation may be 

carried out in top-down or bottom-up strategies or a combination of both. In the top-down 

approach, the input image is partitioned into many homogeneous regions. In the bottom- 

up approach, pixels are linked together to form regions that are amalgamated later (Gao, 

2009). 

Types of image segmentation 

1. Pixel-based segmentation 

Also known as thresholding and it aims to stratify an input image into pixels of two or more 

values through a comparison of pixel values with the predefined threshold T individually. 

In this method a pixel is examined in isolation to determine whether or not it belongs to a 

region of interest based on its value in relation to the mean value of all pixels inside this 

region. 

 

 



Chapter 2: Remote Sensing and GIS in Vegetation Mapping and Monitoring 

21 
 

2. Edge-based segmentation 

In edge-based segmentation (also known as boundary based segmentation) pixels are 

completely encompassed by edge pixels or a boundary is considered part of a 

homogeneous region. Image pixels either belong to a segment or form a boundary.  

3. Region-based segmentation 

Region-based segmentation is the identification of homogeneous areas via the application 

of homogeneity criteria among candidate segments, relying on the statistically derived 

homogeneity over an area. These region-based methods are resistant to noise in the 

image data. 

4. Knowledge-based image segmentation 

Knowledge-based, or knowledge-guided, image segmentation involves both domain-

specific and domain-independent knowledge. Domain specific knowledge is needed to 

decide about the types of regions which an image should be segmented. Knowledge-

based image segmentation is consisting of two stages, with spectral knowledge used at 

the first stage and spatial knowledge used at the second stage. 

5. Segmentation based on multiple criteria 

In the pixel-, edge- and region-based segmentation methods, a huge amount of spatial 

information among pixels is wasted. This inability to make full use of the available spatial 

properties usually leads to poor segmentation outcomes, especially if the image has a fine 

spatial resolution. This deficiency may be overcome by using spatial relationship (e.g., 

contexture and shape). 

6.  Multi-resolution image segmentation (Multiscale) 

The multi-resolution segmentation technique is used to build up a hierarchical network of 

image objects that allow the definition of relations between neighbouring objects of 

different size (Baatz et al., 2004). Moreover, this type of segmentation produces 

homogeneous image objects and leads to a better understanding of the image content 

(Gao, 2009).  
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2.6 Land Use and Land Cover 

2.6.1 Definitions of land use and land cover  

However, the distinction between land use and land cover, although relatively easy to 

make at a conceptual level, is not so straight forward in practice as available data do not 

make this distinction clearly over all time, a fact that complicates the analysis of either one 

of them. At the global level, "key sources of global data do not distinguish clearly between 

cover and use" (Meyer and Turner, 1994).  

Land cover is the observed physical cover, as seen from the ground or through remote 

sensing, including the vegetation (natural or planted) and human constructions (buildings, 

roads, etc.) which cover the earth's surface. Water, ice, bare rock or sand surfaces count 

as land cover (Gregorio and Jansen, 1998). 

Land use is based upon function, the purpose for which the land is being used. Thus,         

a land use can be defined as a series of activities undertaken to produce one or more 

goods or services. A given land use may take place on one, or more than one, piece of 

land and several land uses may occur on the same piece of land (Gregorio and Jansen, 

1998). 

2.6.2 Vegetation mapping and monitoring 

The nature and properties of vegetation are fundamental attributes of landscapes. The 

nature of the vegetation in an area is determined by a complex combination of effects 

related to climate, soils, history, fire and human influences. Vegetation mapping has         

a long history which includes a variety of contexts and a wide range of geographic scales. 

Maps of potential vegetation attempt to determine what the vegetation type would be in 

the absence of human influences. Maps of 'actual' vegetation attempt to characterize the 

vegetation as it exists in an area (Kuchler and Zonneveld, 1988). 

Monitoring of vegetation change using remote sensing is providing an improved 

understanding of the health and condition of vegetation as well as rates of conversion of 

natural vegetation to other land uses. The first vegetation maps made with the help of 

remote sensing were based on the visual interpretation of aerial photographs. (Lillesand et 

al., 2008). With the advent of the Landsat programme in 1972, there was an immediate 

interest in the potential for mapping vegetation over larger areas in more efficient manner 

than traditional air photo interpretation. Active research and several approaches are 

applied for using digital satellites images for mapping vegetation. These includes 

classification using per-pixel classifiers; using spatial or contextual information in the 
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classification process (Kettig and Landgrebe, 1976; Stuckens et al., 2000), and using 

segmentation of images into polygons in a step independent of image classification 

(Woodcock and Harward, 1992). 

There are three major aspects that are focused when monitoring natural environment and 

land cover changes. Those include the extent of the change, (the magnitude of the 

change), the nature of the change, and the spatial pattern of the change measuring the 

spatial distribution and relationship of the change (Sepehry and Liu, 2006). 

In the analysis of land use and land cover change; it is firstly necessary to conceptualize 

the meaning of change to detect its real situations. However, both in the case of land 

cover as well as of land use, the meaning and conceptualization of change is much 

broader. In the case of land cover change, the relevant literature distinguishes between 

two types of change: conversion and modification (Skole and Tucker, 1993). Land cover 

conversion involves a change from one cover type to another. Land cover modification 

involves alterations of structure or function without a wholesale change from one type to 

another. 

Many factors influence vegetation condition and health, ranging from drought and pests to 

acid rain and air pollution. Remote sensing offers an alternative approach whose strength 

is spatial coverage, when merged with ground sub-region of ground sampling show to be 

extremely helpful for monitoring vegetation health.  

2.6.2.1 Methods of measuring vegetation condition 

1. Multi-temporal analysis 

Multi-temporal satellite is commonly used in this approach. In which, acquired imageries in 

different dates to the same location are co-registered in order to compare their spectral 

values and to monitor their vegetation health. In several settings, analysis of multi-

temporal imagery has proven as effective for monitoring defoliation of forests due to 

insects (Muchoney and Haack, 1994). 

2. Vegetation conversion and change 

Another kind of change in vegetation of great interest is the conversion of vegetation 

types. The most obvious example of this kind of change is deforestation, which is one of 

the most significant forms of land use change occurring on earth. Whether deforestation is 

due to the harvest of wood products, conversion of land to other uses such as agriculture 

or urban uses, the result of forest fires, or some combination of the above, monitoring of 

deforestation is a concern in many regions. 
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2.6.3 Land use and land cover in Sudan 

The increasing impact of land use and cover changes on the environment has been an 

issue of concern in the developed and the developing countries with consequential effects 

on sustainable development. Deforestation, floods, drought, desertification and land 

degradation have been issues of environmental concern in Sudan with increasing 

incidence of aridity in the region and changes in the climatic conditions of the region 

(Kibreab, 1996). There has been an increasing awareness on land use land cover 

changes (Symeonakis et al., 2004; Ahlcrona, 1988). Misuse and overuse activities in the 

different regions of the country have resulted in land use and vegetation cover changes 

which have increased the land degradation in the region. The percentage of the total land 

area that has experienced a level of degradation is estimated at 23% during the year 1978 

to1989 periods (UNDESA, 2007). The country is exposed to periodic waves of drought 

(Abbadi and Ahmed, 2006). Dafalla (2007) reviewed many studies conducted in Sudan 

using various types of satellite images to identify the features of land use cover changes. 

The utilization of land in Sudan is illustrated by table 2.1. Arable land constitutes about 

one third of the total area of the country, however only 21% of this arable land is actually 

cultivated. Over 40% of the total area of Sudan consists of pasture and forests. Natural 

pasture provides grazing land for nearly all livestock. Forests and woodlands are used to 

meet the demand of the population consumption of wood products. The total above 

ground volume average is 33 m³ per ha with variation less than 1 m³ per ha in the 

northern bush lands to 150 m³ per ha in the southern montane forests. 

 

Table 2.1 Land use in Sudan 

Item Area (000  hectares) 
Land area 237,443 
Area under water 12,986 
Arable land 84,034 
Cultivated land 17,741 
Uncultivated land 66,563 
Forest and wood land 64,360 
Other  49,569 
Total area 250,429 

        (Source: Administration of statistics and information, 1995) 

Agriculture is considered as the mainstay of the Sudanese economy and accounts for 

about 38.9% of the GDP in 2004-2005 periods (CBS, 2005). The sector employs 62% of 

the labour force, with about 80% of the population depend on agriculture for livelihood 
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and raw materials for the industries (CBS, 2005; FAO, 1994).  Forms of the practiced 

agriculture in Sudan could be distinguished under: 

- Traditional rain- fed agriculture. 

- Rain fed mechanized farming.  

- Irrigated, small and large farming. 

- Associated activities as gum production. 

 

The farming systems adopted for use in the different regions of Sudan 

- Irrigated farming:  About 92% of all irrigated areas are managed by public 

corporations such as the Gezira and Managil schemes, Girba and Rahad, Blue 

and White Niles. As such, the management of these irrigated areas is dominated 

by civil service from different ministries. The present policy trends are going 

towards decentralization and privatization. 

- Rain-fed semi-mechanised farming: this covers an estimated 14 million feddan 

which has continued to decrease in size over the years due to frequent occurrence 

of drought in the country and increased use irrigation. 

- Rain-fed traditional farming: this sub-sector which includes livestock production, 

gum arabic production, and traditional crop production such as millet, sorghum, 

sesame seeds and groundnut has increased over the years with increasing 

contribution to the agricultural GDP (CBS, 2005). 

Land use in Sudan face many problems such as lack of an adequate policy framework, 

the absence of land use maps of the country, periodic droughts and the interaction of 

socio-economic factors which play a vital role in land management and conversion 

(Moghraby, 2003). 

2.7 Application of Remote Sensing in Forest Inventory 

Sampling is the process of obtaining information by assessing only a proportion of land 

and drawing inference for the whole area. Where spatial information is needed, remote 

sensing offers a suitable of methods and can be considerably increased by applying it for 

land use inventory (Köhl et al., 2006). Local assessments require approaches different 

from regional, national, or multi-national assessments. Thus, remote sensing has become 

a prominent tool for multi-scale forest resources assessment (Franklin, 2001). On the 

other hand, the application of GIS technology in forest management and other fields of 

natural resource management has increased over time (Franklin, 2001; Longley et al., 
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2001). This technology has allowed management and integration of an important quantity 

of spatial and temporal information (Franklin, 2001; Longley et al., 2001). Sensors record 

remotely sensed data from forests and these are processed and interpreted to extract 

resource information, of which there are three levels of detail. The first level refers to 

information on the spatial extent of forest cover, which can be used to assess forest 

dynamics, the second level comprises species information within encompassing forested 

areas and the third level provides information on the biophysical properties of forests 

(Boyd and Danson, 2005). 

The diversity of sensor system instruments available at present and in the future provides 

data with broad to fine spectral resolution, with large to small spatial resolution and other 

characteristics (e.g., multi-directionality) suitable for the quantitative and qualitative 

analysis of forests (Peterson and Running, 1989). A relatively new optical sensor type and 

the imaging spectrometer represent a technological advance in remote sensing, as they 

measure the reflected signal with a very fine spectral resolution (Curran, 1994). Many 

applications of GIS in forestry began to appear in the 1980s in USA. They are one of the 

most significant technological developments for forest and natural resource assessment 

during the past century. This allowed foresters to update forest information in a timely 

manner. Remote sensing provides rapid coverage of large areas, permanent and 

objective records, map-like products, efficiency in time and money and access to 

inaccessible areas (Shao and Reynolds, 2006). Although many applications of GIS in 

forestry have been designed with broad spatial scales, Pernar and Storga (2005) have 

pointed out that GIS can support management and planning for areas as small as             

1 ha, helping to determine operations (silvicultural treatments, replanting, felling and 

others) in each plot separately. 

A successful use of quantitative remote sensing in forestry requires an understanding of 

the spectral properties of the involved vegetation components. The interaction of 

electromagnetic radiation with the components of a forest canopy has to be considered on 

the molecular, cellular, leaf, branch, and canopy level (Goel, 1988; Guyot, 1990; Howard, 

1991). The satellite imagery is an essential component in the development of new tools for 

forest management. The resource information needed for forestry is mainly required for 

two types of management and planning activities, namely strategic (e.g. of forest area, 

timber growth, health and mortality) and operative planning (e.g. harvesting and 

silvicultural treatments) (Jaakkola, 1989). 

Information extraction from remote sensing data can be described in terms of models of 

the sensor, atmosphere, and the scene (Strahler et al., 1986; Franklin et al., 2003). In 
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remote sensing of forests, mapping of the attribute ‘forest type’ (e.g. tree species, age 

class) assumes that the image pixel is completely covered by one forest type and thus, 

many pixels form a forest stand. In this case, image classification would be a suitable 

processing algorithm. Franklin (2005) has stated a general steps for prediction or 

estimation of forest parameters as fallows: 

1. Establish a number of field observation sites in a forest area, 

2. Collect forest condition information at those sites, 

3. Acquire imagery of the sites, 

4. Locate the sites on the image, 

5. Extract the remote sensing data from these sites, 

6. Develop a model relating the field and spectral data, and finally, and 

7. Use the model to predict forest parameters for all forest pixels based on the  

    spectral data. 

The remote sensing data and information for forest and natural resources can collected by 

three methods, round measurement, airborne measurement and satellites devices. 

2.7.1 Ground measurement 

One of the principal limitations of remote sensing instruments on aircraft or satellites is the 

forest canopy obscures the stems (and branches) of the trees when viewed from above. 

This has been an important limitation to their use more generally in forest measurement. 

However, instruments which are positioned on the ground are now becoming available to 

allow remote measurement of the fine detail of individual trees (West, 2009). 

The newest and still experimental methods (ground-based and remote sensing 

instruments) use the reflection of laser light to construct a three-dimensional image of the 

trees in a stand. In the context of remote sensing, laser measurement is often termed 

‘LIDAR’, an acronym for LIght Detection And Ranging; analogous to the more commonly 

known ‘radar’, an acronym for RAdio Detection And Ranging (RADAR), which uses radio, 

rather than light waves (West, 2009). These ground-based and laser measurement 

instruments are clearly showing potential for detailed measurement of tree characteristics. 

However, they will need considerable research development before their use in practice 

for broad-scale in forest inventories (West, 2009). 

Measurement of leaf area index is an important stand parameter, useful to determine how 

much sunlight a stand absorbs and, hence, what the photosynthetic production of a stand 

might be. 



Chapter 2: Remote Sensing and GIS in Vegetation Mapping and Monitoring 

28 
 

Fournier et al., (2003)  have developed a method to measure leaf area index from the 

ground without felling of trees using an instrument considering the straight beams of 

sunlight, coming from any point in the sky above, as ‘pointers’ which are being projected 

through the canopy. Another approach for measuring leaf area index from the ground is to 

take a photograph of the canopy, usually with a wide-angle lens, looking vertically 

upwards from the ground below (West, 2009). 

2.7.2 Airborne measurement 

The method use instruments that carried on aircraft or satellites to cover an area covered 

by over hundreds or thousands of hectares of forests, providing information useful for 

various purposes. This operation of aircraft varies considerably in speed and altitude. 

Examples of these airborne are aerial photography, laser scanning and spectrometry 

(West, 2009).  

2.7.3 Satellites 

Satellites offer one of the most comprehensive forms of remotely sensed information 

(satellite imagery) from forests. Satellites sensor systems may operate passive (radiation 

reflected from the surface of the earth) others active emit signs of microwave (radar). As 

an example, the Landsat satellite series is one used widely for forestry purposes. Landsat 

has a number of satellites launched from time to time. Satellites are owned either by 

private or government organisations, which can provide information which might be useful 

for forest measurement. They include  earth observation systems such as the ALOS 

(Japan), IKONOS (American), IRS (Indian), NOAA-AVHRR (American), Quickbird 

(American), SPOT (French) and JERS (Japan) (West, 2009). Fig. 2.2 illustrates the types 

and dates of some satellites used in forestry.  

 

(Source; Shao and Reynolds, 2006) 

Fig. 2.2 A brief time line and scale of application of major satellite remote sensors useful  
for the collection of forest resources information 
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2.7.4 Applications of models in forestry and remote sensing 

Modeling and simulation methods have a long tradition in the forestry sector, and their 

practical application is well established. Modeling and simulation are essential for the 

analysis of complex dynamic systems, because they are typical for forestry and 

environmental sectors (Köhl et al., 2006). There are basically three different approaches 

used in forest inventory with remote sensing to assess biophysical variables from spectral 

signals provided by optical satellite images (1) statistical (empirical) (2) physically based, 

and (3) various combinations of them (e.g., neural networks), (Stenberg  et al., 2004). 

1. Empirical approaches: The approach is commonly used in regional or national 

forest inventories. The vegetation characteristics of interest are estimated based 

on statistical relationships (regressions) obtained by collecting training data on the 

spectral signatures of a variety of objects. These methods require large sets of 

reliable ground truth data. 

2. Physical approach: The approach is depending upon an understanding of the 

physical laws governing the transfer of solar radiation in vegetation canopy, which 

are formulated mathematically by reflectance models. The reflectance models 

build relationships between the biophysical properties of the vegetation (e.g. stand 

parameters) and the spectral signal. Physically based methods have progressively 

become more and more attractive for the assessment or monitoring of biophysical 

characteristics of vegetation. Opposit to empirical regression, physically-based 

approaches have the advantage that they can take into account effects of varying 

canopy structure, canopy shadow, understorey and soil that all influence the 

radiation measurements. Spectral mixture analysis uses simple reflectance models 

to estimate the fractional cover of major types of materials within image pixels 

(Goel, 1989; Asner et al., 2003). 

3. Other methods (e.g. neural networks):  

2.7.5 Forest inventory in Sudan 

Forests are considered among the most important natural resources in Sudan, where they 

need a recent assessment and monitoring. A number of localized forest inventories were 

conducted in Sudan since 1958. The earliest relatively wide scale inventory conducted in 

1982 by the National Energy Administration (NEA) commissioned to assess the country 

energy requirements and conducted a forest resource inventory using satellite images 

produced by US Landsat 1 Multi-Spectral Scanner (MSS) for the period 1972-1975 (FAO, 

2006). In 1983-1984 the Canadian International Development Agency (CIDA) conducted 
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an aerial photographic mission that covered Blue Nile and Bahr El Ghazal Provinces, 

which are high potential areas, using randomly selected plots to determine volume of the 

tree stands (Thirakul, 1984). 

In 1987 a team from Lund University of Sweden carried out a forest inventory in the 

Eastern Region of Sudan covering an area of 580,000 km2 using Landsat Thematic 

Mapper (TM) data combined with limited field data to map the woody biomass. The 

inventory was carried out as part of the Fuel Wood for Energy Project GCP/SUD036/NET 

implemented by the Food and Agriculture Organization of the United Nations (FAO) and 

the Forests National Corporation of the Sudan (FNC).  

With collaboration between Sudan Reforestation and Anti-Desertification Project (SRAAD) 

and the United States Agency for International Development (USAID), a forest inventory 

was started in 1989 over an area of 72 600 km2 using TM data. The project used both 

image analysis and GIS technology (Anon, 1990). 

The second National Forest Product Consumption Survey (NFPCS) was conducted in 

1995. Then the National Forest Inventory (NFI) started in 1995 and completed in 1998, 

with aim to provide the FNC with basic information on the current state of the country’s 

forest resources. The two surveys were carried out by FNC with full support of FAO and 

the government of the Netherlands. The NFI was applied in the whole of northern Sudan 

part south of latitude 16˚ N except for some inaccessible areas. The inventory covered 

2,608 sampling plots representing some 26,000,000 ha (10.4% of the country area) in 

central Sudan. The inventory project was based on the measurement of fixed area plots 

on a systematic grid throughout the inventory area. The sampling grid used was 10 km by 

10 km with a field plot being established at each grid intersection. The plot size used was 

200 by 100 m, with an east/west orientation, the same as the SRAAD projects (FNC and 

FAO, 1998). The Forest Resources Assessment (FRA) undertaken by FAO in 2000 using 

remote sensing techniques has complemented the results of the NFI and gave a more 

reliable picture of the forest resources of Sudan. However, some tracts of forests have 

been inventoried before e.g. biomass resources east of the Nile (1991), Southern Blue 

Nile and Northern Bahr El Ghazal (1984), parts of Kordofan and Darfur (1990-94), parts of 

Northern Blue Nile (1994), besides the regular inventory of forest reserves under 

management plans.  

Some inventories were also conducted in Sudan as follows 

- World Bank (1979 and1982) conducted in northern states of Sudan. 

- Sudan Energy (1987) conducted in northern states. 
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- Blue Nile Province inventory (1983-1984), which used aerial photography combined 

with randomly laid out ground plots, was not repeated due to the excessive cost. 

- The FAO Africover project 1997: one of the most efficient international efforts in 

Sudan that was started in 1995 for land cover mapping. The project was executed by 

FAO and financed by the Italian Government. 

- National Energy Assessment (2000) in collaboration with the Ministry of Energy and 

Mining. 
- Forestry Outlook Study for Africa (FOSA) (2002). 
- The Sudan Resource Assessment and Development project was established in 1987 

with the aim of forestry inventory and rehabilitation. This project used remotely 

sensed imagery, and produced vegetation maps for some areas in North Kordofan 

State such as Jebel El Dair and Kazgil (Hanfi and Hassan, 1992). 
- During 1981-1982 a project of ‘monitoring wood resources and land degradation in 

Kordofan, Sudan’ was started by Lund University based on remote sensing 

technology for quantitative assessment of woody biomass in arid and semi- arid 

environments (Olsson, 1985). 
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Chapter Three 

Study Area and Research Methodology  

 

3.1 Study Area Description 

3.1.1 Geographical location 

The selected study area is located in North Kordofan State, which is one of the most 

vulnerable areas in the country concerning desertification processes. It is located in 

central Sudan between latitudes 9° 30' and 16° 24' N and longitudes 27° to 32° E. 

Kordofan, which lies largely within the arid zone, covers an area of about 244,700 km2 

(~10% of Sudan area) and has a total population of 2.9 million persons (CBS, 2009a), 

50% rural, 34% urban and 16% nomads with an annual growth rate of 1.45%. 

Administratively the state consists of nine localities, and many of them are frequently 

affected by drought. 

Three selected study areas are located in the gum arabic belt in North Kordofan state. 

The first two areas A and B are distributed along the belt. Area A is located in the north-

east part covering an area of 110483 ha, while area B is located in the south-west a part 

of the gum arabic belt covering an area of 153722 ha. The third area C for conducting the 

forest inventory sampling was selected in Elhemmaria Hashab forest, which is located 

within the gum arabic belt in the North Kordofan state. Elhemmaria Hashab forest covers 

more than 500 km2 (50000ha) and is located between 13°19' N, 30°10' E, it composed of 

plantation stands of Acacia senegal trees (Fig. 3.1). 

3.1.2 Climate conditions  

The study sites are located in the Sahel zone, which refers to an ecological zone situated 

between the Sahara to the north and the Sudan zone to the south. Three rainfall zones 

can be distinguished  

1- Subdesertic Sahel. Rainfall 100 -200 mm/year. 

2- Typical Sahel: rainfall 200- 400 mm/year. 

3- Sudano-sahelian boundary zone: Rainfall 400 -600 mm/year. 



Chapter 3: Study Area and Research Methodology 

33 
 

         

                

   

Fig. 3.1 Location of the study areas: composites BGR (1, 2, 3) ASTER imagery 2007 
 

Rainfall is concentrated during a few summer months (high seasonality) and to relatively 

few occasions (high intensity). The rainy season is from June to October with the highest 

precipitation generally occurring in August. Average rainfall estimated is 250-400 mm (Fig. 

3.2). The length of the rainy season depends on the degree of latitude. It decreases 

steadily towards the north. 

The mean annual temperature varies between 28° and 30°C. The coldest months are 

December and January with mean temperatures of 14.1°C and 13.5°C, and the hottest 

months are April, May and June with an average mean temperature exceeding 30°C 

(Nimer, 2000).   

 

                                        Area A   
 Area B 

 

Area C 

  Republic of Sudan 

North Kordofan State
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  (Source: Elobeid Airport Metrological Station, 2008) 

Fig. 3.2 Rainfall pattern distribution in Elobeid station 

     

3.1.3 Soil and geology 

The solid geology is dominated by three formations of which the most northerly is the 

Nubian series from Upper Cretaceous (Barbour, 1961). It consists of marine sandstones 

interbedded with shales and mudstones. The Precambrian Basement Complex is situated 

to south of the Nubian sandstones from approximately latitude 14˚N and consists mainly 

of ancient igneous and metamorphic rocks. The Tertiary Umm Ruwaba series with 

unconsolidated sand and clayey sand is represented in the south-east corner of the study 

area. 

Where the soils are concerned, in situ formed desert soils dominate the area north of 

latitude 14˚N. The soils are shallow and lack humus, and the fertility is low. The soils 

between latitude 12˚ 30` and 14˚ N consist mainly of sand sheets and dunes, which is 

locally known as "Qoz". The term “Qoz” is often used for these light sand which have a 

low fertility and are extremely permeable to water.  

Further southwards, the soils are sandy and loamy. In the Nuba Mountain area south of 

Elobeid, the Gardud soils are also represented which is a group of non-cracking sandy 

clays. Alluvial soils are also represented in the wadies (seasonal streambeds) all over the 
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area. Average altitudes are ranging from 350 to 500 meters above sea level. Some 

isolated hills are found in the study area such as Jebel Kordofan and Jebel Korbag.  

3.1.4 Description of vegetation cover 

The ecological zones in Sudan were classified by Harrison and Jackson (1958) according 

to rainfall characteristics into desert, semi desert, low rainfall savannah woodland, high 

rainfall savannah woodland, flooded area and mountain vegetation (Appendix 1). 

According to this classification, most of North Kordofan State falls in the semi-desert zone. 

North of the latitude 14˚N, in the semi-desert zone, the woody vegetation is sparse and 

denser which is found only in the wadi systems. Common tree species are Acacia 

mellifera (Kitr), Acacia tortilis (Seyal), Commiphora ssp., Balanities aegyptiaca (Hejlej) and 

Lannea humilis (lyon) (Fig. 3.3). Leptadenia pyrotechnica (Marakh/Kursan) is a shrub 

species which grows on sandy soils throughout extensive areas. In the South part, 

vegetation is dense and higher in grass and tree savannah. In these areas shrubs and 

trees alternate with area of open grasslands (Fig. 3.3).  

According to Harrison and Jackson (1958), Acacia senegal species occurs in the low 

rainfall woodland savannah zone, which extends in a form of a belt covering the east and 

west parts of Darfur and Kordofan regions, Western White Nile and central clay plains in 

central and eastern Sudan (Fig. 1.2). In central Kordofan this species grows in association 

with Faidherbia albida (Haraz) and Combretum glutinosum (Habil). The understory cover 

is composed mainly of Cenchrus biflorus (Haskaneet), Aristida spp. (Umsimema), and 

Boscia senegalensis (Kursan). The above combination of this overstory and understory 

covers provides a good protection of the inherently impoverished sandy soils from wind 

and from water erosion and consequently from desert encroachment. In addition, there is 

a strong belief by gum arabic producers that this interaction of understory cover enhances 

gum arabic production (Adam, 2005). The main grasses in the area include annual 

grasses namely Echinochloa colonum, Aristida mutabilis, Dactyloctenium aegyptium, 

Tribulus longipetalous and Eragrostis termula. Beside these, there are annual herbs like 

Cassia senna, Euphorbia scordifolia and Euphorbia aegyptiaca, Zornia glochidiata, 

Gynandropsis gynandra, Farsetia longisiliqua, Cassia tora, Trichodesma africanum, 

Trichodesma amaranthus, Centrostachys aquatica, Pappalia lappaceae, Flueggea virosa, 

Cymbopogon proximus, Commicarpus verticillatus and Sesamum alatum.  
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Fig. 3.3 Vegetation cover types in the study area (Elnuhud). (A) A dense forest dominated 
by Lannea humilis, (B) forest garden of Acacia senegal. (Photographed by the author,  
December 2008) 
 

3.1.5 Land use 

The semi-desert is used by several herdsmen, predominantly camel-owners. The Qoz is 

also used for grazing by herdsmen, especially the northern and the southern parts, while 

the centre is inhabited by settled cultivators. Traditional rain-fed agriculture dominates 

other activities. Crops cultivated are millet, sorghum, water melon and sesame (Fig. 3.4). 

Irrigated cultivation is practiced in Kherian1 and depressions in the north and north-west of 

Bara. Therefore the land use pattern in the Kordofan region can be divided into three 

types: 

- Crop production: mainly groundnuts, millet, sorghum and sesame. 

- Animal production mainly goats, sheep, cattle and camels 

- Forest production: with emphasis on production of gum arabic from Acacia 

senegal. 

The gum arabic land use system in North Kordofan is a good example for achievement of 

environmental quality and economic development simultaneously (Pearce, 1988). 

Nevertheless, at the beginning of the 1990s some authors suggested that the system is 

moving towards a collapse (Larson and Bromley, 1991; Freudenberger, 1993). Gum 

production. Accordingly the conservation of the gum belt, is affected by a complex  

 

1Kherian is seasonal water courses used for farming 

A B
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combination of climatic (physical), socioeconomic, technological and institutional factors. 

Traditional agriculture is the most important form of land use. It consists of various types 

of sedentary cultivation and pastoralism. Grazing of camels, sheep and goats is another 

viable form of land use in the desert and semi-desert, but some cultivation are is possible 

along stream-beds with flooding areas (Table 3.1 and Fig. 3.4). 

Table 3.1 Estimation of livestock statistics in North Kordofan State 2007 

Locality  Cattle Sheep Goat Camel Total
Sheikan  269,213 1,392,262 450,643 353,910 2,466,028
Bara 4,383 1,067,098 657,411 228,734 1,957,626
Umm Rwaba  353,105 645,754 580,535 180,613 1,760,007
Sodari 563,344 686,972 265,084 362,111 1,877,511
Garat Elsheikh 1,251 741,575 307,498 215,410 1,265,734
Geibeish 105,678 1,631,773 489,532 709,834 2,936,817
Wad Banda  42,271 326,354 108,784 20,281 497,690
Elnuhud 21,136 2,132,184 1,066,092 121,686 3,341,098
Abu Zabad 52,839 435,139 346,354 10,140 844,472
Total 1,413,220 9,059,11 4,271,933 2,202,719 16,946,983

      (Source: Ministry of Agriculture and Forestry, North Kordofan State, Sudan, 2008) 
 

 

 

 

 

    
Fig. 3.4 Land use types in the study area (Elkhawi). (A) Traditional agricultural with  
sorghum, (B) livestock composed of camel herd. (Photographed by the author,                  
January 2008) 
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3.2 Material and Methods  

The study integrated data from different sources and used different methods and 

approaches to analyse the long term land use land cover changes and trends during the 

previous three decades in the gum arabic belt in Kordofan state. The approach includes 

imageries from different satellites (Landsat and TERRA-ASTER), multi-temporal dates 

(MSS 1972, TM 1985, ETM+ 1999 and ASTER 2007), fieldwork surveys and forest 

inventory application. Object-based classification was applied as a newly approach of 

image classification in semi-arid areas. Also additional secondary data such as socio-

economic and climate data were used to analyse the driving forces and effects of physical 

factors in the study area (Fig. 3.5). Field work has been carried out during the dry season 

in 2007 supported by classified maps derived from unsupervised classification of TERRA-

ASTER imageries covering the study areas.  

 Varieties of softwares were employed in the present study following the different 

requirements of the work. The ERDAS (Earth Resources Data Analysis System) Imagine 

version 9.1 and ENVI (Environmental Visualization) software version 4.5 were used for 

image processing, masking and classification. Meanwhile, ArcGIS was employed for 

database development, spatial data analysis, producing thematic maps and extracted 

spectral reflectance. Microsoft Excel and SPSS were used for statistical analysis. 

Definiens Developer (eCognition®) version 7.0 software was also applied for 

segmentation and classification of some imagery. 
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Fig. 3.5 Diagram of methods and materials used in the research (developed by author) 
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3.2.1 Remotely sensed data 

The suitable data period for interpretation of most of the forest areas in Sudan is the dry 

season (October - May). This due to the some difficulties to find cloud free data and also 

due to the reflectance of agriculture and similar areas disturbing the delineation of forest 

cover as the spectral signal constituting of a mixture of green understory. Holmgren and 

Thuresson (1998) recommended that early summer is usually an optimal recording date, 

taking into account also the high sun angle at this time of the year. Therefore, all images 

were acquired in dry seasons in cloud free conditions as detailed in table 3.2 and 3.3. 

3.2.1.1. Landsat satellite imagery  

Some of the remote sensing data used for the research was acquired from the Landsat 

archive data at the EROS Data Center. These data sets were taken by Landsat 1 (MSS), 

Landsat 5 (TM) and Landsat 7 (ETM+) and were freely downloaded from the Global Land 

Cover Facility (GLCF) (http://glcf.umiacs.umd.edu/index.shtml). The approximate scene 

size is 185 x 185 kilometres. The data received from the GLCF was pre-processed to level 

L1G (geo-referenced).   

Table 3.2 Characteristics of Landsat satellite imagery 

Instrument MSS TM ETM+ 

Landsat  Landsat 1 Landsat 5 Landsat 7 

Acquisition date 09.11.1972 19.11.1985 19.11.1999 

Path/raw 188/51 (WRS-1) 175/51(WRS-2) 175/51 (WRS-2) 

Spectral bands no. (2VS,  2NIR)  (3 VS, 1 NIR, 2 MIR), 

(1TIR) 

(3VS, 1NIR, 2MIR), 

(2TIR), (Panchromatic) 

Ground resolution 57x57*m (30x30), (120) m (30x30), (60), (15) m 

Dynamics range (bits)  7 bits 8 bits 8 bits 

* Resampled to (57x57) from (79x79) m at the EROS Data Centre 

3.2.1.2 ASTER satellite imagery    

The ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 

sensor is a high spatial resolution multi-spectral imagery based on the Terra satellite 

which was launched in December 1999 (Yamaguchi et al., 1998; Lillesand et al., 2008). 

ASTER is a cooperative effort between NASA and the Japanese Ministry of Economy and 

has been designed to acquire land surface temperature, emissivity, reflectance, and 

elevation data. An ASTER scene covers an area of approximately 60 km by 60 km and 

data is acquired simultaneously in three spectral regions, namely the visible and near 
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infrared (VNIR), shortwave infrared (SWIR), and thermal infrared (TIR) (Table 3.3). 

ASTER L1B registered radiance at the sensor also provides set of higher-order level 2 

data products, including atmospherically corrected surface radiance and reflectance data 

as well as geo-referencing to the WGS84 datum and Universal Transverse Mercator 

(UTM) projection (Abrams, 2000) (http://asterweb.jpl.nasa.gov/). Three ASTER scenes 

were acquired for 2006 and 2007 representing a L1B product with surface reflectance 

data (Table 3.3). Aster imagery provides a better spatial resolution (15x15 m) and spectral 

resolution (14 bands) than TM and ETM+. In this study only the three first bands (VNIR) 

were applied. 

Table 3.3 Characteristics of TERRA satellite imagery used in the study 

Satellite Sensor Bands Spectral 

Range (µm) 

Scene Size Ground 

Resolution 

Acquisition 

date 

 

ASTER 

VNIR 1 - 3 0.52 – 0.86 

60x60 Km 

15 m  19.10.06 a 

SWIR 4 - 9 1.60 – 2.43 30 m 21.10.06 b 

TIR 10 - 14   8.12 – 11.65 90 m 29.03.07 c 

a study area A,  b study area B c study area C 

 

3.2.2 Field data collection 

Field data collection is important in remote sensing (Congalton et al., 1999). Lillesand, et 

al., (2008) stated that field data serve three purposes. Firstly, field data can be used to 

verify, to evaluate or to assess the results of remote sensing investigations. Secondly, 

field data can provide reliable data to guide the analytical process, such as creating 

training fields to support supervised classification. Thirdly, field data provide information to 

model the spectral behavior of specific landscape features. Two kinds of information were 

collected including measurements of the ground conditions at a specified place (land use 

and land cover, species parameters) and the location and size (GPS, elevation) of the 

samples. Unsupervised classification of ASTER imagery was used to establish sound 

sites for the field work and as GCPs. For the geometric rectification of the imagery, 

numbers of training site were selected. Four types of data were gathered including, 

remote sensing data (GCPs), forestry inventory data (sample plots), ancillary data and 

socio-economics data. 

3.2.2.1 Ground truth survey 

The ground reference points were measured during the field visit to the study areas in the 

period from October 2007 to February 2008. They were selected based on pre-classified 
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maps for the imagery. The coordinates for each reference point were recorded using 

hand-held GARMIN eTrex Venture HC Global Positioning System (GPS). Information on 

land use and cover was recorded too.  

A sound sampling has to consist of samples which represent all the variations within each 

category and has to allow for the acquire sites of a sufficient number of samples in each 

category (Roger, 2005). A road sampling was used in recording 277 and 157 training 

points for study area A and B, respectively (Fig. 3.6). This technique was selected since 

an even distribution of the data as well as representation of the land use and land cover 

types in the study areas was desired. The vast area to be covered and the limited amount 

of time available in the field had a great impact on the chosen sample technique. The 

GPS points were collected along trafficable roads. Often limitations in accessibility 

affected the measurement. 50% of collected ground truth (training samples) was used in 

image classification, while the rest was used in the accuracy assessment (Appendix 3). 

3.2.2.2 Forest inventory data 

The forest inventory was carried out during the period of field work in Elhemmaria Hashab 

forest (study area C), which are located within the gum arabic belt in the North Kordofan 

state. The data was collected by systematic random sampling method based on                       

a constant distance of 100 m between the sample plots and 200 m between survey lines. 

Inventory information about the parameters of Acacia senegal were collected by 

measuring tree parameters such as diameter at breast height (DBH, cm), tree height (H, 

m), crown diameter (Cr.D, m), basal area (BA, m2), volume (V, m3), crown area (m2) and 

stand density (number of trees per sample plot) (Appendix 4). The coordinates were 

recorded in the centre of each plot using GPS. 
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Fig. 3.6 Location of the training field samples in the study areas A and B (ASTER image 
BGR; 1, 2, 3)  
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The tools used in the inventory were GPS (with accuracy ≤ 1 m), calliper, haga distance 

and diameter tapes. The data were collected  by 100% enumeration of all trees with DBH 

≥ 7 cm in the sample plot using circular sample plots with an area of 0.1 ha (4.44 pixels of 

ASTER). The DBH was recorded for each single-stemmed tree or as a mean for the multi-

stemmed tree. The measurement of the crown diameter of the trees was done by 

measuring as an average of the two perpendicular radii. The height was measured for the 

three nearest trees to the centre of the sample plot. The total number of sample plots was 

47. The collected data was used to calculate the average wood volume, average basal 

area, coverage crown area and average number of trees per hectare (density). Finally, the 

tree volume and basal area was calculated using equations 1 and 2, respectively. The 

used form factor (ff) for Acacia senegal is 0.4 (ELDuool, 2000; FNC and FAO, 1998). Plot 

volume was calculated as the sum of individual tree volumes based on equation 2 and 

then converted to hectares.  

2db = π*
4
                      (1) 

 
2 dV=  π* *h*ff

4  
         (2) 

 
Where: 
  b Tree basal area 

V  Volume  

d Diameter at breast height 

h Tree height 

ff Form factor (=0.4) 
 

Spectral feature extraction 

To reduce mis-location error (error of GPS), the average of  reflectance values in each 

band was calculated from a 3x3 pixel windows  and 2x2 pixel windows) centered on the 

field plot (Foody et al., 2001, Hall et al., 2006) (Fig. 3.6). These were used in the 

calculation of the vegetation indices and ASTER bands (VNIR). Calculation of vegetation 

indices and ASTER bands ratios was performed using models generated in ERDAS 

Imagine and ArcGIS 9.1 as follows:   

1- Conversion of GPS points to shape file. 

2- Conversion of the shape file to polygons (Fig 3.8). 

3- Conversion of the shape file to polygons to 3x3 or 2x2 pixel window with the    
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     image (Fig. 3.8). 

4- Extraction of the reflectance for each sample plot from the ASTER image. 

 

       

 

                                        

                            

 

 

        3x3 pixel window        2x2 pixel window  

       Field plot center                image pixel (15x15m) 

Fig. 3.7 methods of spectral reflectance extraction from sample plot 

 

                                         

                                                                                   Sample plot centre 

Fig. 3.8 (A) 2x2 pixel window polygons (B) 2x2 pixel window image around the sample 
plot centres 
 

The extracted DN using these two approaches of extraction was compared. 

The forest field data were integrated with extracted remotely sensed data to construct 

relationships between the measured forest parameters and the satellite data. The 

positional accuracy for the sample plots was related to the accuracy of the GPS which is ≤ 

1 m. 

 

 

   

   

   

   

   

   

A B
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3.2.3 Ancillary data 

Ancillary data were collected from different reports to facilitate the research process. 

Metrological data (rainfall), reports and records about the gum arabic production in the 

study area were collected from the Central Bureau and ministries in North Kordofan state. 

3.2.4 Socioeconomic data 

Data on the driving factors of land use land cover in the gum arabic belt in Kordofan state 

were collected by interviewing gum arabic producers (farmers) and forest officers as key 

informants. The interview focused on the land use process and the history of gum 

production during the in the gum arabic belt. 

3.2.5 Image pre-processing 

The image pre-processing of remotely sensed data is essential for image classification, 

and in the direct linkage between the data and biophysical phenomena and features. This 

requires several processing steps for better identification of the image features (Akhter, 

2006). These steps include atmospheric correction and geometric correction.  

3.2.5.1 Atmospheric correction 

Application of atmospheric correction is essential for the current study for two reasons. 

Firstly, the study compares the relationship between field-based data and spectral 

information of a time series of the imagery. Secondly, the imagery was acquired in dates 

with different atmospheric condition and collected by different types. Removing 

atmospheric effects involves calibration and atmospheric correction. Calibration adjusts 

the image by converting raw radiance values of each pixel to top-of-atmosphere absolute 

(radiance) or relative (reflectance) values. Atmospheric correction then adjusts these 

values to ground radiance or reflectance at each pixel based on sun-ground-sensor 

geometry and atmospheric composition. 

Converting digital number to radiance: 

Digital number (DN) is referring to the quantised and calibrated values for individual pixels 

(Stellingwerf and Hussin, 1997). Formally the pixels were presented only in units of in-

band radiance L (m Wcm-1sr-1) or in spectral radiance Lλ (m W cm-1sr-1 μm-1) (Markham 

and Barker, 1986).  The post-calibrated values in DN in ETM+ and TM and MSS image 

series were converted to spectral radiance Lλ (m W cm-2sr-1 μm-1) using the equations 3 

and 4 (Markham and Barker, 1987; Price, 1987; Irish, 2004). The values in equation 3 and 

equation 4 were retrieved from the meta data of the respective satellite data. The digital 
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number (DN) values of the geometrically corrected TM and ETM+ data were converted to 

at-satellite radiance using equation 3, while equation 4 used for MSS. 

    

L m ax - L m inL m in *D N
D N m ax

L λ λ
λλ

⎛ ⎞= + ⎜ ⎟
⎝ ⎠                                                 (3) 

     λGAIN*DN +BIASLλ =
                           (4)

 

Where: 

Lλ   Spectral radiance (i: band) 

Lmaxλ  Maximum spectral radiance (mW cm-2sr-1 μm-1) 

Lminλ  Minimum spectral radiance (mW cm-2sr-1 μm-1) 

DN  Absolute calibrated digital number 

 

Converting at-satellite radiance to surface reflectance  

At-satellite radiances were then converted to surface reflectance by correcting both solar 

and atmospheric effects. At-satellite radiance was converted to surface reflectance using 

FLAASH (Fast Line-of-sight- Atmospheric Analysis of Spectral Hypercubes) module in 

ENVI 4.5, which provides the most accurate means of compensating atmospheric effects 

considering the elevation, water vapor, and aerosol distribution properties (Alder-Golden 

et al., 1999). The method based on observations stated by Kaufmann et al., (1997), of a 

nearly fixed ratio between the reflectance for pixels at 660 nm and 2100 nm (Definiens, 

2007). Thus, the atmospheric correction module was applied to the full image in order to 

estimate the ground reflectance of each pixel. 

FLAASH is one of many methods of performing atmospheric compensation, that retrieve 

spectral reflectance from multi-spectral and hyperspectral radiance imagery and use 

radiometric active transfer models like the Moderate Resolution Atmospheric 

Transmission (MODTRAN) to estimate and remove atmospheric effects from calibrated 

data (ITT Visual Information Solution, 2009, Schmidt et al., 2009). FLAASH is atmospheric 

correction tool that corrects wavelengths in the visible through near-infrared and 

shortwave infrared regions, up to 3 µm. 

Input in the FLAASH module includes the average elevation of the study area, scene 

centre coordinates, sensor type, flight date and time, information about aerosol 

distribution, visibility, and water vapor conditions (Fig. 3.9). The input images for FLAASH 



Chapter 3: Study Area and Research Methodology 

48 
 

were radiometrically calibrated to radiance images in band-interleaved-by-line (BIL) 

format. Results showed that pixel spectral resolution is improved with FLAASH and 

creates an image of retrieved surface reflectance, with 16 bit instead of 8 bits (Schmidt et 

al., 2009). 

 

 
 
Fig. 3.9 FLAASH atmospheric correction model input parameter dialog 

FLAASH started from a standard equation for spectral radiance at a sensor pixel ‘L’ that 

applies to the solar wavelength range (thermal emission is neglected) and flat Lambertian 

materials or their equivalents. The equation is as follows (Adler-Golden et al., 1999):  

e
a

e e

BρA ρL = + +L
1-ρ S 1-ρ S
〈 〉 〈 〉           (5) 

Where: 

ρ  Pixel surface reflectance 

eρ  An average surface reflectance for the pixel and a surrounding region 

S Spherical albedo of the atmosphere  

aL  Radiance back scattered by the atmosphere 

A and B are coefficients that depend on atmospheric and geometric conditions but 

not on the surface 
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The first term in equation 5 corresponds to radiance that is reflected from the surface and 

travels directly into the sensor, while the second term corresponds to radiance from the 

surface which is scattered by the atmosphere into the sensor. After the water retrieval is 

performed, equation 6 solves the pixel surface reflectances in all of the sensor channels. 

The solution method involves computing a spatially averaged radiance image Le, from 

which the spatially averaged reflectance Le is estimated using the approximate equation:  

     
( )A+B

1 S
e

e a
e

L L
ρ

ρ
⎛ ⎞

≈ +⎜ ⎟−⎝ ⎠
                                  (6) 

      
FLAASH requires input data to be floating-point values in units of μW/cm2 * nm* sr. 

Equation 7 was used to convert radiance data into these units.  

 

( )2
 

integer radiance image  = floating point radiance image μW/(cm •nm•sr)
Scale factor

⎛ ⎞
⎜ ⎟
⎝ ⎠

      (7) 

The scale factor was provided in an ASCII file for all bands using the radiance scale factor 

for each band (Fig. 3.10). 

 

 
 
Fig. 3.10 Radiance scale factor dialog 
 

3.2.5.2 Geometric correction 

Geometric correction is a process of warping the image to fit a planimetric grid or map 

projection. This process is crucial in remote sensing and change detection. Accurate 

geometric fidelity is particularly important for studies of change detection analysis and also 

for studies which incorporate field information. To overcome this problem, the RMS error 

between any two dates should not exceed 0.5 pixels. This is typically accomplished by 

performing an image-to-image registration. Geometric correction is not necessary in this 

research for several reasons: (1) the atmospheric condition on the image acquisition date 

was very pleasant which will ensure a more satellite orbit and good imaging quality,  
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(2) the elevation in the research area is relatively flat terrain and (3) Imagery used in this 

research was geo-corrected at LG1 level for Landsat imagery (MSS, TM and TM+) and at 

LB1 level for ASTER image (geometrically radiometrically corrected). 

Image to image registration 

Many applications of remote sensing image analysis require two or more scenes of the 

same geographical region, acquired at different dates, to be processed together. Such 

situation arises for example when changes are of interest, in which case registered 

images allow a pixel by pixel comparison to be made. In order to compare the radiometric 

differences between images acquired at different times for the same location, precise 

image registration between different times is needed. Jensen (1996) suggested that a root 

mean square error (RMSE) of 0.5 pixel is the maximum tolerable error for image 

registration in change detection. 

The geometrically radiometrically corrected ASTER image was used as the master 

imagery from which all other images were rectified through image-to-image registration to 

the Universal Transverse Mercator Projection (UTM / zone 35 WGS 84) using a first-order 

polynomial transform. 

In image co-registration, 7-20 GCPs were well distributed and a nearest neighbour 

resampling method was applied by the image-to-image registration technique in ERDAS 

Imagine. The root mean square error (RMSE) ranged from 0.3-0.5 pixel for each 

registered image revealing a higher sufficient precision of rectification. 

3.2.6 Masking of residential areas 

Before performing supervised classification for the multi-temporal dataset, a mask was 

created by subset to exclude residential areas (villages) from the data in the two areas A 

and B, which are noisy disturb of and can create spurious results in the classification 

(Table 3.4). Some names of the masked villages were presented in Appendix 5. Without 

the delineation of the image mask (e.g. villages) and exclusion from the analysis, the 

results would have less significance (Holmgren and Thuresson, 1998). To improve the 

results of classification, Dafalla (2007) recommended masking out the residential areas, 

due to the similarity of the spectral signature of building material (straw) of the villages and 

the dried vegetative areas. In addition to the presence of different types trees in the 

villages, which can lead to miss-classification of the image.  
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Table 3.4 Areas and number of masked villages  

Year 1972 1985 1999 2007 
 Study area A 
Number of villages 44 51 52 52 
Total area (ha) 577.0 743.2 1424.4 1911.9 
(%) for study area 0.52 0.67 1.29 1.73 
 Study area B 
Number of villages 35 39 39 44 
Total area (ha) 842.4 1024.1 1225.6 1500.9 
(%) for study area 0.54 0.67 0.79 0.97 

 

3.2.7 Image classification 

An important part of image analysis is the identification of groups of pixels that have 

specific spectral characteristics and to determine the various features or land cover 

classes represented by these groups (Lillesand et al., 2008).  

Digital image classification is the process of sorting all the pixels in an image into a finite 

number of individual classes based on the spectral information and characteristics of 

these pixels. The classification is resulting in a classified image that is essentially              

a thematic output of the original image. Remote sensing image data was classified by 

maximum likelihood classification (MLC) (hard classification approach) and object-based 

classification (soft classification approach). 

3.2.7.1 Maximum likelihood classification 

This type of classification is exclusively based on spectral properties calculated on a pixel 

basis. The maximum likelihood classification algorithm requires training areas to be 

identified for every class. These training areas were chosen to represent the spectral 

behaviour within every class. Training areas were taken for the following land use and 

land cover classes: (1) bare and farm land, (2) grass and bush land, (3) forest dominated 

by Hashab and (5) mixed woodland (Table 3.5).  

Information classes 

Information classes are the categories of interest to the user of the data (Campbell, 2002). 

Every category corresponds to a specific type of ground cover or feature to be extracted 

from remotely sensed data (Gao, 2009). Each feature on the earth's surface records its 

unique signature in a satellite sensor. This provides opportunities for discriminating 

between different objects on the earth's surface.  
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To derive land use and land cover information, the four land use land cover classes were 

adopted for image classification based on the authors’ a priori knowledge of the study 

area and the visual interpretation. The masked residential areas were added as fifth class.  

Some difficulties were observed when spectrally separating between the farmlands and 

bare lands and between grass and bush lands in the study area from images acquired in 

the dry season, Therefore, the respective two classes were combined into one single 

class: bare and farm land class and grass and bush class. The aim of this study based on 

the analysis of the major land use and land cover classes within the study area, and the 

need to consistently discriminate land use land cover classes using images acquired with 

different sensors, with different spatial resolutions and at different dates. 

Table 3.5 Image interpretation classes used in classification 

Class Name Description 
1 Bare and farm land area dominated by growing cropping field, fallow fields 

and Bare soils 
2 Grass and bush land  these are areas dominated by grasses, herbs and 

pasture 
3 Forest dominate by 

Hashab trees  
areas predominately forest by Acacia senegal tree 

4 Mixed woodland areas dominated by scattered trees  and shrubs other 
than Acacia senegal  

5 Residential area villages and inhabited areas 
 

Spectral classes 

A spectral class is defined as a cluster of pixels which are characterised by a common 

similarity in their DNs in the multi-spectral space (Gao, 2009). Whether a group of pixels 

can be regarded as one cluster is subjective, dependent on the specification of spectral 

distance among these pixels. If the distance between a pixel and a group of pixels falls 

within the specified threshold, this pixel is considered a part of that cluster. 

In this research spectrally homogeneous classes were initially derived from remotely 

sensed data using an unsupervised classification algorithm. Based on the results of the 

unsupervised classification, on ground data and the author’s knowledge of the study area, 

clusters of pixels representing the land use land cover classes were selected as training 

samples and their spectral response patterns were subsequently generated. The class 

separability analysis was then carried out by computing the NDVI (Singh et al., 2001) (Fig 

3.11). Finally the images were classified by a Gaussian maximum likelihood per pixel 

classifier using the spectral pattern which was derived and modified from spectral 

separability of the training areas.  
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Fig. 3.11 Spectral signatures for the land use land cover types derived from ASTER image  
of 2007 for stud area A (spectral reflectance vs ASTER bands) 
 

3.2.7.2 Object-based classification  

Object-based image classification, which is based on fuzzy logic, allows the integration of 

a broad spectrum of different object features such as spectral values, shape and texture. 

Such classification techniques, incorporating contextual and semantic information, can be 

performed using not only image object attributes, but also the relationship among different 

image objects. In this approach a two-step process is involved, (1) segmentation of the 

imagery into discrete objects, followed by (2) classification of those objects (Lillesand et 

al., 2008). 

3.2.8 Classification accuracy assessment 

Accuracy was determined empirically by selecting a sample of pixels from the image and 

checking their labels against classes determined from reference data. The percentage of 

pixels from each class labelled in the image correctly by the classifier was estimated as 

well as the proportion of pixels from each class erroneously labelled into every other 

class. These results were expressed in tabular form refined to as the 'error matrix' 

(Lillesand et al., 2008)  

According to Guerschman et al. (2003) the land use lands cover classification accuracy 

affected by:  

- Temporal resolution - number of images and the combination of them.  

- Categorical resolution - number of land cover classes  

- Spectral resolution - using a few spectral bands rather than all bands. 
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3.2.9 Change detection 

Post-classification comparison (change detection) of the imagery was applied to 

determine the changes in land use and land cover that had occurred in the study areas A 

and B over time. The all imageries were classified independently.  

Post-classification is most common approach used for monitoring land use land cover 

change since it provides more useful information on initial and final land covers types in           

a complete matrix of change direction (Campbell 2002; Fan et al., 2007; Singh 1989). In 

the change detection application, the magnitude, rate and nature of the land use land 

cover change and conversion and change map were derived as well. 

3.2.10 Data analysis methods  

3.2.10.1 Land use land cover change analysis 

To determine the rate of land use land cover change, the study period 1997-2007 was 

divided into three sub-periods and the land use land cover changes of the three sub-

periods were compared. The first sub-period was from 1972 to 1985, the second sub-

period was from 1985 to 1999, and the third period from 1999-2007. The comparative 

analysis in land use and land cover change focused on the three sub-periods. The spatial 

distribution of the average (annual) rate of land use land cover change between two 

periods was computed by a slight modified formula used by Long et al. (2007):  

       1 2
1 2

1

( ) *100 /( )A A T T
A

⎡ ⎤−
Δ = −⎢ ⎥

⎣ ⎦
                                                  (8) 

              

Where: 

∆  Average annual rate of change (%) 

A1 Amount of land cover land use type in time 1 (T1) 

A2 Amount of land cover land use type in time 2 (T2) 

 

3.2.10.2 Regression analysis 

Regression analysis is a statistical procedure used for the modelling and analysis of 

numerical data comprising values of a dependent variable (response variable) and one or 

more independent variable(s) (explanatory variables) (Ustin, 2004; Lesschen  et al.,2005). 

Regression analysis has become one of the most widely used statistical tools for 

analysing multi-factor data (Chattefunee and Hadi, 2006). Regression was calculated by 

SPSS software using statistical modelling of the relationship between the forest variables 
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and remotely sensed ASTER data (Ardö, 1992; Foody et al., 2003). The forms of linear 

and non-linear equations examined in the current study were highlighted in table 3.6. In 

non-linear regression analysis several equation forms were examined (e.g. logarithmic, 

polynomial-quadratic, polynomial-cubic, power, exponential and inverse). 

 

Table 3.6 Various forms of regression equations examined in the study 

Equation name Equation  
Linear Y = b0 + b1X 
Logarithmic Y = b0 + b1ln(X) 

Exponential 1
0 ( )b XY b e=  

Polynomial-quadric Y = b0 + b1X + b2X2 
Polynomial-cubic Y = b0 + b1X + b2X2 + b3X3 
Power 1

0
bY b X=  

Inverse  0 1 /Y b b x= +  
 

Where: 

Y  Tree parameter  

b0 A constant 

b1 … n  Regression coefficient 

X  Independent variable (spectral reflectance at specific band) 

ln  The natural log base 

e  Base e logs 

Model test and selection  

There are numerous possibilities to measure model precision and performance. In order 

to assess goodness of the model some tests were implemented. The models were 

examined quantitatively using statistical tests including coefficient of determination (R²), 

root mean square error (RMSE) and model bias (e and e%) (Equations 9 -12). 

The mean residual (e), a measure of average model bias describes the direction 

magnitude, while the root mean square error measures the model precision. The absolute 

mean residual measures the average error associated with a single prediction. The root 

mean square error based on the residual sum of square, which gives more weight to the 

larger discrepancies (Gadow and Hui, 1999). 
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1- Coefficient of determination (Weisberg, 2005)           
n

2
i i

2 i=1
n

2
i

i=1

(y - y )
R = 1 - 

(y -y)

∧

∑

∑
          (9) 

2- Root mean square error (Gadow and Hui, 1999)  

n
2

i i
i=1

(y - y )
RMSE  =  

1n

∧

−

∑
      (10) 

3- Mean bias (%) (Gadow and Hui, 1999)  
n

i i
i=n

1e = (y - y )
n

∧

∑                      (11) 

       ee%= *100
y

                            (12) 

 

Where  iy
∧

is the modeled value, iy is the observed value, y  is the mean of the observed 

values, and n is the number of tree parameters in the test dataset.  

Model validation 

Model validation comprises ‘‘procedures, in which a model is tested on its agreement with 

a set of observations that are independent of those observations used to structure the 

model and estimate its parameters” (Shugart, 1984). Before the construction of the 

models ten sample plots were randomly selected out from 47 sample plots to be used for 

models validation (Weisberg, 2005). The validation was tested by using plot scatter for 

residuals between values of the two variables for each (observed vs predicted) and outlier 

analysis using confidence limits intervals. 

3.2.10.3 Paired samples t-test 

The paired samples t-test compares the means of two variables. It computes the 

difference between the two variables for each case (Hasenauer, 2006). Two hypotheses 

were tested (no significant or significant) between the means of the two variables. The test 

was performed for the extracted reflectance using two approaches (2x2 and 3x3 pixel 

window) and for the land cover land use results from application of NDVI stratification and 

maximum likelihood classifications. For t-test, the mean differences should be normally 

distributed, therefore the error distribution was checked before running the test. 
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Chapter Four 

Multi-temporal and Change Analysis of Land Use Land Cover  
in the Gum Arabic Belt in Kordofan  

 

4.1 Introduction 

The study uses multi-temporal imageries to monitor the dynamics of vegetation cover in 

sub-regional scale in gum arabic belt in Kordofan. Therefore comparisons of land use land 

cover classification using multi-temporal datasets are often found to improve the accuracy 

of classification (Chen et al., 2008). This offers more opportunities for complete vegetation 

description than could be achieved with only single-date imagery. The discrimination of 

the vegetation dynamics is based on their characterisation in the dry season. The study 

was conducted in two locations (area A and area B) covering the south and north parts of 

the gum arabic belt. In this section results of image analysis as obtained from the hard 

classification procedure of supervised classification and NDVI categorisation are 

presented. 

4.2 Categorisation of Land Use land Cover in Gum Arabic Belt Using NDVI         

The remotely sensed data used in the categorisation of land use land cover were NDVI 

data created from ASTER (2007), ETM+ (1999), TM (1985) and MSS (1972) imageries of  

subset (35x35 km) in area A (Fig. 3.1). Each land cover type has different spectral 

characteristics for absorption and reflection of light. With understanding of the reflectance 

characteristics and some ground observations, it is possible to use remotely sensed data 

to make inferences about the types of land cover land use.  

The stratification procedure is based on the Normalized Difference Vegetation Index 

(NDVI), which is a ratio of the amounts of reflectance in the near infrared (NIR) and red 

(R) portions of the electromagnetic spectrum, calculated using the formula (Tucker, 1979; 

Jensen, 1996): 

NDVI = (NIR – R) / (NIR + R) 

In order to address the differences between sensors in retrieved surface reflectance 

(Goetz, 1997), each NDVI was calculated from atmospherically corrected images from the 

land surface reflectance in the visible (R) and infrared (IR) wavelengths. The spectral 
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contrast between the visible red and the near infrared is an important feature captured 

with the NDVI. 

The use of the NDVI is widely known and recognised (Jensen, 1996; Fung and Siu, 2000). 

A previous study on time series analysis found that NDVI gives good results when 

correlated with LAI (Xavier and Vettorazzi, 2004). NDVI was demonstrated to be an 

effective index to quantify the concentrations of green leaf vegetation (Jensen, 2000) and 

to identify where plants are thriving and where they are under stress (i.e., due to lack of 

water) (John and David, 1999). Many research works were conducted for using NDVI in 

vegetation and land use analysis (Nemani et al., 1993; Tucker, 1979; Fung and Siu, 

2000). The Normalized Difference Vegetation Index (NDVI) is preferred as simple index 

for vegetation monitoring because of the compensation for changing illumination 

conditions, surface slope, aspect, and other extraneous factors. 

Table 4.1 shows some statistics of NDVI values over time. The maximum mean value of 

NDVI was revealed to be 0.234 in the image of 1985, while the minimum mean value of 

NDVI was recorded in image 1972 as 0.139. The maximum NDVI and minimum NDVI 

values were recorded in image 1972 (0.903) and in image 2007 (0.646), respectively. 

Table 4.1 Statistical data of the NDVI values of vegetation covers in gum arabic belt 

Image year Mean NDVI Max NDVI Min NDVI Stddev 
1972 0.139 0.903 -0.713 0.258 
1985 0.234 0.742 -0.274 0.379 
1999 0.165 0.817 -0.487 0.295 
2007 0.200 0.646 -0.245 0.495 

 

The values of the NDVI for each image were examined and evaluated on pixel-by-pixel 

level using ERDAS IMAGINE software using 277 training points collected from the field 

survey work. These  training pixels was deemed sufficient to the good spectral separability 

of the land use land cover classes considered in the multi-temporal data set as compared 

to Maselli et al., (1998) who used 54 training pixels for each class. The extracted NDVI 

values were categorised into four types of land use land cover in the gum arabic belt. 

These classes are bare and farm land, grass and bush land, forest dominated by Hashab 

and mixed woodland. The generation and separation of these classes depend upon the 

advantages of NDVI in assessing the spectral contribution of green plants to multi-spectral 

observations and separation between vegetative and non vegetative areas (Maselli et al., 

1998). 
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The magnitude of green vegetation was quantified to several levels and separated from 

other classes using the advantage of the stratification of cover classes using the NDVI 

values of the land use land cover classes in the gum arabic belt region.  

The NDVI is directly related to the photosynthetically active radiation within a pixel (Tucker 

et al., 1981). Due to their high NDVI values, mixed woodland has to be easily 

distinguished from agricultural and non agricultural lands. The range of the mean NDVI for 

the four land use land cover classes in all images of the area is shown in table 4.2. The 

mixed woodland is represented by the maximum NDVI values (> 0.335), while bare and 

farm lands have values less than 0.184. Grass and bush land class and forest dominated 

by Hashab class have an average NDVI range of (0.185 – 0.254) and (0.255 – 0.334), 

respectively. The NDVI values of forest dominated by Hashab was found low, because the 

Acacia senegal trees in the dry season (summer) are under drought stress. Ungana and 

Kogan (1998) stated that, when using satellite data in drought detection and mapping, 

moisture stressed vegetation has a higher reflectance than the green. Tucker and 

Chouldhury (1987) conducted a research in arid and semi-arid areas and found that NDVI 

could be used as a response variable to identify and quantify drought disturbance in lands 

covered with affected vegetation stress. Also NDVI allows for separation of vegetation 

from the soil background. In a conducted study in Burikina Faso (semi-arid tropics), 

Uchida (2001) used NDVI to discriminate between crop land, fallow and forest resources. 

Mohamedain (2009) conducted a research in the gum arabic belt, stated that the NDVI 

value of Acacia senegal trees is ranged from 0.1 to 0.3, while John and David (1999) 

categorised the range NDVI values of shrubs in arid and semi-arid area from 0.2 to 0.3. 

These ranges of NDVI values presented in table 4.2 are not intended to define an 

absolute range for each class, but rather to illustrate the consistent stratification of cover 

classes using the NDVI. The consistency of this stratification over time considers the 

variety of atmospheric, viewing and illumination conditions, surface directional reflectance 

effects and cloud types. 

Maps of the classified images using maximum likelihood classifier and NDVI 

categorisation for the four dates are presented in fig. 4.1, 4.2, 4.3 and 4.4. The 

visualisation of the classified maps indicates some variation in the distribution of land use 

land cover classes. This is due to differences in calculated NDVI values by two sensors 

(Landsat and ASTER) in multi-temporal dates. The calibration of the remotely sensed data 

should be used to improve the monitoring of vegetation dependent on biophysical 

processes to reduce the effect of the multi-sensor and multi-temporal approaches 

(Halthore and Markham, 1992). 
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Table 4.2 Stratification of the NDVI response to LULC classes in gum arabic belt as  
measured from Landsat and ASTER images 

Land use land cover class NDVI values range 
Bare and farm lands < 0.184 
Grass and bush lands 0.185 – 0.254 
Forest dominated by Hashab trees 0.255 – 0.334 
Mixed woodlands > 0.335

 

The trend of change of the land use land cover classes in the respective multi-temporal as 

highlighted by NDVI and maximum likelihood analysis in fig. 5, reflects a similar dynamic 

variation between the four periods.   

Statistical analysis was performed by using the correlation and the two sample pair t- test 

to characterise the form of any differences that may occur between the results obtained 

from the NDVI categorisation and maximum likelihood classification. It is often desired to 

compare these results of classification to find out whether distinguish of land use land 

over classes differ with respect to the classification type used (Fig. 4.5). The null-

hypothesis in these cases is that ‘there is no difference between the coverage 

percentages of the two classification method’. The value of test statistics (t) was 

calculated for the land use land cover classes for the four dates with degrees of freedom 3 

at the 5% level of significance.  In table 4.3, the value of t (3.182) is less than the tabular 

value (P-value) in all classes in all years; therefore it can be concluded that there is no 

significant difference between the results of the two classified images.  

Tucker and Chouldhury (1987) found that NDVI could be used as a response variable to 

identify and quantify drought disturbance in semi-arid areas, with low value corresponding 

to stress vegetation. Also NDVI allows for separation of vegetation from the soil 

background.  
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Fig. 4.1 Classified map of ASTER image (2007) using NDVI (left) and maximum likelihood 
(right) 

 

 Fig. 4.2 Classified map of ETM+ image (1999) using NDVI (left) and maximum likelihood 

(right) 
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 Fig. 4.3 Classified map of TM image (1985) using NDVI (left) and maximum likelihood    
 (right) 

 

Fig. 4.4 Classified map of MSS image (1972) using NDVI (left) and maximum likelihood     
(right) 
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Fig. 4.5 Land use land cover classes distribution using maximum likelihood classification 
(A) and NDVI values (B) 

 

 

Table 4.3 Correlation and two samples t-test between land use and land cover classes  
based on NDVI and MLC 

Parameter 1972 1985 1999 2007 
Person correlation 0.979 0.986 0.900 0.997 
t stat 0.035 0.080 0.003 0.815 
P-value P(T<0.05) 0.973 0.940 1.000 0.474 

   P = probability; t α= 0.05, df =3, = 3.182  

 

However, this technique would be subjected to operator discretion and could provide 

different results between studies based on the operators classifications. It provides            

a simple tool to evaluate the classification of land use land cover types by the NDVI. 

However, caution should be observed as there are many factors that contribute to the 

NDVI, most importantly, drought. Conduction of further research is needed to determine 

the applicability to this built NDVI tool in the ERADAS IMAGINE software for land use land 

cover classification over vegetated and non vegetated areas. 

4.3 Land Use Land Cover Classification in the Gum Arabic Belt 

Supervised classification using the maximum likelihood algorithm in ERDAS Imagine 9.1 

was used to generate five main land use land cover classes for all images: (1) bare and 

farm land, (2) grass and bush land, (3) forest dominated by Hashab, (4) mixed woodland 

A B
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and (5) residential areas. These land use land cover classes were derived from images 

1972, 1985, 1999 and 2007 for the study areas A and B. 

4.3.1 Land use land cover distribution  

The classification results are shown in table 4.4 and 4.5, indicate the land use land cover 

classes in year  2007 in the study areas A and B as; bare and farmland (16.17% and 

8.41%), grass and bush land (54.05% and 56.41%), forest dominated by Hashab (21.86% 

and 24.21%), mixed woodland (6.18% and 9.9%) and residential areas (1.73% and 

0.97%), respectively. The most dominant class in year 2007 in the two areas A and B is 

the grass and bush land (54.05% and 56.41%) fallowed by the forest dominated by 

Hashab (21.86% and 24.21%). The results indicate that forest dominated by Hashab and 

mixed wood lands have declined steadily during year 1972 to 2007. In contrast, the 

residential areas increased from year 1972 to 2007, from 0, 52% to 1.73% in area A and 

from 0.54% to 0.97% in area B. Among the LULC types, forest dominated by Hashab and 

mixed woodland increased slightly during the period from year 1999 to 2007, from 17.83 

to 21.86 and from 5.32 to 6.18, respectively in area A; and from 21.29% to 24.21% and 

from 7.36% to 9.98%, respectively in area B. Olsson et al., (2005) has explained the 

increase of vegetation cover in the area due to the increase in rainfall and as a result of 

migration consequence which is often abandoned fields and reduced grazing pressure. 

The results indicate that the grass and bush land class constitutes the most coverage of 

land in the two studied area for the four dates, because the area is considered as main 

source of range lands and about two third of the livestock in Sudan are raised in the gum 

arabic belt. The mixed woodland class is includes more that 40 tree species other that 

Hashab (Appendix 6). 

The forest dominated by Hashab class includes all Acacia senegal trees distributed in the 

forested area and under agro-forestry systems. Due to the different spectral reflectance 

responses detected by earth observing remote sensing systems, the identification and 

separation between the four land use land cover classes in the areas are defined and 

extracted (Jacquemoud and Ustin, 2001). The agricultural lands during the dry season are 

usually found bare or contain dried residual of crops with similar spectral reflectance of 

grass; they merged together in one class during classification process. The same case 

was applied to grass and bush land, which appeared with the same spectral reflectance.   
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Table 4.4 Land use land cover classes distributions during 1972-2007 in area A 

Land use type  1972 1985 1999 2007 

Area 
(ha) 

% Area 
(ha) 

% Area 
(ha) 

% Area 
(ha) 

% 

Bare and farm  15697.3 14.20 7310.0 6.62 39864.6 36.08 17870.0 16.17

Grass and bush 52409.5 47.43 67279.5 60.89 43614.2 39.47 59720.0 54.05

Forest 
dominated by 
Hashab 

32390.4 29.32 27299.7 24.70 19702.1 17.83 24146.9 21.86

Mixed woodland 9408.2 8.51 7850.7 7.10 5877.7 5.32 6834.3 6.18

Residential area 577.8 0.52 743.2 0.67 1424.4 1.29 1911.9 1.73
 

 

Table 4.5 Land use land cover classes distributions during 1972-2007 in area B 

Land use type  1972 1985 1999 2007 

Area 
(ha) 

% Area 
(ha) 

% Area 
(ha) 

% Area 
(ha) 

% 

Bare and farm  19534.8 12.70 23293.1 15.15 15047.3 9.78 12936.1 8.41

Grass and bush 65574.7 42.65 74884.6 48.71 93406.0 60.77 86710.0 56.41

Forest 
dominated by 
Hashab 

49433.8 32.15 41631.1 27.09 32724.8 21.29 37221.3 24.21

Mixed woodland 18336.7 11.93 12888.5 8.38 11318.7 7.36 15354.2 9.98

Residential area 842.4 0.54 1025.1 0.67 1225.6 0.79 1500.9 0.97
 

The plant stress resulting from an insect attack or drought as one of other factors induces 

degradation of the leaf chlorophyll content, which has repercussions on the leaf optical 

properties (Tucker et al., 1984; Guyot, 1990). Due to the lower spectral reflectance of 

Acacia senegal trees caused by the drought stress in dry season, forest dominated by 

Hashab was distinguished from mixed wood land during the classification process.  

4.3.2 Land use land cover maps 

The land use land cover maps were prepared for each of the four images in areas A and 

B (Fig. 4.6 and 4.7). Comparison of the maps for the two areas reflects the different 

changes between the land use and land cover classes during 35 years (1972-2007) in the 

gum arabic belt in Kordofan, Sudan. New areas were covered by Hashab and formerly 

covered areas disappeared.  
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4.4 Land Use Land Cover Change, Trends and Analysis in Gum Arabic Belt  

Change detection is a technique used in remote sensing to determine the changes in             

a particular object of study between two or more time periods. A variety of change 

detection techniques are developed and many have been described and reviewed (Singh, 

1989; Deer, 1995; Jensen et al., 1997; Lu et al., 2004). These techniques use multi-date 

imagery from multi- and hyper-spectral sensors in order to identify and quantify the 

differences reflected to objects or phenomena (Jensen, 1996; Coppin et al., 2004). A post-

classification method was used for change detection of multi-temporal imagery. Firstly, 

each individual image for the four dates was classified separately using a statistical 

maximum likelihood classifier and then the classified images were compared to provide an 

assessment of change (Singh, 1989). The post-classification approach generally requires 

extensive human supervision for classifying the images (Lunetta, 999). Post-classification 

is the most common approach used for monitoring land use land cover changes since it 

provides more useful information on the initial and final land cover types in matrix of 

change detection (Singh, 1989; Cambpell, 2002). The rates and magnitudes of change 

are quantified. Detection of land cover change in satellite imagery is complicated due to 

adverse temporal factors. These include differences in band passes and spatial 

resolution, spatial mis-registration, variations in the radiometric responses of the sensors, 

differences in the distribution of cloud and cloud shadow, variations in solar irradiance and 

solar angles and differences in phenology (Yuan and Elvidge, 1998). The date of 

acquisition of the imagery was approximately the same to avoid seasonal differences in 

vegetation. Atmospheric correction of each image was applied before the analysis to 

avoid the effect of the difference among the conditions on the change analysis (Jensen, 

1996). Change statistics indicate the changes that have occurred in given land cover 

types in relation to other classes. The created change detection maps for the two areas A 

and B included in fig. 4.8 and 4.9. 
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Fig. 4.6 Land use land cover maps of study area A in gum arabic belt derived from 
satellite data for 2007, 1999, 1985 and 1972 based on maximum likelihood classification 
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Fig. 4.7 Land use land cover maps of study area B in gum arabic belt derived from 
satellite data for 2007, 1999, 1985 and 1972 based on maximum likelihood classification 
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These maps represent an overview of change dynamics in three classes; increased, 

decreased and unchanged. The method adequately describes the direction of changes in 

the area, but it does not provide information regarding the spatial location of changes. 

Macleod and Congalton (1998) stated four aspects to be considered in change detection 

which include, detecting the changes, identifying the nature of change, measuring the 

extent of change and assessing the spatial pattern of change. 

Conversions and modifications in condition and composition of vegetation cover are 

important aspects of change that are considered in current research (Radeloff et al., 

2000). Results of the conversions and modifications for the changes of land use land 

cover classes are derived from remotely sensed data based on areas. These area-based 

methods rely upon extraction of area statistics for each class derived from the image 

classification in a matrix form. A change detection matrix provides a convenient means of 

summarising all land use land cover changes between these periods (Martin and Howarth 

1989). The conversion matrix of land use land cover change for study areas A and B show 

25 separated classes in the change matrix. The analysis is based upon area-based 

comparison so that recorded changes from one class to another represent actual areas in 

hectares. 

The results of the conversion matrices of land use land cover change for period of 1972-

2007 are presented in table 4.6 and 4.7 for areas A and B, respectively. The conversion 

matrices for evaluating changes in land use and cover classes during the three periods: 

(1) 1972-1985, (2) 1985-1999 and (3) 1999-2007 for the two areas A and B are illustrated 

in appendices from 7 to 12. 

From the land use land cover change analysis between 1972 and 2007 in the two areas A 

and B, we can find out that the land use land cover structure in the gum arabic belt is 

composed mainly of forest resources (Hashab and mixed wood land classes) and grass 

and bush types with total area accounting for 85.66% and 86.73% in 1972; 82.09% and 

90.60% in 2007 for area A and area B, respectively. As far as land use types are 

concerned, grass and bush land exceeds 40% in the two areas in the both periods. 

Therefore, rangeland is the base of the landscape matrix of the research area. The 

second important land use type in the gum arabic belt is the forest dominated by Hashab, 
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Fig 4.8 Change detection maps for (1972-1985), (1985-1999), (1999-2007), (1972-2007) 
from study area A 
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Fig 4.9 Change detection maps for (1972-1985), (1985-1999), 1999-2007), (1972-2007) 
from study area B 
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which constitutes 29.32%  (1972) , and 21,86% (2007), in area A and  32.16 % (1972) and 

24.21% (2007) in area B. Accordingly, the Hashab area in the gum arabic belt in Kordofan 

was decreased by approximately 7% between 1972 and 2007. 

From year 1972 to 2007, the land use land cover structure in the gum arabic obviously 

changed, and a reciprocal conversion between different types of LULC took place 

frequently. The dynamics of land use land cover in the two areas A and B is characterised 

mainly by decrease of forest dominated by Hashab, decrease of mixed woodland and 

increase of residential areas. The forest dominated by Hashab decreased from 32390 ha 

in 1972 to 24146 ha in 2007 and from 49433 ha in 1972 to 37221 in 2007 for area A and 

area B, respectively (Table 4.6 and 4.7). The loss area is equivalent to about 25%. The 

converted areas from forest dominated by Hashab class to other land use land cover 

types are equal to 77% and 72% for area A and area B, respectively, and there was also 

an obvious reciprocal conversion between the forest dominated by Hashab and other land 

use types. 

 

 

Table 4.6 Conversion matrix of land use land cover of gum arabic in area A during 1972-
2007 (area in ha) 

 
Class type 

 
1 

 
2 

 
3 

 
4 

 
5 

Total 1972  
ha 

(Occupancy 
rate %)   

 
1 

3238.96 7530.16 3857.51 910.18 160.53 15697.35
20.63 47.97 24.57 5.79 1.02 (14.21)

 
2 

7357.10 31259.91 10086.01 3106.87 599.62 52409.51
14.04 59.65 19.24 5.93 1.14 (47.44)

 
3 

5592.83 16547.20 7490.84 2115.61 643.93 32390.40
17.27 51.09 23.13 6.53 1.99 (29.32)

 
4 

1672.52 4287.07 2697.80 699.45 51.39 9408.22
17.78 45.57 28.67 7.43 0.55 (8.52)

 
5 

8.64 95.67 14.76 2.27 456.46 577.80
1.50 16.56 2.55 0.39 79.00 (0.52)

Total 2007 (ha) 17870.05 59720.01 24146.92 6834.38 1911.93 110483.28
Rate of occupancy (%) (16.17) (54.05) (21.86) (6.19) (1.73) (100.00)
Rate of variety (%) 13.84 13.95 -25.45 -27.36 230.90  
Average annual rate (%) 0.40 0.40 -0.73 -0.78 6.60 
Average annual rate (ha) 62.08 208.87 -235.53 -73.54 38.12 
Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland,                             
5 residential area. The bold values represent the percentages of classes changed from 1972 to other classes in 
2007 
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Table 4.7 Conversion matrix of land use land cover in gum arabic area in B during 1972-
2007 (area in ha) 

Class Type  
1 

 
2 

 
3 

 
4 

 
5 

Total 1972  
ha 

(Occupancy 
rate %)   

1 3345.20 9615.94 5595.17 604.95 373.64 19534.88
17.12 49.22 28.64 3.10 1.91 (12.71)

2 3261.53 40427.25 13708.59 7902.81 274.52 65574.71
4.97 61.65 20.91 12.05 0.42 (42.66)

3 4828.87 25410.51 14093.24 4783.64 317.59 49433.84
9.77 51.40 28.51 9.68 0.64 (32.16)

4 1381.82 11061.05 3751.16 2042.98 99.79 18336.78
7.54 60.32 20.46 11.14 0.54 (11.93)

5 118.75 195.26 73.22 19.87 435.38 842.46
14.10 23.18 8.69 2.36 51.68 (0.55)

Total 2007 (ha) 12936.16 86710.00 37221.36 15354.24 1500.91 153722.66
Rate of occupancy (%) (8.42) (56.41) (24.21) (9.99) (0.98) (100. 00)
Rate of variety (%) -33.78 32.23 -24.70 -16.27 78.16  
Average annual rate (%) -0.97 0.92 -0.71 -0.46 2.23 
Average annual rate (ha) -188.53 603.87 -348.93 -85.22 18.81 
Where: 1 bare and farm land, 2 grass and bush land, 3 orest dominated by Hashab, 4 mixed woodland,                             
5 residential area. The bold values represent the percentages of classes changed from 1972 to other classes 
in 2007 

 

Mixed woodland class which includes other trees than Hashab decreased from 9408 ha in 

1972 to 6834 ha in 2007 (27% in area A), and from 18336 ha in 1972 to 15354 ha in 2007 

(16% in area B).  

Residential areas have increased as a result of population increase in the gum arabic belt 

during the last 35 years. These residential areas increased from 577 ha in 1972 to 1911 

ha in 2007 and from 842 ha in 1972 to 1500 ha in 2007 for the area A and area B, 

respectively. The average annual increasing rate (%) for residential area is 6.60 (230 ha) 

and 2.23 (78.16 ha) for the area A and area B, respectively (Fig. 4.10 and 4.11). 

The conversion to grass and bush land from other land use land cover classes was the 

main trend of the land use land cover change in the two areas A and B. The study found 

that in area A 47% of bare and farm land, 51% of forest were dominated by Hashab and 

45% of mixed wood land in 1972 were converted to grass and bush land in 2007. While in 

area B 49% of bare and farm land, 51% of forest were dominated by Hashab and 60% of 

mixed woodland were also converted to grass and bush land during year 1972 to 2007.  

Fig. 4.10 and 4.11 show the annual rate of change for each land use and land cover 

classes and for each period of analysis (1972-1985, 1985-1999, 1999-2007 and 1972-
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2007) for areas A and B, respectively, representing the land use land cover change trends 

and indicating the magnitude of change. 

The increase of the forest dominated by Hashab and of mixed woodland in the two areas 

from 1999 to 2007 was most noticeable. The increase of annual relative rate of residential 

areas was observed in all periods with larger increase in periods 1972-2007 (6.6%) in 

study area A. While the highest increase of annual relative rate in area B is recorded in 

period 1972-1985 as 2.83%. 
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Fig. 4.10 Relative annual changes of land use land cover classes (%) in area A 
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Fig. 4.11 Relative annual changes of land use land cover classes (%) in area B 

 

4.5 Accuracy Assessment 

Accuracy assessment is presented by a confusion error matrix by Kappa coefficient as a 

common and typical method (Congalton et al., 1999). A classification is incomplete until its 

accuracy has been assessed. The term accuracy means the level of agreement between 

labels assigned by the classifier and class allocations based on ground data collected by 

the user, known as test data (Mather, 2009). The confusion matrix was created by 

comparing error values for each class that was classified with its respective value in the 

ground truth data. The ground truth points used for the accuracy assessment for the four 

classified thematic maps in the two areas A and B range from 107 to 144 points. The table 

has the same number of columns and rows which equal the number of classes. The land 

cover classes in the ground-truth image head the rows, while the same classes for the  
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classified image head the columns (Wilkie and Finn, 1996). The Kappa coefficient (
Λ
K ) is 

then calculated as follows: 

    ˆ

r r
N X ii - X Xi+ + i

i= 1 i= 1K = r2N - X Xi+ + i
i= 1

∑ ∑

∑

                                                                       (13) 

 
Where :   

r:  Number of rows/columns in confusion matrix  

Xii:  Number of observation in row i and column i  

Xi+  Total number of row i  

X+i:  Total number of column i 

 N:  Number of observations 

The Kappa statistics provides a statistically valid assessment of the quality of 

classification and was used to assess overall class accuracy (Tottrup and Rasmussen, 

2004). According to Pontius (2000), a Kappa value higher than 0.5 can be considered as 

satisfactory for modeling of land use change. Landis and Koch (1977) characterized 

agreement for the Kappa coefficients as follows: values > 0.79 are excellent, values 

between 0.6 and 0.79 are substantial and values of 0.59 or less indicate moderate or poor 

agreement. 

The overall classification accuracy is the percentage of correctly classified samples of an 

error matrix. It is computed by dividing the total number of correctly classified samples by 

the total number of reference samples. It can be expressed by 

Overall accuracy  =  
1

1 n

kk
k

a
N =
∑                                                                      (14) 

Where:  

a   Individual cell values 

k +a  Row total 

k a+   Column total 

n  Total number of classes 

N   Total number of samples 
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The mapping accuracy of each land use land cover class was derived from the calculated 

producer’s accuracy and user’s accuracy (Story and Congalton 1986; Congalton and 

Green 1999) using the following equations:  

Producer’s accuracy  =  

1

ii
n

i
i

a

a +
=
∑

                                                                         (15) 

User’s accuracy   =  

1

ii
n

i
i

a

a+
=
∑

                                                                           (16) 

Where: 

a ii   Number of samples correctly classified  

a i+ Column total for classi 

a +i Row total for classi 
 

The confusion matrix, the producer's and the user's accuracy are calculated for each 

class, as well as the overall accuracy and the accuracy estimate that removes the effect of 

random change on accuracy, referred to as the Kappa statistic (Skidmore, 1999).   

Table 4.8 and 4.9 represent the result of accuracy assessments of supervised 

classification ofyear 1972, 1985, 1999 and 2007 for the area A and area B, respectively. 

The Kappa coefficients for all images in the two areas indicate substantial agreement with 

value ranges between 0.61 (1985 in area A) to 0.75 (1972 in area B). The calculated 

overall accuracies in study area A are 81%, 77%, 79% and 83% for year 1972, 1985, 

1999 and 2007, respectively, and in area B the overall all accuracies is 82% for year 1972 

and 79% for year 1985 and 1999. The producer’s accuracy in area A shows high value of 

100% for mixed woodland and residential area in year 2007 and lower values of 57% for 

bare and farm land in year 1985. While higher values of producer’s accuracy in area B is 

100% for grass and farmland in year 2007, mixed woodland in year 2007 and  year 1999, 

and lower value of 60% for mixed woodland (1972) and bare and farm land (1999). The 

spectral similarity between the different LULC classes was one source of misclassification. 

Misclassifications, to some extent, can be traced to the nature of the scene to be 

classified, such as scene heterogeneity and ground sampling interval, or the presence of 

mixed pixels in the source data (Gao, 2009). 

Results from previous research suggests that each image is subject to thematic 

classification errors and in change detection it contains much larger errors than either one 
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of the component images that may reduce the accuracy in change detection method 

(Quarmby and Cushnie 1989; Singh 1989; Coppin et al., 2004). 

 

Table 4.8 Producer’s and user’s accuracy of classification in gum arabic belt in area A 

Class  
Type 

MSS 1972 TM 1985 ETM+ 1999 ASTER 2007 
Producers’ 
accuracy 

(%) 

Users’ 
accuracy 

(%) 

Producers’ 
accuracy  

(%) 

Users’ 
accuracy 

(%) 

Producers’ 
accuracy 

(%) 

Users’ 
accuracy 

(%) 

Producers’ 
accuracy 

(%) 

Users’ 
accuracy 

(%) 
1   60.87  82.35   57.14  80.00   89.19  75.00 63.16 82.76 
2   91.11  74.55  88.46 79.31  79.17 77.55 91.43 71.11
3   77.14  87.10   63.16  66.67   66.67  90.91 58.62 85.00 
4   77.78  77.78   69.23  90.00   71.43 71.43 71.43 100.00 
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Overall  
Accuracy 81.31% 77.08% 79.03% 83.67% 

Kappa 
Statistics 0.7323 0.6140 0.6982 0.7319 

Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland,                             
 5 residential area 
 

Table 4.9 Producer’s and user’s accuracy of classification in gum arabic belt in area B 

Class  
Type 

MSS 1972 TM 1985 ETM+ 1999 ASTER 2007
Producers’ 
accuracy 

(%) 

Users’ 
accuracy 

(%) 

Producers’ 
accuracy  

(%) 

Users’ 
accuracy 

(%) 

Producers’ 
accuracy 

(%) 

Users’ 
accuracy 

(%) 

Producers’ 
accuracy 

(%) 

Users’ 
accuracy 

(%) 
1 92.86 92.86 62.50 100.00 60.00 75.00 61.11 100.00 
2 90.00 73.47 97.44 74.51 90.32 78.87 94.92 73.68 
3 82.05 86.49 75.76 80.65 65.52 76.00 73.68 87.50 
4 60.00 92.31 88.89 88.8 81.82 100.00 76.47 100.00 
5 100.00 100.00 50.00 100.00 100.00 100.00 100.00 100.00 

Overall  
Accuracy 82.46% 79.65% 79.66% 82.09 

Kappa 
Statistics 0.7504 0.7025 0.6675 0.7282 

Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland,                             
5 residential area 

 

4.6 Driving Forces of Land Use and land Cover Changes in Gum Arabic Belt 

Many researchers understand land use land cover changes in relation to their 

measurements with possibilities of generating local to global scale projections of land 

change (Symeonakis et al., 2004). Identifying the causes of land use change requires an 

understanding of how people make land use decisions and how various factors interact in 

specific contexts to influence decision making on land use (Ojima et al., 1994).  Land use 

land cover in Sudan was affected by many problems due to lack of adequate policy 
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framework, the absence of unified legislation and inadequate consideration of the socio-

economic factors, which play a vital role in land management and conversion. Forestry is 

very important in satisfying basic needs of societies in form of fuel wood, charcoal, 

construction poles, timber, gums, leaves, and native and processed medicines. Collection 

and production of these products have various impacts on the role of forestry in 

environmental conservation.  Elsiddig (1999) estimated that about 455,000 hectares of 

forested areas is being cleared annually for agriculture and other purposes in Sudan. 

Forest resources assessment in Sudan in the last decades indicated decrease in forest 

area (Harrison and Jackson, 1958; FNC and FAO, 1998). To solve this problem, a new 

Comprehensive National Strategy in Sudan stated that 25% of the country land must be 

reserved for forests; and 2% of irrigated land and 5% of rain-fed land must be reserved as 

trees and forests. Gum arabic also is main source of rangelands, which contribute 

substantially to income and subsistence of the people in the gum arabic belt who are 

either pastoralists or agro-pastoralists. Several factors have adversely affected these 

resources, as uncontrolled burning in semi-desert rangelands in western Sudan. Fires 

annually burn 30%-50% of the land surface, destroying an estimated 25%-30% of net 

primary production (Bunderson, 1986). Also the phenomena of sand-dune movement 

which appears recently in the study area as indicated by the interviewers and observed 

during the field work period, is carrying problems as it leads cause and accelerate 

desertification (Moghraby, 2003). 

Traditional farming systems (bush-fallow systems) in the North Kordofan State are based 

on systems of cropping and animal husbandry. The major crops grown are millet and 

sorghum. Other crops produced are groundnut and sesame (major cash crops) 

watermelon, roselle, cowpea and okra. Animals raised are mainly sheep, goats, and 

camels. Shifting cultivation as a technique for restoring soil fertility after a period of 

cultivation is practised in the gum arabic belt. The process consists of relatively short 

periods of cultivation followed by relatively long periods of fallow (Tiffen et al., 1994). The 

Acacia senegal bush-fallow system is the most practical way of sustaining crop production 

on the light sandy soils of Kordofan. In this system the land is used alternatively as 

cultivated for 3 - 4 years (as agroforestry) and gum gardens (bush-fallow) for twenty years 

during which the soil regains its natural fertility (Seif el Din, 1969).  Acacia senegal trees 

play an environmental role in protecting the area from desert encroachment. Also they 

provide the farmer with fuel wood for consumption and selling (Sharawi, 1986). A variety 

of problems affected the traditional bush-fallow and Hashab bush-fallow systems, such as 

population increase which resulted in the reduction of the fallow periods. Poor crop land 

fertility and a rapidly rising demand for food force Sahelian farmers to cultivate more land 
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and shorten fallow periods. This mostly leads to a gradual decline in crop yields per 

hectare. 

The concept of customary tribal homeland is the most important constituent of traditional 

land tenure in Sudan, which has a direct effect on ways and spatial distribution of land use 

in gum arabic belt areas.  

The ability to forecast land use land cover change and ultimately to predict the 

consequences of change, will depend on the ability to understand the past, current and 

future drivers of land use land cover change. Patterns of land use land cover change and 

land management are shaped by the interaction of economic, environmental, social, 

political and technological forces on local to global scales. Social factors are related to the 

use of the resources and the environment, among which are changing land tenure, land 

fragmentation, pressure on open grazing, land use conflicts, deforestation as a result of 

over-cultivation or over-grazing and soil erosion as a result of land degradation. 

4.7 Discussion and Summary  

The drastic loss of forest resources (Hashab and mixed woodland classes) in the two 

studied areas of the gum arabic belt in North Kordofan occurred during the years from 

1972 to 1999, and with slightly increase during years from 1999 to 2007 (Fig. 4.12). This 

increase could be due to efforts concerning afforestation rehabilitation programmes 

executed by UN and FNC (Dafalla, 2007). The trends of change of the bare land and farm 

land and of grass land and bush land is reversely proportional to each other in study area 

A. Moreover, over the last three decades gum production in Sudan has declined and also 

varied increasingly from year to year. It can be seen that the drought years (1973/74 and 

1984/85) have adversely affected and drastically decreased Acacia senegal cover in the 

gum arabic belt (Fig 4.12). In addition to drought gum production is affected by several 

factors, including the socio-economic setting of the gum farmers, the policy environment 

under which gum production takes place and the supply and demand factors at the 

international market. Fluctuating prices endanger the persisting of Acacia senegal tree 

coverage in the gum arabic belt due to cutting of the trees during periods of low prices of 

gum. Larson and Bromley (1991) believed that the pricing policies contributed to a loss of 

production. For example the real market price of gum arabic increased by 870% between 

1992 and 1994, yet 3 years later it had decreased to below the 1992 price (Elmqvist, et 

al., 2005)           
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Fig. 4.12 Trends of land use land cover change in the gum arabic belt, area A (left) area B 
(right) from 1972 to 2007 

 

While in 1958 the southern limit of the gum belt was 15° N, today there is very little 

Hashab (Acacia senegal) remaining north of latitude 13° 45' N in Kordofan or Darfur. 

Furthermore, a survey carried out by IEED and IES (1990) states that the belt moved 

southwards and that Acacia senegal tree exist north of latitude 13° 45° N. Taking into 

account the recent vegetation maps as illustrated by this study (Fig 4.6) and the 

observations from field visits to the gum arabic belt, Acacia senegal trees were present 

from latitude 13° 26° North southwards. Therefore, the current distribution of Hashab trees 

in the gum arabic belt is variable and depends on many factors like soil and rainfall.  

Interview with key informant persons found that the local people in the study area have 

started to grow Acacia senegal trees after the drought in 1984 and that aware of the 

important fact the tree increases soil fertility. A research conducted by Eklundh and 

Olsson (2003) found a trend of increase in vegetation cover in the Sahelian region and 

this recovery starts in the Sahel in the early 1990s. Olsson et al., (2005) explained the 

increased of land cover as a result of migration which lead to abandoned fields and 

reduced grazing pressure.  In addition to mentioned reasons this study adds: 

1- Application of the use of gas and solar energy in houses, mosque, hospitals and  

schools as a newly source in Sudan, they reduce the pressure on forest   

resources. 

2- The awareness of the local people towards the importance of trees as a    

  protective against desertification. 

3- The efforts done by FNC in afforestation system in combination with United  

Nation in the project of restocking the gum arabic belt in Sudan from 1983-1995.  
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Chapter Five 

Integration of Remote Sensing, GIS and Terrestrial Forest  
Inventory in Estimation of Acacia senegal Trees’ Parameters 

 

5.1 Overview 

It is widely recognized that forest structure information is needed over large areas in 

Sudan to meet ecosystem management objectives. The application of remote sensing-

based inventory has been limited in scope due to the limitations of existing data, 

processing techniques, and methodology. Also, one of the most significant technological 

developments for forest and natural resource organizations during the past century has 

been the advent of Geographic Information Systems (GIS) (Innes and Koch, 1998). 

Continuous data can be categorized and combined in various ways, suiting different uses 

of the data. The estimated forest parameter data are currently being used in forestry, 

planning, and ecology related studies (Maselli et al., 2005).  

Forest stand structure parameters such as diameter at breast height (DBH), tree height 

(H), crown diameter (C.D), tree volume (V), basal area (BA), tree stand density, and 

crown area (Cr. A) are major variables of  forest inventory, which are investigated in this 

study using satellite and ground sampling data. Remote sensing is often the only practical 

means of acquiring information on these variables over large areas, particularly in tropical 

and sub-tropical regions with inaccessible terrain. This study investigated the suitability of 

ASTER imagery for estimation of forest stand structure parameters in semi-arid areas in 

the gum arabic belt using single-phase sampling with regression estimators. The ASTER 

bands (VINR) and vegetation indices (NDVI, SAVI, RVI and DVI) were derived from these 

bands and examined towards their performance to express forest stand structure 

parameters. Several model types and combinations of attributes were tested and 

compared. This study was conducted in Elhemmaria plantation forest stands in Sudan, 

which is located in the gum arabic belt of Kordofan State and is dominated by Acacia 

senegal (Fig. 3.1). The methodology and materials used in this study are presented in fig. 

5.1. 

 

 

 



Chapter 5: Integration of Remote Sensing, GIS and Terrestrial Forest Inventory 

83 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 Flowchart of the methodological steps applied in the study (developed by the  
author) 
 

5.2 General Description of Elhemmaria Forest 

According to the conducted field measurements, DBH range is from 7 to 26.2 cm with a 

mean value of 9.16 cm. The tree heights varied from 1.9 to 7.6 m with a mean value of 

3.77 m, and the crown diameter ranged from 1.5 to 10 m with a mean value of 3.65 m. 

The volume ranged from 0.31 to 3.48 m3ha-1 with a mean of 1.41 m3ha-1 and its standard 

deviation showed a value of 0.88. A summary of forest structure statistics for the 47 plots 

surveyed are given in table 5.1. 

The stand density ranges, from 10-260 trees ha-1, which is a mirror to reflect the site 

condition and stocking density of the forest stand. In comparison with full stocked 

plantations in the gum arabic belt (400 trees ha-1 when planted with 5x5 m spacing), the 

study revealed that the Elhemmaria forest is not well stocked (mean density 123 tree ha-

1). Acacia senegal stands have been interfered with farming and over-exploitation 

activities by the local inhabitants. 

Remote sensing data Forest  data 

Systematic sampling 
(47 sample plots) 

Geometric and radiometric 
correction 

Data transformation 
(NDVI,  SAVI, DVI, RVI) 

Reflectance extraction 
(2x2 or 3x3 pixel window) 

Statistical analysis 
(Simple regression) 

Model construction, model 
selection, model validation 

Equations of models 
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Table 5.1 Inventory information and statistics of field measurements of Acacia senegal 
stand 

Parameters Minimum Maximum Mean Stddev 

H (m) 1.90 7.60 3.77 0.79 

DBH (cm) 7.00 26.20 9.16 2.33 

Cr. D (m) 1.50 10.0 3.65 1.23 

BA (m2ha-1) 0.22 1.95 0.88 0.49 

V (m3ha-1) 0.31 3.48 1.41 0.88 

Density (tree 
no.ha-1) 10 260 123 64.72 

Cr. A. (m2ha-1) 468.80 2873.77 1611.83 908.46 
 

The mean, maximum and minimum stand parameters are presented in table 5.1. The 

presence of mature trees in the forest stand is an important attribute to distinguish the 

gum production status of the forest. Within these plots, the majority (53%) of the Acacia 

senegal trees have small DBH between 7 to 8.9 cm and 29.9% between 9-10.9 cm (Fig. 

5.2). The trees with DBH larger than 15 cm constitute only 3.2% of the total measured 

trees.  

 

Fig. 5.2 Diameter distribution of Acacia senegal trees in Elhemmaria forest 
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The correlation analysis was used to test the relationship between the Acacia seneagl 

stand parameters. The result was obtained in a matrix of estimated correlation coefficients 

for each pair of the parameters and presented in table 5.2. The table shows the Pearson 

correlations between each pair of variables and their P-value level.  Correlation indicates 

both the strength and the direction of the relationship between the variables. A significant 

correlation (p ≤ 0.05) between mean DBH and mean crown diameter, volume and basal 

area, volume and crown area, stand density and basal area are parameters having the 

strongest positive correlation with 0,933, 0.965. 0.867 and 0.827, respectively (Table 5.2). 

Whereas the lowest correlation was detected between the mean diameter and mean 

volume, DBH with basal area and mean DBH with crown area with 0.033, 0.045 and 

0,058, respectively, showing no significance correlation. Most of the relationships between 

Acacia senegal tree variables are positively correlated. 

 

Table 5.2 Pearson correlation matrix for Acacia senegal tree attributes 

 Parameters 
Density 
(no of 

treesha-1) 

BA 
(m2 ha-1)

V 
(m3ha-1)

Cr. A 
(m2ha-1)

Mean 
DBH 
(cm) 

Mean H 
(m) 

Mean 
Cr.D 
(m) 

Density (trees ha-1) 1 0.827** 0.678** 0.689** -0.337 -0.420* -0.403*

BA (m2 ha-1)  1 0.965** 0.867** 0.045 -0.073 -0.067 

V (m3ha-1)   1 0.836** 0.161 0.142 0.033 

Cr. A (m2ha-1)    1 0.058 -0.079 0.115 

Mean DBH (cm)     1 0.626** 0.933**

Mean H (m)      1 0.537**

Mean Cr.D (m)       1 
**   Correlation is highly significant at the 0.01 level (2-tailed) 
*     Correlation is significant at the 0.05 level (2-tailed 
 

 

5.3 Extraction of Forest Reflectance from Remote Sensing Data  

5.3.1 Data transformation 

In addition to the three bands of the ASTER image, different spectral (transformation) 

vegetation indices were used, because they provide a continuous measure of green 

biomass over a large geographic area by the use of the spectral bands (Lee, 1990). 

Vegetation indices are mathematical transformations designed to assess the spectral 
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contribution of vegetation to multi-spectral observations (Rahman et al., 2005). These 

vegetation indices operate by contrasting intense chlorophyll pigment absorptions in the 

red against the high reflectivity of plant materials in the NIR (Tucker, 1979). The 

vegetation indices include the ratio-based indices (NDVI, RVI) and a hybrid set of 

vegetation indices (SAVI). Selected vegetation indices were calculated from ASTER 

spectral bands (NIR and red) using equations enlisted in table 5.3. Some studies have 

stated that the use of soil-adjusted vegetation indices and the inclusion of the shortwave 

infrared (SWIR) considering the soil background reflectance and this reduce the 

background effects (Huete 1988; Nemani et al., 1993; Brown et al., 2000). 

 

Table 5.3 Definitions of spectral bands and vegetation indices under investigation  

Vegetation index Name Symbol and equation  Reference 
Spectral reflectance of 
ASTER image  

B1 (Green)  
B2 (Red) 
B3 (NIR) 

Normalized  Difference 
Vegetation  Index 

NDVI = NIR – RED/NIR+RED (Rouse et al., 1973) 

Ratio Vegetation  Index RVI   = NIR/ RED (Pearon and Miller, 
1972) 

Soil Adjusted Vegetation  
Index  

SAVI    = (1+ L*)( NIR – RED)/ 
                  (NIR + RED + L) 

(Huete, 1988) 

Difference Vegetation  Index DVI = NIR - RED (Tucker, 1979) 
* The L term (soil adjustment factor) ranges form 0 to 1 and is typically used as 0.5. 

 

5.3.2 Extraction of reflectance using 2x2 and 3x3 pixel windows methods 

The mean reflectance of the three bands of ASTER (G, R and NIR) were extracted from 

each sample plot using the 2x2 and 3x3 pixel windows methods (Appendix 2). The 

reflectance was determined for measured field sample plots using an average of 5 (2x2 

pixel window) or 9 (3x3 pixel window) pixels neighbouring and surrounding the centre of 

each plot. Then the vegetation indices (NDVI, SAVI, DVI, and RVI) were calculated using 

the mean reflectance value of each sample plot.  

The correlation between the Acacia senegal trees’ parameters and the extracted (ASTER 

spectral bands) and calculated (vegetation indices) remotely sensed data is summarized 

in table 5.4 and 5.5 for 2x2 and 3x3 pixel windows, respectively. The relationship between 

Acacia senegal tree attributes and the ASTER spectral bands and the vegetation indices 

revealed a positive significant correlation (p ≤ 0.05) between the ASTER spectral bands 

and all trees’ parameters, while most of the vegetation indices give a negative correlation 
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with the trees’ parameters except with the mean height and the mean crown diameter. 

The DVI showed very poor correlation with all trees’ parameters. 

Since an effective regression model for prediction can not be derived if no correlation 

exists (Rahman et al., 2008), the density, basal area, volume and crown area will be 

selected for the construction of the candidates models in reference to their significance.  

The calculation results of the correlation between data of trees’ parameters and the 

remotely sensed data extracted by the two methods (2x2 and 3x3 pixel) gave nearly 

similar relationships for the different attributes, which indicates a similarity of remotely 

sensed spectral  data extracted by the both methods. Extracted remotely sensed data 

from sample plots using the two method data was tested by paired-samples t-test 

represented in table 5.6. This is to test the significant differences (P-value ≥ 0.05) 

between the remotely sensed data extracted by 2x2 and 3x3 pixel windows (Hasenauer, 

2006). Paired-samples t-test shows no significance (P-value ≤ 0.05) of the average 

differences between the means extracted spectral data of both applied methods. Another 

evidence for that the strong relationship implied by the high correlation coefficient (r) 

between the means of the two methods ranging between 0.958 and 0.988 (Table 5.6). 

According to the mentioned comparisons and tests, the study concludes that the two 

applied methods adapted for the extraction of remotely sensed spectral data showed a 

significant similarity. Therefore, application of statistical regression analysis using any of 

the two methods will give same comparable results.  

 
Table 5.4 Correlation between forest inventory parameters and remotely sensed data of  
 3x3 pixels window (43 sample plots) 

Parameters Density 
(no of treesha-1) 

BA 
(m2 ha-1) 

V  
(m3ha-1) 

Cr. A 
(m2ha-1) 

Mean 
DBH 
(cm) 

Mean 
H (m) 

Mean 
Cr.D 
(m) 

Mean B1 0.359* 0.586** 0.601** 0.512** 0.247 0.017 0.162 
Mean B2 0.351* 0.553** 0.549** 0.478** 0.278 0.047 0.204 
Mean B3 0.227 0.444** 0.456** 0.387* 0.397** 0.143 0.329* 
Mean NDVI -0.403** -0.540** -0.515** -0.448** -0.097 0.077 -0.026 
Mean SAVI -0.405** -0.541** -0.516** -0.450** -0.098 0.078 -0.028 
Mean RVI -0.400** -0.537** -0.514** -0.422** -0.104 0.060 -0.018 
Mean DVI -0.304* -0.286 -0.249 -0.240 0.253 0.215 0.271 
**     Significant at the 0.01 level (2-tailed) 
*      Significant at the 0.05 level (2-tailed) 
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Table 5.5 Correlation between forest inventory parameters and remotely sensed data of  
 2x2 pixels window (43 sample plots) 

Parameters Density 
(no of treesha-1) 

BA 
(m2 ha-1) 

V  
(m3ha-1) 

Cr. A 
(m2ha-1) 

Mean 
DBH 
(cm) 

Mean 
H (m) 

Mean 
Cr.D 
(m) 

Mean B1 0.350* 0.574** 0.593** 0.467** 0.231 0.025 0.130 
Mean B2 0.345* 0.536** 0.529** 0.422** 0.260 0.043 0.163 
Mean B3 0.224 0.437** 0.446** 0.358* 0.387* 0.134 0.301* 
Mean NDVI -0.374* -0.489** -0.463** -0.358* -0.079 0.070 0.008 
Mean SAVI -0.373* -0.488** -0.462** -0.356* -0.078 0.069 0.009 
Mean RVI -0.363* -0.476** -0.454** -0.319* -0.082 0.051 0.024 
Mean DVI -0.268 -0.242 -0.210 -0.163 0.223 0.173 0.252 
**       Correlation is highly significant at the 0.01 level (2-tailed) 
*         Correlation is significant at the 0.05 level (2-tailed) 
 

 

Table 5.6 Correlation and two samples t-test between 3x3 and 2x2 windows for extracted  
 remotely sensed data 

Parameter Mean 
B1 

Mean 
B2 

Mean 
B3 

Mean 
NDVI 

Mean 
SAVI 

Mean 
RVI 

Mean 
DVI 

Pearson 
correlation 

0.988 0.988 0.983 0.975 0.975 0.973 0.958 

t stat 0.128 1.091 0.579 1.801 1.698 1.895 1.767 

P-value 0.903 0.281 0.566 0.079 0.097 0.065 0.085 
P = probability; tα= 0.5, df =3 = 2.016 

 
 
5.4 Estimation of Acacia senegal trees’ Parameters by Remotely Sensed  
      Data  

Since remote sensing measurements have a physical or statistical relationship with forest 

attributes, forest information can be provided through classification of spectral response 

patterns by empirical or semi-empirical models (Franklin, 2001). Statistical analysis using 

correlation analysis was applied between all independent (ASTER bands and vegetation 

indices) and dependent variables (Acacia senegal tree parameters). A correlation matrix 

was created in order to select the best band set for modeling.  

5.4.1 Model construction  

The determination of the relationship between the bio-physical properties of Acacia 

senegal and spectral reflectance is based on the deterministic mathematical model or 

statistics models based on correlation analysis. 
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Simple regression examines the linear and non-linear relationship between two variables 

(trees’ parameters and the remotely sensed data). Linear and non-linear regression 

models were developed to estimate the stand attributes from the mean spectral values 

derived from the imagery. This is the most common application of regression analysis in 

remote sensing using the coefficient of determination (R2) as an important indicator for 

assessing the candidate models (Curran and Hay, 1986). Therefore, the current study 

used this criterion for pre-selecting the regression equations. The coefficient of 

determination (R2) values calculated from different equations using the ASTER bands and 

the vegetation indices for Acacia senegal tree parameters are presented in tables 5.7, 5.8, 

5.9 and 5.10 and appendices 13, 14 and 15. 

Rahaman (2004) stated that R2 < 0.26 is un-satisfactory to predict carbon using linear 

regression in semi-arid areas. The current study selected all regression equations of 

Acacia senegal trees’ parameters with R2 > 0.55 for the volume, basal area and crown 

area and with R2 > 0.3 for tree stand density. These parameters of Acacia senegal tree 

(volume, basal area, crown area and stand density) were selected. The mean DBH, mean 

height and mean crown diameter were excluded from the model selection and evaluation 

because the coefficient of determination (R2) value is < 0.3 (Appendices 13, 14 and 15). 

Results in table 5.7 for the volume show that linear equation (with B1), polynomial- quadric 

equation (with B1), polynomial-cubic (with B1), exponential (with RVI) and power equation 

(with RVI) provide highest R² values as 0.555, 0.574, 0.574, 0.551 and 0.552, 

respectively. The exponential equation (with RVI) and power equation (with RVI) were 

selected for the mean basal area and mean crown area with R² of 0.572 for the mean 

basal area 0.551 and 0.549 for the mean crown area (Tables 5.9 and 5.8). For the mean 

tree density the linear (R² = 0303), logarithmic (R² = 0.304), inverse (R² = 0.303), 

polynomial-cubic (R² = 0.303) and polynomial-quadric (R² =0.303) equations were 

selected for evaluation of the models using RVI (Table 5.10).  

 

Table 5.7 Values of R² resulting from regression analysis for mean stand volume (m3ha-1) 
of Acacia senegal trees  

Regression equation B1 B2 B3 NDVI SAVI RVI DVI 
Linear 0.555 0.493 0.330 0.473 0.473 0.487 0.102 
Logarithmic 0.541 0.488 0.334 0.481 0.481 0.493 0.107 
Exponential 0.498 0.490 0.307 0.511 0.511 0.551 0.131 
Polynomial-quadric 0.574 0.493 0.336 0.489 0.489 0.501 0.131 
Polynomial-cubic 0.574 0.504 0.337 0.495 0.495 0.507 0.181 
Power 0.490 0.487 0.311 0.515 0.515 0.552 0.136 
Inverse 0.523 0.479 0.334 0.486 0.485 0.498 0.113 
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Table 5.8 Values of R² resulting from regression analysisfor mean stand basal area (m2ha-

1) of Acacia senegal trees 
Regression equation B1 B2 B3 NDVI SAVI RVI DVI 
Linear 0.494 0.464 0.278 0.502 0.503 0.517 0.145 
Logarithmic 0.493 0.469 0.286 0.508 0.508 0.522 0.153 
Exponential 0.466 0.459 0.255 0.536 0.535 0.572 0.182 
Polynomial-quadric 0.495 0.472 0.310 0.510 0.511 0.528 0.184 
Polynomial-cubic 0.406 0.493 0.310 0.512 0.512 0.528 0.228 
Power 0.466 0.463 0.261 0.536 0.537 0.572 0.188 
Inverse 0.488 0.469 0.294 0.510 0.510 0.525 0.161 

 

Table 5.9 Values of R² resulting from regression analysis for mean stand crown area 
(m2ha-1) of Acacia senegal trees 

Regression equation B1 B2 B3 NDVI SAVI RVI DVI 
Linear 0.418 0.440 0.253 0.489 0.490 0.494 0.157
Logarithmic 0.419 0.441 0.258 0.496 0.497 0.498 0.166 
Exponential 0.421 0.447 0.244 0.528 0.529 0.551 0.185 
Polynomial-quadric 0.420 0.441 0.267 0.500 0.501 0.504 0.218 
Polynomial-cubic 0.425 0.444 0.267 0.507 0.508 0.519 0.228 
Power 0.423 0.450 0.247 0.526 0.527 0.549 0.192 
Inverse 0.417 0.439 0.262 0.501 0.502 0.502 0.176 

 

Table 5.10 Values of R² resulting from regression analysis for mean stand tree density 
(no. of trees ha-1) of Acacia senegal trees 

Regression equation B1 B2 B3 NDVI SAVI RVI DVI 
Linear 0.170 0.173 0.057 0.288 0.288 0.303 0.184 
Logarithmic 0.178 0.184 0.064 0.288 0.289 0.304 0.190
Exponential 0.109 0.097 0.008 0.245 0.244 0.262 0.277
Polynomial-quadric 0.205 0.231 0.152 0.288 0.288 0.303 0.204 
Polynomial-cubic 0.273 0.283 0.157 0.291 0.291 0.303 0.225 
Power 0.109 0.099 0.001 0.244 0.244 0.251 0.272 
Inverse 0.184 0.193 0.071 0.288 0.288 0.303 0.196 

 

 

5.4.2 Model evaluation and selection 

After the candidate models for the four selected Acacia senegal trees’ parameters are 

obtained, the next task is to determine and evaluate which model fits best to the 

observations for each parameter.  

The coefficient of determination (R2) and RMSE provide a measure for the suitability of the 

model under condition of application of respective variables being used. In this study, 

different weights were applied to different models and transformations to the variables 

prior to least-square analysis were carried out. 
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In each individual regression model the observed values were assessed against the 

predicted values. The determination coefficient (R²) served as a guide for assessing the 

model suitability whereas the root means squared error (RMSE) and bias were indicators 

of the model predictive ability. The evaluation and selection of the best regression model 

should consider the following:  

- Model variables significant at P-value ≤ 0.05. 

- Regression model with highest value of coefficient of determination (R2). 

- Model with small value of RMSE. 

- Model with small value of bias. 

The model which meets the above mentioned requirements should be selected as the 

best fitted model for the specific parameters. Accordingly, the best regression model was 

selected for each tree parameter. Regression model of linear equation with band 1 is the 

best fitting model for the estimation of Acacia senegal tree volume (Table 5.11), while for 

the estimation of basal area and crown area of the tree, the power regression model with 

RVI is selected as the best model (Table 5.12 and 5.13). For stand tree density the linear 

regression model with RVI was evaluated and selected (Table 5.14). The coefficients of all 

models equations are presented in table 5.15. Analysis of variance (ANOVA) table related 

to these finally fitted models is presented in appendices 16, 17, 18 and 19. 

 

Table 5.11 Evaluation of the selected regression models and their corresponding  
 parameters for the Acacia senegal volume  

Equation Independent 
variable 

R2 RMSE Bias Coefficients 
Significance e e% 

Linear  B1 0.555* 0.5958 0.0303 2.051 a0*, a1* 

Logarithmic B1 0,541* 0.6049 0.0606 4.102 a0*, a1* 

Polynomial-
quadric   B1 0.574* 0.5924 0.0908 6.154 a0, a1, a2 

Polynomial-
cubic  B1 0.574* 0.5924 0.1212 8.205 a0, a1, a2,           

a3 (excluded) 

Exponential RVI 0.552* 0.3898 0.2538 17.183 a0, a1* 

Power RVI 0.551* 0.3911 0.3161 21.405 a0, a1* 
    * Significant at P-value ≤ 0.05 
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Table 5.12 Evaluation of the selected regression models and their corresponding  
 parameters for the Acacia senegal tree basal area  

Equation Independent 
variable 

R2 RMSE Bias Coefficients 
Significance e e% 

Power RVI 0.572* 0.3646 0.0528 5.784 a0*, a1* 
Exponential RVI 0.572* 0.3646 0.0536 5.874 a0, a1* 

* Significant at P-value ≤ 0.05 
 
 

 

Table 5.13 Evaluation of the selected regression models and their corresponding  
 parameters for the Acacia Senegal tree crown area  

Equation Independent 
variable 

R2 RMSE Bias Coefficients 
Significance e e% 

Power RVI 0.549* 0.3807 97.808 5.947 a0*, a1* 
Exponential RVI 0.551* 0.3807 98.945 6.013 a0 , a1* 

* Significant at P-value ≤ 0.05 
 
 
 
 
 
Table 5.14 Evaluation of the selected regression models and their corresponding 
parameters for the stand density of Acacia senegal 

Equation Independent 
variable 

R2 RMSE Bias Coefficients 
Significance e e% 

Linear  RVI 0.303* 56.249 0.0303 0.237 a0*, a1* 

Logarithmic RVI 0,304* 56.401 0.910 0.71 a0*, a1* 

Inverse RVI 0.303* 56.246 4.300 3.4 a0*, a1* 

Polynomial-
quadric   

RVI 0.303* 57.175 1.10 8..9 a0, a1, a2 

Polynomial-
cubic  

RVI 0.303* 57,175 1.10 8.9 a0, a1, a2,  
a3 (excluded) 

* Significant at P-value ≤ 0.05 
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Table 5.15 Coefficients of the selected model equations of Acacia senegal stand 
parameters 

Forest 
parameter 

Selected 
model 

Variable Coefficient* Value Std error t 

Volume Linear  B1 a0 -4.37 0.946 -4.622 

a1 0.004 0.001 6.222 

Basal area  Power RVI a0 15.737 7.383 2.132 

a1 -5.642 0.877 -6.431 

Crown area  Power RVI a0 28137.964 13789.4 2.041 

a1 -5.631 0.916 -6.144 

Tree 
density  

Linear RVI a0 626.995 136.295 4.6 

a1 -293.24 79.823 -3.674 
* Significant at P-value ≤ 0.05 
 

5.4.3 Model validation 

Validation is the evaluation of the predicted modelling results. Validation is not the same 

as measuring the goodness of fit. Goodness of fit is based on the same data used for 

fitting the model, while validation is based on independent data (Lesschen et al., 2005). 

The basic idea behind the model validation is to examine if a fitted model provides 

‘acceptable’ performance when used for prediction. If the model provides acceptable 

performance with a small error and a low variance, it can be considered appropriate. 

Otherwise, the model is inappropriate and needs to be adjusted or even re-fitted if it is 

going to be used at all. The achievable goals of validation are to increase the credibility 

and gain sufficient confidence about a model, and to ensure that model predictions 

represent the most likely outcome of the reality (Huang et al., 2003). 

Model validation is as important as modelling itself. The model validation was applied for 

data collected from only 10 sample plots, due to the time problem during the field work.  

The predicted values were plotted against the observed values for the all models functions 

of Acacia senegal tree.  

Graphical validation is extremely powerful in detecting model inadequacies and helping to 

devise a strategy to correct. It is sometimes necessary to validate a model further by 

combining the graphical approach with statistical methods (Huang et al., 2003). Visual or 

graphical inspection of model predictions involves visual examination of the fit of the 

model based on validation data, and subsequently the decision whether the fit appears 

reasonable. The best linear relationship in this study between the observations and the 

predictions occur when the slope value is close to one with intercept of zero. Therefore 
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the good model precision is observed with function that has a line slope value very close 

or equal to one (Fig. 5.3). 

Confidence interval were estimated and named as Upper Confidence Interval (UCI) and 

Lower Confidence Interval (LCI) based of the fit line (linear model) of the observations and 

predictions to detect the presence of the outliers. The outliers were statistically determined 

using the residual standard deviation ( ˆ
yS ) to define the UCl and LCI (boundaries) of 

confidence interval 95 % of linear regressions as ‘linear model ± 2 ˆ
yS . The residual 

standard deviation ( ˆ
yS ) values were calculated for the four models giving 0.19, 19.66, 

0.17 and 160.61 for volume,  stand density, basal area and crown area of Acacia senegal 

stands, respectively. Residual standard deviation ˆ
yS is defined with the function (Pretzsch, 

2009): 
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Where: iy is the observed value,  ˆiy  is the estimated value and (n – 2) is degree of 

freedom for model residuals.  

The confidence interval (UCI and LCI) comprises 95% of observations that can be 

explained by the trend line. When evaluating accordance of the four model functions with 

the confidence interval, the presence of outliers has also been examined for the volume, 

stand density, basal area and crown area of Acacia senegal tree functions in the 

validation process. All data points located beyond the confidence limit were considered as 

outliers. Accordingly, four outliers were detected with volume, two outliers with the stand 

density, three outliers with basal area and five outliers with the crown of the tree as 

illustrated in fig. 5.3. The coefficients of determination for the four validated models are 

low due to the small number of validation data (only 10). Therefore, further validation 

process should be applied in the future with increasing the number of validation points in 

order to improve the performance of the models. Then the models can be applied for 

estimation of Acacia senegal tree parameters in gum arabic in sandy soils considering the 

acquisition date of the satellite imagery in dry period. 
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Fig. 5.3 Observations versus predictions for Acacia senegal stand parameters,  
(A) volume, (B) stand density, (C) basal area  and (C) crown area 

 
 
5.5 Discussion and Summary 

The estimation of the Acacia senegal trees’ variables by optical remote sensing data was 

based on empirical relationships formulated between the forest variables measured in the 

field and ASTER bands and spectral vegetation indices (NDVI, SAVI, DVI and RVI). The 

study revealed a positive relationship between all studied tree parameters and the ASTER 

bands (VINR). The empirical relationships are affected by various factors, including tree 

phenology, canopy closure, understory vegetation and background reflectance (Spanner 

et al., 1990). Acacia senegal trees have different growth characteristics across the 

C D

BA 
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growing seasons in autumn and summer periods, resulting in a different spectral response 

from phenologic changes through the season. The leaves of the Acacia senegal trees 

during the dry season (the study time) have a pale green colour indicating the time of 

tapping. Therefore, understanding and learning of details of the tree species phenlogy is 

required. 

Several forest characteristics show a relationship with optical satellite data and methods 

for estimating features like total biomass, stem volume, basal area, and tree species 

composition, have been developed (Poso et al.,1989; Ripple et al. 1991; Katila and 

Tomppo, 2001) The remotely sensed imagery contains spectral information on vegetation 

from the reflection of the electro-magnetic wavelengths by the chlorophyll pigments and 

the physiological structure of mesophyll tissue of leaf (Boyd and Danson, 2005). 

Therefore, the reflectance of the Acacia senegal in the dry season will decrease due to 

the reduction of chlorophyll contents in the leaves.  

Conclusions about relationships between Acacia senegal parameters and remotely 

sensed data that various results. ASTER bands and vegetation indices (except DVI) are 

significantly correlated (p ≤ 0.05) with stand density, volume, crown area and basal area 

explaining positive correlation with the bands and negative one with the vegetation 

indices. A study conducted by Salvador and Pons (1998) using SPOT imagery stated a 

positive correlation between the near-infrared and the forest variables. The weak 

correlations with the DBH, height and crown diameter can be explained as results of many 

factors such as forest condition, structure and species composition. Stenberg et al. (2008) 

detailed the reasons that influence the relationship between forest attributes and satellite 

data. He stated the contribution of the remotely sensed spectral signal from the 

background typically is composed of mixed green understory, and how to separate the 

signals of the forest canopy layer and the understory from each other for correct 

interpretation of tree canopy biophysical variables from optical satellite images. Some 

studies found that shadow has an effect on the correlation between spectral reflectance 

and forest attributes (Ripple et al., 1991; Trotter et al., 1997). 

The highest correlation value was found between Acacia senegal tree volume and single 

band B1. Franklin (1986) and Horler and Ahern (1986) stated that strong correlation 

between spectral data and wood volume tends to be stronger for younger stands than 

older stands. The Acacia senegal trees’ wood is a sources of energy for the local people 

in the gum arabic belt when harvested in the end of the rotation in the agro-forestry 

system.  
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The findings concerning relationships (functions) between Acacia senegal parameters and 

remote sensing data as presented in this study can be used for estimation of volume, 

stand density, basal area and crown area of Acacia senegal trees in the gum arabic belt in 

sandy soils using data acquired in dry season. The relationship between Acacia senegal 

stand parameters and remotely sensed data will encourage the continuation of this 

research study. However it is advisable in the future that further studies should  include an 

increasing number of sample plots, an improvement of some aspects of the 

measurements (e.g. very high resolution imagery, passive remote sensing) and the 

establishment of permanent sample plots to allow periodical monitoring. In addition to that, 

application of two-phase sampling with resgression estimators is a realistic and more 

efficient option than single-phase sampling (Köhl, et al., 2006). 
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Chapter Six  

A comparison of Pixel-based and Object-based Approaches  
for Land Use Land Cover Change Classification  

 

 

6.1 Introduction 

Land use land cover classification is one of the most important applications of remote 

sensing data. Either crisp (per pixel) or fuzzy (sub-pixel) classification may be performed 

to obtain land use land cover maps. However, in general and particularly in medium 

spatial resolution images such as Landsat and ASTER, a majority of pixels may be mixed. 

The gum arabic belt contains large areas of land with little land resources information. In 

Sudan most land use land cover classifications were derived from remotely sensed data 

using pixel-based methods of classification mainly by maximum likelihood classification 

(hard classification) as the commonly used technique for classification. The object-based 

approach is used in this study as a novel approach to extract thematic information on land 

use land cover in dry lands and to attempt to ascertain to what extent the Implementation 

of that methodology might lead to improvements of classification in arid and semi-arid 

areas. This process was implemented using Definiens eCognition 7.1 software. The 

process involved multi-resolution segmentation, classification (training samples selection, 

the application of membership functions with fuzzy logic and nearest neighbour 

classification) and accuracy assessment (Fig. 6.1). Pixel-based and object-based 

approaches were successfully applied to extract thematic information about land use land 

cover in the study area from satellite imagery. The comparison of both techniques was 

based on a visual analysis of the respective thematic maps outputs and on an evaluation 

of the corresponding accuracy assessment measures (overall, producer’s and user’s 

accuracies, kappa coefficient). The comparison and analysis of these two classification 

approaches based on ASTER imagery acquired in November 2007 using the three 

spectral bands of Visible/near Infrared (VNIR). A 20x20 km subset of geometrically and 

radiometrically corrected data was selected to focus the analysis on a specific subset of 

the study area. The classification applied the same defined land use land cover classes as 

defined in section (3.2.7). These classes are bare and farm land, grass and bush land, 

forest dominated by Hashab, mixed woodland and residential areas. 
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Fig. 6.1 Flowchart for image processing and classification using object-based and pixel- 
based approaches (developed by author) 
 

6.2 Image Segmentation 

Before object-based classification could be performed, the ASTER image was segmented 

into image objects. Segmenting an image into meaningful objects is a fundamental step in 

object-oriented image analysis. From the point of view of remote sensing, most often 

segmentation of satellite imagery in semi-arid areas and in the gum arabic belt in general 

is a difficult problem due to mixed pixels, spectral similarity and the textural appearance of 

many land cover types. A variety of segmentation techniques have been applied to remote 

sensing imagery in the study. 

The multi-resolution segmentation technique was used to build up a hierarchical network 

of image objects that allowed the definition of relations between neighboring objects of 

different size (Baatz et al., 2002). The application of multi-resolution segmentation is 

suitable for the segmentation of multi-spectral images such as ASTER imagery (Baatz et 

al., 2000). Based on eCognition software, objects are extracted from the image in a 
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number of hierarchical segmentation levels. The term “segmentation” means: “an 

operation that creates new image objects or alters the morphology of existing image 

objects according to a given criteria” (Definiens, 2007). Multi-resolution segmentation is a 

bottom-up segmentation strategy assembling objects to create larger objects and is based 

on the chosen scale, colour and shape parameters. Each parameter can be weighted 

from 0 to 1. The scale parameter is the most important determining factor of multi-

resolution segmentation (Su et al., 2008). With regard to the size of objects which 

determines the average image object size the higher the scale parameter value, the larger 

the image object becomes.  

The multi-resolution segmentation approach was used and constructed hierarchical 

network of image objects at different scale levels. Four levels of scales (200, 100, 50 and 

25) combined with shape factor 0.7 and compactness 0.7 was tested and one optimum 

set of scale parameter was selected for the study (Table 6.1). Within each segmentation 

level, an image object is not only linked to its neighbours, but also to its super-object and 

its sub-object providing useful context information for classification analysis (Hall et al., 

2004). In this study, segmentation level 4 of scale parameter 25 was selected for 

classification as it gave the best result in visualization of land use land cover classes 

based on colour and form homogeneity. The segmentation parameter 25 produced 

homogeneous segments for the optimal separation compared with the other levels. 

Table 6.1 Segmentation parameters and criteria 

Segmentation level Scale parameter Shape factor Compactness Number of 
objects 

Level  1 200 0.2 0.7 1,311 
Level  2 100 0.2 0.7 4,935 
Level  3 50 0.2 0.7 18,917
Level  4 25 0.7 0.7 79,614 

 

6.3 Image Classification 

6.3.1 Object-based classification 

6.3.1.1 Feature extraction 

A good feature analysis is a basic prerequisite for successful work in object based image 

analysis. After the subset image has been segmented with the best selected scale 

parameter (25) into image objects, further analysis could be applied for the extraction of 

the suitable features for classification. For each individual image object, more than 150 

object properties, which are also known as object features are provided (Definiens, 2007). 

Each object class has characteristic features enabling it to be separated from other object 
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classes to a greater or lesser extent (Benz et al., 2004; Blaschke, 2005). The feature 

extraction and analysis was applied based on 32 selected features to identify the 

characteristics of each feature of the objects determing land use land cover classes, and 

to find the suitable threshold values for class separation (Table 6.2). To achieve this 

measurement and identify the characteristic features for the individual object classes for 

the classification, separability and threshold calculation was used (Nussbaum et al., 2006; 

Carleer and Wolff, 2006; Nussbaum, 2008). Carleer and Wolff (2006) used the 

Bhattacharyya distance (B) for calculating class separability and feature selection for 

mapping urban areas, and Nussbaum et al., (2006) developed a tool called SEaTH 

(Separability and Thresholds), designed to determine suitable features and their threshold 

values in the Definiens software.  

In the nearest neighbour classifier, a representative set of training samples of the image 

objects was declared for each land use land cover class. The algorithm searches for the 

closest sample image object in the feature space for each image object. The training 

samples used for the former classification were carefully chosen depending on the field 

knowledge. On the basis of these representative training data for each land use land 

cover class, the probability distribution for each class was estimated and used to calculate 

the separability between two land use land cover classes.  

Under the assumption of normal probability distributions, the procedure identifies the 

optimum features based on Bhattacharyya distance (B) and Jeffries-Matusita distance (J) 

for two classes C1 and C2 (Bhattacharyya, 1943; Fukunaga, 1990; Richards and  Jia, 

1999; Nussbaum, 2008). The study distinguished between the two classes C1 and C2 

followed by using a threshold of separation (T). The thresholds were determined by 

Bayes’ rule as (Nussbaum et al., 2008).  
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Where mi and 2
iσ , i = 1, 2, are the mean and the variance, respectively, for the two feature 

distributions. 
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The Jeffries–Matusita (J) distance between a pair of probability functions is the measure 

of the average distance between the two class density functions (Richards and Jia, 2006). 

The range of (B) falls in half-closed interval [0,∞ ]. This range is transformed into the 

closed interval [0, 2] by using a simple transformation of Jeffries Matusita distance 

measure (J).  When calculating the separability between the two classes, the features 

which have high Jeffries-Matusita value (J = 2), is the optimum features for separation 

between the two classes. 

The feature extraction and analysis using the separability and the threshold calculation 

based on the 32 selected features (Table 6.2). Separability was used to determine the 

best combination of features on average at distinguishing among the given classes.          

A measure of separability is typically computed for all possible pairs of classes and for all 

combinations of selected features (Landgrebe, 2003; Jensen, 2004). The results of all 

possible combinations for the separation of the land us land cover classes are presented 

in table 6.3. In the separation between two land use land cover classes, only two features 

were selected when the value of (J) is greater than 1.7, otherwise more than two features 

were selected when the (J) value is less than 1.7 in order to increase the classification 

quality and permit best separation between these two classes. Therefore all objects in 

bare and farm land class could easily be separated from those in the forest dominated by 

Hashab trees when the (J) value for feature brightness is 1.91 and 1.85 for mean layer 1 

is. In other words, all objects with thresholds (T) for feature brightness greater than 

1.91653 should be assigned to bare and farm land class, and all objects with thresholds 

(T) for feature mean layer 1 greater than 1.85754 also should be assigned to bare and 

farm land class. All other combinations between the other land use land cover classes in 

table 6.3 should be interpreted in this way.  

Table 6.2 Feature categories used for seperability and threshold 

Type Feature 
Customized NDVI, SAVI, RVI, Ratio (IR/R), (IR-G), (IR-R), (R-G) 
Layer Value Brightness, Max. Diff., Mean (L1, L2, L3), Stddev (L1, L2, L3)
Texture After Haralick GLCM* Homogeneity (all dir.) (L1, L2, L3, all dir) 

GLCM Mean (all dir.) (L1, L2, L3, all dir) 
GLCM Contrast (all dir.) (L1, L2, L3, all dir) 
GLCM Dissimilarity (all dir.) (L1, L2, L3, all dir) 

     * Gray Level Co-occurrence Matrix    Stddev = Standard deviation 
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Table 6.3 Object features used for the separation of classes using seperability (J) and  
 threshold (T) 

No. Classes separation  Feature Seperability 
(J) 

Direction Threshold 
(T) 

1 Bare and farm land  from  
forest dominated by 
Hashab 

Brightness 1.91653 < 3248.64 
Mean Layer 1 1.85754 < 2009.00 

2 Bare and farm land from  
grass and bush  

Brightness 1.91275 < 3251.27 
Man Layer 1 1.76075 < 2046.27 

3 Bare and farm land from  
mixed woodland 

Brightness 1.9998 < 2997.40 
Mean Layer 1 1.99976 < 1795.90 

4 Forest dominated by 
Hashab form  
grass and bush 

Brightness 1.6921 > 1325.10 
Ratio 1.0404 < 1.6442 
Mean Layer 1  0.85241 > 1321.12 
Mean Layer 2 0.75248 > 1423.1 

5 Forest dominated by 
Hashab from  
mixed woodland 

Brightness 1.16844 < 2411.30 
Ratio 0.82175 < 0.31251 
Mean Layer 1 1.0000 > 1470.99 
Mean Layer 2 0.95889 > 2066.00 

6 Grass and farm from  
mixed woodland 

NDVI 0.97539 > 0.24453 

  

 

6.3.1.2. Nearest neighbour classification 

The nearest neighbour classifier is a function for the meaningful separation of classes 

when performing in the same feature space. It is a soft classifier based on fuzzy logic, and 

takes into consideration the class description, class mixture, and pixel radiometric 

uncertainty. During classification, each image segment or object is treated as the unit of 

analysis. The use of the nearest neighbour classifier is recommended when either the use 

of a complex combination of object features is needed or the image analysis approach 

has to follow a set of defined sample areas and it is not clear which parameters you use 

(Definiens, 2007). 

There are different types of expressions and methods which can be used in class 

description such as thresholds, membership functions, similarities and samples for 

nearest neighbour classification. In this study the nearest neighbour classification 

combined with the membership functions (fuzzy logic) is used for the class description 

(Baatz et al., 2004). The fuzzy logic theory is founded on the fuzzy set theory as derived 

by Zadeh (1965). 

When separating pair of classes with low separability value, application for more than two 

features should be applied to improve the classification results with efficient separation. 

The classification rules based on fuzzy membership functions are highly convertible. 
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Ecognition protocols developed in this study can be transferred and applied (with some 

threshold modification) to other datasets. Separation features with low separability values 

will lead to miss-classification between the land use land cover classes. This problem was 

solved by shifting and adjusting the threshold in a sufficient distance from the mean of the 

class of interest using feature space. 

Fuzzy logic is a mathematical approach to quantify uncertain statements. The basic idea 

is to replace the two strictly logical statements Yes and No by the continuous range of 

[0…1], where 0 means exactly No and 1 means exactly Yes. All values between 0 and 1 

represent a more or less certain state of Yes and No (Tizhoosh, 1998; Nauck et al., 1994). 

In order to create memberships for fuzzy logic membership functions for the features in 

table 6.3 have to be generated for class description. The membership functions were 

inserted and defined manually in the sample editor window for some classes with 

significant fuzzy derivations of separation (Fig. 6.2 and 6.3). Fuzzy description allows the 

assignment of classes according to the membership degree much better than crisp 

threshold values (Baatz et al., 2004). Fuzzy logics assign objects to more than one class 

and therefore better represent the imprecise nature of the data. In the case of a fuzzy 

logic threshold value, membership of a class varies depends on the feature intensity so 

that an object may belong to two objects classes. The object is then assigned to that 

object class to which it has the highest membership. 

 

 

               
 
 
Fig. 6.2 Examples of a membership functions used for grass and bush land class features: 
Brightness (left), Ratio B (centre), NDVI (right) 
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 (A)             (B)           (C) 

   
 

  (D)                                           (E) 

                              
  
Fig. 6.3 Class description of the land use land cover classes with membership  
functions fuzzy logic. (A) bare and farm land (B) forest dominated by Hashab (C) grass 
and busd land (D) mixed woodland (E) residential areas 

 

 

Finally the land use land cover classes were derived by classification using the nearest 

neighbor classifier with the defined membership functions (fuzzy logic) for each class. 

Each class was classified separately. Firstly bare and farm land class was separated 

using two features then forest dominated by Hashab (using three features), grass and 

bush land (using four features), mixed woodland (using one feature) and the residential 

areas (using one feature) were classified  

6.3.2 Pixel-based classification  

Digital pixel-based methods aim to offer objective and repeatable procedures for 

identifying land use land cover change. These approaches are referred to as pixel-based 

methods given that each pixel is compared from one date to another independently from 
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its’ neighbours. The maximum likelihood technique was selected for supervised 

classification and for comparison with the object-based classification. Maximum likelihood 

assumes that statistics for each class in each band are normally distributed. Probabilities 

that a given pixel belongs to an arbitrary class (Gaussian value distribution) are computed, 

and the pixel is assigned to the most likely of these within a probability threshold. The 

ASTER image was classified stepwise following the procedure highlighted in (3.2.7). The 

results of pixel-based classification are presented in table 6.4 and the map respective in 

fig 6.4 as well as a comparison with the results of object-based classification.  

 
Table 6.4 Land use land cover classes derived from pixel-based and object- based           
classifications 

Class name Area 
(ha) 

% Area 
(ha) 

% 

MLC1 OBC2 
Bare and farm land 7611.8 18.62 6197.6 15.16 
Grass and bush land 21731.8 53.16 24970.0 61.08 
Forest dominated by Hashab 8183.9 20.02 8428.5 20.60 
Mixed woodland 2736.4 6.69 667.5 1.63 
Residential area 615.2 1.50 615.2 1.50 

   1 Maximum likelihood classification   2 Object-based classification 

 

 

The visual interpretation and comparison of results of mixed-based versus object-based 

classification of the respective image revealed some differences between the land use 

land cover classes (Fig. 6.4). Both methods produce aggregation of pixels representing 

different land cover classes. The pixel-based approach creates individual pixels or group 

of pixels while the object-based approach creates multi-pixel features. The bare and farm 

land as well as grass and bush land classes are more or less classified with the same 

area of coverage by the two approaches (Table 6.4). The discrimination of mixed 

woodland class is confused with other classes in object-based classification due to the 

similarly of pixel-based spectral information between the classes. Grouping of pixels to 

objects in the object-oriented classification method decreases the variance within the 

same land cover type by averaging the pixels within the objects, which prevents the 

significant salt and pepper effect in pixel-based classification (Laliberte, et al., 2004). 

Therefore, the object-oriented classification approach is becoming more suitable for the 

needs of mapping when dealing with the high resolution imagery. 
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Fig. 6.4 Results of land use land cover classification for, (A) pixel- based and (B) object-
based approaches 
 

6.4 Accuracy Assessment 

Accuracy assessment was applied for both classification methods (pixel-based and 

object-based) using the calculation of a confusion matrix (Congalton and Green, 1999). 

The accuracy assessment was carried out based on the classification results for the five 

land use land cover classes selected in the study area. In each method, the accuracy 

assessment included the calculations of user’s and producer’s accuracy, overall accuracy, 

and the Kappa coefficient of agreement (Table 6.5 and 6.6). The producer’s accuracy is 

an indication of how well training set pixels of the given cover type are classified, while the 

user’s accuracy is a measure of commission error and indicates the probability that a pixel 

classified into a given category actually represents that category on the ground. An 

accuracy assessment of the classification results was performed using 48 ground control 

points (using ERDAS IMAGINE software). The results obtained in this research indicate 

that the object-based approach does not lead to substantial improvements in the land use 

land cover classification. On the contrary, the pixel-based approach performed slightly 

 
 

Selected area for detailed description of 
differences between the classifications 
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better than the object-based approach in land use land cover classification in the semi-

arid land of the gum arabic belt.  

The overall accuracy of the classification produced by the pixel-based method was 

72.92%, with Kappa statistic of 0.6259, whereas the overall accuracy and Kappa statistic 

of the classification produced by the object-based method were 54.17% and 0.3810, 

respectively. The pixel-based method also provided higher user’s accuracy for bare and 

farm class and grass and bush land class. The producer’s accuracies of the pixel-based 

approach were as follows: bare and farm land 90.91%, grass and bush land 58.33%, 

forest dominated by Hashab 75%, mixed woodland 100% and residential areas 100%, 

while the computed user’s and producer’s accuracies of object-based classification were 

as follows: bare and farm land, 90.91%; grass and bush land, 20%; forest dominated by 

Hashab, 37.04%; mixed woodland, 100% and residential areas, 100%. The mixed 

woodland and residential areas gave high accuracies, because the mixed woodland is 

represented by only two training points and the residential areas were masked out before 

the classification. 

The most significant misclassification between the two classification approaches occurred 

in the mixed woodland and grass and bush land classes (Table 6.4). The mixed woodland 

class seems to be underestimated while the grass and bush land class seems to be 

overestimated in object-based classification compared with the pixel-based approach. 

This is due to medium resolution of the multi-spectral bands of the ASTER image (i.e. 15 

m) which is not be sufficient for classification of heterogeneous nature of the land use land 

cover classes in the study area  (mixed pixels problem).  

Table 6.5 Classification accuracy assessment of pixel-based approach 

 
Class name   

Reference   
totals 

Classified 
totals 

Number 
correct 

Producers 
Accuracy 

(%) 

Users 
Accuracy 

(%) 
Bare and farm land 14 11 10 71.43 90.91 
Grass and bush land  15 24 14 93.33 58.33 
Forest dominate by 
Hashab 

13 8 6 46.15 75.00 

Mixed woodland 2 1 1 50.00 100.00 
Residential area 4 4 4 100.00 100.00 
Total 48 48 35   
Overall  classification accuracy = 72.92% 
Overall Kappa Statistics = 0.6259 
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Table 6.6 Classification accuracy assessment of object-based approach 

 
Class name   

Reference   
totals 

Classified 
totals 

Number 
correct 

Producers 
Accuracy 

(%) 

Users 
Accuracy 

(%) 
Bare and farm land 14 11 10 71.43 90.91 
Grass and bush land  15 5 1 06.67 20.00 
Forest dominate by 
Hashab 

13 27 10 76.92 37.04 

 Mixed woodland 2 1 1 50.00 100.00 
Residential area 4 4 4 100.00 100.00 
Total 48 48 25   
Overall  classification accuracy = 54.17% 
Overall Kappa statistics = 0.3810 

 

6.5 Discussion and Summary 

This study has examined both pixel-based and object-based classification methods. 

Quantitative results from this study give a good overview for understanding the differences 

in performance of the two approaches for the same data. Considerable variability in the 

performance of these methods was observed. 

The first reason for differences between pixel-based and object-based image analysis 

related to the fact that the processing of the object oriented image analysis depends on 

units (segments, objects) and not on single pixels. Secondly, the object oriented image 

classification depends on a soft classifier which is based on fuzzy logics. One advantage 

of a soft classification lies in the possibility to express uncertainties about the description 

of classes. Finally, unlike pixel-based classification, the object-oriented approaches 

produce an output which is composed of segments that can be easily exported to GIS for 

creating and updating the information (Geneletti et al., 2003). In addition to that object-

based analysis combines spectral and spatial information as well as the texture and 

context information in the image (Flanders et al., 2003). Advantages of object-oriented 

analysis are meaningful statistic and texture calculation and an increased uncorrelated 

feature space using shape (e.g. length, asymmetry, etc.) and topological features 

(neighbour, super-object, etc.). 

It also becomes clear that it is not only spectral values which lead to the best separability, 

but also shape and texture features. These facts favours the assumption, which the 

classification result based on an object-based classification in contrast to the pixel-based 

method would show sign improvement due to the broader feature basis (Al Fugara et al., 

2009). 
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Any how a number of misclassifications between spectrally similar classes were observed 

when using the object-based classification compared to the conventional techniques such 

as maximum likelihood classifier. It was found that due to the medium resolution of 

ASTER imagery (15 m), segmentation objects in many cases consist of considerable 

heterogeneity especially in the semi-arid areas.  

The difference between the classification results of the two approaches is evident when 

comparing the thematic outputs visually. The object-based method misclassifies pixels 

especially in spectrally heterogeneous classes like mixed woodland and Hashab forests. 

However, the pixel-based approach generally performs better since most of the land use 

land cover classes selected for classification are highly homogeneous. In spite of the 

mentioned advantages of implementing the object-based approach, this research 

demonstrates that the pixel-based approach is still were efficient when used for land cover 

classification in semi-arid areas based on medium resolution imagery. 

Several studies which used object-based classification in dry lands using Spot, TM and 

ETM+ imagery, found that the object-oriented approach gave more accurate results, 

Including higher producer’s and user’s accuracy for most of the land cover classes than 

the results achieved by pixel-based classification algorithms (Al Fugara et al., 2009; Im et 

al., 2008: Matinfar et al., 2007; Repaka and Truax, 2004). Previous research by Whiteside 

and Ahmad (2005) has indicated the advantages of using object-based nearest neighbour 

classification for separation of heterogeneous land cover categories. 

 Further research should investigate the effects of incorporation of high resolution imagery 

in object-based methods to support the identification and extraction of land use land cover 

in semi-arid areas. However, because object-based classification generates various 

features, assessment of those feature properties needs more in depth studies. 

Given the above mentioned aspects, the most important contribution of this research with 

respect to remote sensing may be summarized as follows. The mixed pixel problem 

associated with conventional medium spatial and spectral resolution satellite imagery of 

semi-arid lands can be overcome by moving from conventional crisp per-pixel 

classification to soft spectral object-based approaches when using very high resolution. In 

other words, the pixel-based approach with spectral imagery should be most reliable for 

the medium resolution imagery (i.e ASTER), and when the very high resolution data is 

available the object-based approach should applied.  

It is concluded that object-oriented image classification does not perform better than pixel-

based image classification in mapping land use land cover classes in the gum arabic belt 
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lands based on moderate, spatial, resolution satellite data such as ASTER. This due to 

the fragmented and discontinuous spatial distribution of pattern of land use land cover. At 

the 15 m resolution level, scale does not seem to exert a noticeable impact on 

improvement of the object-based classification accuracy. 
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Chapter Seven 

Conclusions and Recommendations 

 

7.1 Conclusions 

The gum arabic belt in Sudan offers environmental, social and economical benefits to the 

gum producers and to the country. Firstly, income is the most important benefits from the 

gum based system, followed by combating of the desertification by Acacia senegal trees 

in large areas in the belt. Acacia senegal trees are producing high quality of gum arabic. 

The application of the results and findings of this research is not only restricted to the 

study area in the gum arabic belt in Kordofan region, but extents to other areas located in 

the gum arabic belt considering the similarity between the two areas. These findings are 

results of the conducted study in three selected areas in the gum arabic belt in Kordofan 

region using Landsat and ASTER imageries representing four dates from year 1972 to 

2007. In each sub-objective different remote sensing data, spectral reflectance extraction 

and statistical analysis of the data were applied. The research contributes to the 

fundamental concerns of resources management including forestry and land use with 

developed approaches and methodologies using remote sensing and GIS and providing 

useful information for specific purposes. Conclusions of the major outcomes of the 

research are presented in this part as follows. 

7.1.1 Land use land cover analysis in the gum arabic belt 

Application of remote sensing integrated with GIS in the gum arabic belt plays an 

important role in identifying; classifying and analysing the distribution of land use land 

cover classes.  The gum arabic belt in Kordofan includes five land use land cover classes; 

bare and farm land, grass and bush land, forest dominated by Hashab, mixed woodland 

and residential areas. The study has provided a consistent method for land use land cover 

stratification and mapping by specifying the NDVI values range for each class. Acacia 

senegal trees present low value of NDVI ranging from 0.255-0.334 due to the 

Characteristics of the tree phenlogy in the dry period having pale green leaves. NDVI 

ranges for the land use land cover classes settled in this research could be further applied 

in the gum belt with more training points. Also Acacia senegal trees can easily be 

separated from the other classes using ASTER imagery, which found covering an area of 

21% and 24% in the two areas. Therefore, this information is important for the forest 
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managers to formulate new strategies and polices for natural resources planning and 

management and for other purposes in the gum arabic belt.  

The land use land cover structure in the gum arabic belt in Kordofan composed mainly of 

forest trees (Hashab and mixed woodland) as well as grass and bush land with a total 

area accounting 82.09% and 90.60% in the year 2007, based on the classification of the 

two areas A and B, respectivily. The structure of the land use land cover classes in the 

gum arabic belt has an obvious change and a reciprocal conversion indicating the trends 

and conditions caused by the human interventions as well as ecological impacts for 

Acacia senegal trees. The change is characterised mainly by decreasing of forest cover 

(Hashab and mixed woodland) and increasing of residential areas. Forest resources 

(Hashab and mixed woodland classes) were drastically lost in the gum arabic belt in North 

Kordofan during year 1972 to 1999 and slightly increased in during year 1999 to 2007. 

The increase of the Acacia senegal cover within 1999-2007 was a result of the awareness 

of the local people with the importance of the trees to human and to environment. This 

finding leads to accept the first hypothesis which stated the change of land use land use 

land cover in the gum arabic belt during the last 35 year. The loss of Acacia senegal cover 

during this period is equivalent to 25%, while the residential areas increased during year 

1972 to 2007 by 87%. The sand dune movement towards the gum arabic belt is carrying 

problems as it will accelerate the desertification process. Acacia senegal trees exist up to 

latitude 13° 26° North which can indicates the northern border of the gum arabic belt, 

therefore further research is needed to delineate the borders of the belt. In the the gum 

arabic belt, range land covers a large areas (40%) which indicates the potentiality of the 

belt for livestock raising which form the second activity in the area. Understanding of the 

past and current changes of land use in the gum arabic, will give the ability to predict and 

broadcast the consequences of changes in the future. The implementation of remote 

sensing and GIS technologies in the gum arabic belt following the presented 

methodologies will allow for a far wider range of assessing and mapping land cover in 

general and Acacia senegal trees in particular. 

The application of the multi-temporal imagery to monitor the dynamics of vegetation cover 

change in the gum arabic belt offers advance opportunities for in-depth description of 

vegetation by means of earth observation data. The classification of vegetation in the gum 

arabic belt is an important component in the planning and management of Acacia senegal 

trees. 
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7.1.2 Integration of terrestrial forest inventory and remotely sensed data 

The study came out with some regression equations for the estimation of tree volume, 

stand density, tree basal area and tree crown area of Acacia senegal trees in gum arabic 

belt by using remote sensing data (Table 5.15). These equations could be widely used 

and applied for monitoring of Acacia senegal tree parameters in the gum arabic belt with 

considering the similarity between the areas. Also application of these methods of 

equations will help in preparing and upgrading of vegetation inventories for large areas in 

a short period of time in the gum arabic belt, and will be more easy obtainable with the 

help of space borne remote sensing. In addition to that, application of remote sensing in 

forestry will allow respective authorities to set up sustainable and appropriate monitoring 

of the forestry in general and for gum arabic belt as particular. 

Acacia senegal trees in Elhemmaria forest have a mean volume, a mean height and             

a mean diameter with 1.41 m3ha-1, 3.77 m and 9.16 cm, respectively. The stocking density 

of Acacia senegal trees stands in Elhemmaria is low and consists of 123 tree ha-1 as 

mean tree density, which reflects the loss of the trees due to the different factors such as 

farming extension, illicit felling, grazing and natural hazards. The parameters of Acacia 

senegal trees are positively correlated to each other. ASTER bands (VNIR) and 

vegetation indices (except DVI) significantly correlated (p ≤ 0.05) with stand density, tree 

volume, tree crown area and basal area. The ASTER imagery is suitable for estimation of 

forest structure parameters in semi-arid areas of the gum arabic belt, and further research 

could be conducted using very high resolutions imagery to improve the performance of the 

models. These findings accepted the second hypothesis which indicated the presence of 

relationship between the terrestrial forest inventory of Acacia senegal (L.) Willd. with 

remotely sensed data in the gum arabic belt.  

The application of 2x2 and 3x3 windows methods are successfully extracted the spectral 

reflectance of Acacia senegal trees in Elhemmaria forest. These two methods are useful 

and simple and could be applied for extraction of remotely sensed data in different regions 

and areas. The volume of Acacia senegal trees is highly correlated with single band B1 of 

ASTER imagery. This due to the characteristics of Acacia senegal trees growth during the 

year, resulting in a different spectral response from phenologic changes in each season. 

Therefore, the decease in spectral reflectance of the Acacia senegal trees is due to the 

reduction of the chlorophyll contents in the leaves. 

These developed equation models of Acacia senegal parameters using the remote 

sensing data are applicable for estimation of the Acacia senegal tree parameters in other 

regions in gum arabic belt located in sandy soils using data acquired in dry season. 



Chapter 7: Conclusions and Recommendations 

115 
 

7.1.3 Object-based and pixel-based approaches for image classification 

The comparison of object-based and pixel-based image classification was successfully 

analysed for land use land cover in the gum arabic belt with better understanding of the 

performance difference between the two approaches applied for the same data. The pixel-

based approach performed slightly better than the object-based approach in land use land 

cover classification in the semi-arid land of the gum arabic belt with overall accuracy 

72.92%, and overall Kappa statistics 0.62. The object-based classification has overall 

accuracy 54.17 %, and overall Kappa statistics 0.38. Therefore the pixel-based approach 

is reliable for the medium resolution imagery (i.e ASTER) in the gum arabic belt, otherwise 

object-based approach should be applied when high resolution data is available. The 

application of multi-spectral segmentation for the ASTER imagery gave the best segments 

for visualization with parameters scale of 25 in the gum arabic belt using object-based 

classification.  

This finding rejected the third hypothesis which stated the reliable and better performance 

of object-based classification when compared to a pixel-based classification (maximum 

likelihood classification) in the gum arabic belt using ASTER imagery.  

7.3 Limitations of the Study 

Some limitations are encountered in this study and are summarised as follows 

1- The scene area coverage and the irregular swath of ASTER imagery reduce the 

possibility for having multi-temporal data covering whole area when compared to 

Landsat imagery. The study overcame this limitation by acquiring two scenes of 

ASTER imageries presenting two study areas (30x30 km) within the landsat scene 

in the gum arabic belt. 

2- Limitation of the remotely sensed information when using low-costs optical 

satellites such as landsat. The image information is insufficient for studying the 

height of the trees. To overcome this problem, active imageries such as RADAR 

could be used. 

3- Inaccessibility and absence of infrastructure (i.e. roads) in the gum arabic areas 

hindered the coverage of the study area during the field work for ground truth 

collection. The study used sampling procedure to cover and to represent the 

areas. 
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4- Lack of periodical and historical records on climate, forestry and socio-economics 

in the gum arabic belt.  

5- A limitation with remote sensing and satellite imagery in distinguishing between 

certain vegetation classes, due to the common heterogeneity and spectral 

similarity which create some problems during the classification of the land use land 

cover. In other words this is known by mixed pixel problems in the arid and semi-

arid areas. 

6- The different characteristics of Acacia senegal trees phenlogy in the year, give 

different spectral reflectance in each season. 

7.3 Recommendations and Future Outlooks 

Gum arabic production is an important source of income for smallholders in central Sudan 

and for environmental and socioeconomic sustainability. The deforestation and 

degradation coupled with difficult ecological conditions has seriously reduced forest cover 

in arid and semi-arid areas. Also the gum arabic belt which is suffering from increased 

deforestation due to drought and fluctuatation in gum prices. This study combined remote 

sensing and GIS for studying the land cover changes in order to analyse the dynamics of 

land components for sustainable management of Acacia senegal tree in the gum arabic 

belt. Based on the findings and the above mentioned limitations the study concluded with 

the following recommendations. 

1. Application of remote sensing and GIS techniques in forest inventory and planning 

will reduce the cost and gives historical and recent information for large areas, with 

the necessity to improve the awareness and access of available satellite imagery 

and spatial information to local remote sensing technicians. 

2. Delineation and mapping of Acacia senegal trees as well as other land use land 

cover classes in gum arabic belt could be achieved either with maximum likehood 

classification or using the developed method of categorization for NDVI values. 

3. Extraction of spectral reflectance of remotely sensed data could easily be 

performed with application of 2x2 and3x3 pixel windows in various areas and using 

different imageries. 

4. Additional studies should be conducted to cover the whole gum arabic belt for land 

use land cover analysis and for extraction of forest information on tree parameters 
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including Acacia senegal and Acacia seyal var. seyal trees uisng two-phase 

sampling with regression. 

5. To improve mapping and estimation of forest attributes by modeling, further 

studies is needed to develop new techniques using microwave and LIDAR data 

which can improve or find powerful predictive models. 

6. Application of soft classification approaches using high resolution and advanced 

remote sensing data for land use land cover classification and analysis in arid and 

semi-arid areas is recommended. 

7. A further validation for the developed regression models is recommended using 

suitable number of samples for the estimation of Acacia senegal tree parameters 

which can significantly improve the models. 

8. Giving more attention to the extension aspects to increase the awareness of the 

local community with importance of Acacia senegal trees and adoption of 

agroforestry systems, as well as the continuation of the afforestation and 

reforestation programmes. 

9. Establishing of new governmental strategies for the gum arabic trades concerning 

the pricing polices which can conserve the Acacia senegal trees in the gum arabic 

belt. 
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                Appendix 1: The vegetation zones of Sudan  
 

 

 
 
                  (Adapted from http://www.sudan.net/government12/vegmap.html) 
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Appendix 2. Field collected forest attributes and remotely sensed data 
 

Plot 
no Y DMS (N) X DMS (E) 

Tree no. 
ha-1 

Mean 
DBH 
(cm) 

Mean H 
(m) 

Mean Cr. 
D. (m) 

Basal 
area 

m2 ha-1
Volume 
m3 ha-1 

Crown 
area 

m2ha-1 

Mean 
B1 

Mean 
B2 

Mean 
B3 

Mean 
NDVI 

Mean 
SAVI 

Mean 
RVI 

Mean 
DVI 

1 13 19 22.8 30 10 13.7 190 8,4474 3,6474 4,3579 1,0962 1,7471 2983,10 1578,67 2053,22 3529,78 0,2663 0,3994 1,7319 1476,56 

2 13 19 26.1 30 10 13.7 180 8,2944 3,1222 4,4278 0,9899 1,2729 2947,21 1738,11 2168,89 3841,44 0,2810 0,4215 1,6020 1672,56 

3 13 19 29.3 30 10 13.7 130 8,2615 3,2615 4,1462 0,7044 0,9393 1841,37 1576,22 2059,33 3387,89 0,2454 0,3680 1,6809 1328,56 

4 13 19 31.9 30 10 12.7 210 8,7238 3,3619 4,7000 1,296 1,8302 3914,35 1568,78 1931,22 3542,22 0,3055 0,4582 1,8531 1611,00 

5 13 19 35.2 30 10 12.3 170 8,6059 3,3118 4,0824 1,0176 1,4341 2375,20 1962,78 2647,33 3949,22 0,1983 0,2974 1,4958 1301,89 

6 13 19 34.9 30 10 19.1 180 10,6056 3,5333 4,9833 1,7067 2,7085 3779,73 1786,22 2472,44 3844,22 0,2174 0,3260 1,5567 1371,78 

7 13 19 31.5 30 10 19.1 130 8,9923 3,4385 3,3308 0,8473 1,2092 1179,75 1403,56 2309,67 3861,22 0,2531 0,3797 1,6818 1551,56 

8 13 19 27.6  30 10 19.2 10 22,2000 5,0000 10,0000 0,3871 0,7742 785,40 1593,22 2169,11 3888,78 0,2842 0,4263 1,7961 1719,67 

9 13 19 24.3  30 10 19.2 0 0 0 0 0 0 0 1833,67 2540,56 4223,44 0,2497 0,3745 1,6670 1682,89 

10 13 19 21.1 30 10 19.3 70 11,9143 4,1000 5,4857 0,8949 1,6309 1783,01 1863,33 2698,78 4319,00 0,2316 0,3473 1,6051 1620,22 

11 13 19 17.3 30 10 19.3 140 8,8571 3,7929 4,1786 0,8679 1,3293 2217,26 1586,33 2086,00 3823,00 0,2946 0,4419 1,8382 1737,00 

12 13 19 24.1 30 10 34.5 90 9,4556 3,0667 4,1556 0,644 0,8 1284,44 1420,56 2120,00 3686,33 0,2705 0,4056 1,7436 1566,33 

13 13 19 28.0 30 10 34.6 100 8,9700 3,1800 4,2800 0,6472 0,8496 1515,35 1522,11 1909,44 3420,11 0,2839 0,4259 1,7944 1510,67 

14 13 19 31.1 30 10 34.6 100 8,2300 3,3500 3,0400 0,5432 0,7454 730,26 1586,33 1962,33 3457,11 0,2799 0,4198 1,7937 1494,78 

15 13 19 34.3 30 10 34.7 70 9,1429 4,5429 3,1143 0,4643 0,8683 535,48 1465,00 1796,89 3472,89 0,3182 0,4773 1,9342 1676,00 

16 13 19 38.2 30 10 34.6 80 9,8500 3,5250 4,5000 0,6312 0,9252 1332,51 1602,89 1961,22 3442,11 0,2713 0,4070 1,7587 1480,89 

17 13 19 41.3  30 10 34.7 0 0 0 0 0 0 0 1698,67 2346,78 3856,67 0,2451 0,3676 1,6547 1509,89 

18 13 19 41.2 30 10 41.2 280 9,2500 3,6036 3,4536 1,9996 3,0974 2794,05 1679,67 2262,22 3883,67 0,2646 0,3969 1,7228 1621,44 

19 13 19 44.3 30 10 40.2 60 10,7167 3,5667 4,5667 0,5633 0,8434 1064,06 1778,67 2436,22 3987,56 0,2419 0,3628 1,6386 1551,33 
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Appendix 2. (cont.) 

Plot 
no Y DMS (N) X DMS (E) 

Tree no. 
ha-1 

Mean 
DBH 
(cm) 

Mean 
H (m) 

Mean 
Cr. D. 

(m) 

Basal 
area 

m2 ha-

1 

Volume 
m3 ha-1 

Crown 
area 

m2ha-1 

Mean 
B1 

Mean 
B2 

Mean 
B3 

Mean 
NDVI 

Mean 
SAVI 

Mean 
RVI 

Mean 
DVI 

20 13 19 47.4  30 10 39.2 30 9,3667 3,5333 4,3667 0,2147 0,305 468,80 1638,33 2029,78 3700,33 0,2983 0,4474 1,9080 1670,56 

21 13 19 50.5  30 10 38.4 0 0 0 0 0 0 0 1852,11 2511,11 4079,00 0,2380 0,3570 1,6262 1567,89 

22 13 19 53.6 30 10 37.4 70 9,2857 3,3286 3,9571 0,4801 0,6529 909,57 1520,22 1912,78 3440,22 0,2857 0,4286 1,8009 1527,44 

23 13 19 56.7 30 10 36.6 240 8,4417 3,3583 3,2000 1,3743 1,9159 2023,66 1857,11 2506,56 4082,00 0,2395 0,3593 1,6312 1575,44 

24 13 19 55.7 30 10 33.4 120 12,8083 4,7000 5,3250 1,6218 3,2663 2995,43 2081,11 2863,78 4395,89 0,2125 0,3188 1,5421 1532,11 

25 13 19 54.7  30 10 30.3 0 0 0 0 0 0 0 1834,33 2509,33 4001,11 0,2322 0,3483 1,6101 1491,78 

26 13 19 53.7 30 10 27.2 230 9,5000 3,6174 3,6043 1,7036 2,629 2442,51 1690,22 2314,11 3842,00 0,2504 0,3756 1,5641 1527,89 

27 13 19 52.8 30 10 24.1 190 8,0684 3,1684 2,8737 0,9887 1,2825 1269,36 1663,33 2298,56 3731,00 0,2378 0,3567 1,6250 1432,44 

28 13 19 44.7 30 10 07.4 180 8,8444 3,4389 3,5667 1,1439 1,6487 1862,65 1836,67 2485,00 3871,44 0,2185 0,3277 1,5597 1386,44 

29 13 19 43.0 30 10 04.7 70 8,3429 3,2857 3,8571 0,3914 0,5349 879,33 1466,00 2113,78 3643,33 0,2673 0,4009 1,7532 1529,56 

30 13 20 00.7 30 09 55.9 200 9,7150 3,6500 3,9550 1,5484 2,4205 2579,48 1610,33 2165,78 3648,22 0,2552 0,3828 1,4666 1482,44 

31 13 19 46.5 30 10 10.5 250 8,6240 3,4200 3,4720 1,5077 2,1531 2557,88 1849,33 2446,78 3744,00 0,2097 0,3145 1,5313 1297,22 

32 13 19 47.5 30 10 13.5 210 9,3333 3,5238 3,0857 1,5109 2,2727 1702,27 1742,89 2331,78 3708,00 0,2291 0,3436 1,5977 1376,22 

33 13 19 52.8 30 10 10.9 190 10,5737 4,1947 3,9421 1,8259 3,4664 2499,22 1553,33 1895,11 3506,44 0,2999 0,4498 1,7698 1611,33 

34 13 19 51.8 30 10 08.1 260 9,3654 3,6885 3,5308 1,9451 3,3101 2873,77 1913,11 2532,00 3789,89 0,1994 0,2991 1,4996 1257,89 

35 13 19 50.3 30 10 05.1 120 12,4333 4,3833 4,6000 1,6482 3,4866 2344,88 2049,33 2488,67 3941,22 0,2263 0,3395 1,5862 1452,56 

36 13 19 48.8 30 10 02.2 150 9,2600 3,6667 3,5400 1,0403 1,5722 1528,31 1687,44 2138,78 3494,22 0,2400 0,3599 1,6344 1355,44 

37 13 19 47.3 30 09 59.3 120 11,5667 4,2417 5,2583 1,328 2,3255 2835,21 1758,00 2420,11 3687,44 0,2071 0,3106 1,5330 1267,33 

38 13 19 50.3 30 10 50.2 130 8,2538 4,1308 3,8462 0,7293 1,3458 1585,88 1463,56 1902,67 3444,11 0,2891 0,4336 1,8147 1541,44 

39 13 19 52.65 30 10 50.6 90 8,1778 3,9889 4,1111 0,4824 0,8093 1264,96 1408,44 1809,33 3252,78 0,2855 0,4281 1,8004 1443,44 
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Appendix 2. (cont.) 
 

Plot 
no Y DMS (N) X DMS (E) 

Tree no. 
ha-1 

Mean 
DBH 
(cm) 

Mean 
H (m) 

Mean 
Cr. D. 

(m) 

Basal 
area 

m2 ha-

1 

Volume 
m3 ha-1 

Crown 
area 

m2ha-1 

Mean 
B1 

Mean 
B2 

Mean 
B3 

Mean 
NDVI 

Mean 
SAVI 

Mean 
RVI 

Mean 
DVI 

40 13 19 55.85 30 10 50.1 120 8,3167 4,3083 4,0000 0,6626 1,1889 1562,16 1777,89 2421,67 3919,44 0,2368 0,3552 1,6222 1497,78 

41 13 19 59.14 30 10 50.11 80 8,8250 4,1250 3,6500 0,5227 0,9903 876,98 1633,44 2141,44 3588,11 0,2540 0,3810 1,6832 1446,67 

42 13 20 03.12 30 10 50.19 120 8,2667 3,7000 3,5500 0,6658 1,0143 1230,40 1481,44 1850,89 3336,89 0,2880 0,4319 1,8146 1486,00 

43 13 20 03.22 30 10 56.85 110 8,3000 3,8727 3,2200 0,605 0,9578 835,66 1407,44 1781,00 3292,56 0,2986 0,4478 1,8531 1511,56 

44 13 20 00.37 30 10 56.21 100 8,7800 4,1000 3,1500 0,6234 1,0778 817,84 1543,78 2022,78 3631,67 0,2849 0,4273 1,7981 1608,89 

45 13 19 57.14 30 10 56.16 80 8,0875 3,7875 3,2875 0,4156 0,6441 708,98 1484,33 1955,67 3329,33 0,2564 0,3846 1,7097 1373,67 

46 13 19 53.77 30 10 56.20 90 8,5667 3,8222 3,6556 0,5278 0,829 1003,50 1418,22 1776,33 3263,22 0,2956 0,4434 1,8415 1486,89 

47 13 19 50.41 30 10 56.08 80 8,4125 4,0125 3,3875 0,4598 0,7998 755,47 1382,11 1752,56 3251,22 0,2956 0,4496 1,8415 1498,67 
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Appendix 3. Field work form for ground contol points 
 
Form (2) 
* 1. Sampling point  2. End-member point  3. Observation point 

GPS 
(ID) 

Lon. – Lat. Type* Remarks 

           
    
   
   
    
    
    
    
    
   
    
    
    
    
    
    
   
    
    
    
    
    
    
   
    
    
    
    
    
   
    
    
    
    
    
    
   
    
    
    

 
 
 
 



Appendices  

 139

Appendix 4. Field work form for forest inventory 
 
Form (1). 
- Study area: - A  (    ) - B  (     ) - Date: ………………............ 
- GPS point no (ID): …………  - Lat. & Lon………...N…...…… E 
- Cluster no.: ………………..  - Sample plot no.: ..................... 
- Elevation: ………………….  - Soil type: …………………….. 
- Sample plot area: ………….. ha - Tenure:  private…government… 
- Land use class*:………………. - Land cover type**:…………….. 

No. Tree species Diameter 
(cm)

Height (m) Remarks 

     
     
     
     
     
   
     
     
     
     
     
     
   
     
     
     
     

Crops…………………………………………………………………………………… 
Grazing (animals)………………………………………………………………………. 
Grass species (understory): ………………………………………………….......... 
………………………………………………………………………………………….. 
* Land use classes: 1. Forest  2. agric. land (crops) 3. range (grazing) 4. shrubs  
     5. bare ground . 6.  urban/building 7. others (mixed)…………. ………  
** Land cover classes: 1. forest  2. scattered trees/shrubs. 3. shrubs 5. range 
       6. bare ground  7. others (water)………………… 
 
Natural regeneration: (radius : 5m) 

No. species Total number 
   
   
   
   
  
   

General remarks…………………………………………………………………… 
……………………………………………………………………………………. 
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  Appendix 5. Name and locations of the villages in the study area A and B: 
No. Village name Longitude Latitude 
1 Elkhiwai  13° 03' 18" 29° 12' 32" 
2 Elbihair 13° 12' 58" 29° 41' 54" 
3 Abusonon  13° 13' 29" 29° 42' 41" 
4 Elgrowait 13° 20' 17" 29° 43' 38" 
5 Mourkaz 13° 21' 00" 29° 42' 39" 
6 Lamina 13° 21' 08" 29° 40' 01" 
7 Zarooga 13° 23' 45" 29° 38' 03" 
8 Elgafalla Abua’amir 13° 25' 46" 29° 36' 12" 
9 Hemiair 13° 24' 04" 29° 34' 55" 
10 Dahoia 13° 16' 46" 29° 34' 57" 
11 Farrshaha  13° 13' 55" 29° 36' 29" 
12 Eldoodeia 13° 06' 32" 29° 24' 00" 
13 Eldoodeia Helat Nasir 13° 07' 58" 29° 24' 24" 
14 Arafa Sadrak 13° 11' 37" 29° 26' 27" 
15 Elkool 13° 12' 29" 29° 25' 32" 
16 Ramba 13° 13' 43" 29° 26' 39" 
17 Elsardaaba  13° 21' 35" 29° 27' 25" 
18 Eldankooj 13° 22' 56" 29° 25' 07" 
19 Umm Sarir 13° 24' 47" 29° 25' 51" 
20 Elgafeel 13° 23' 32" 29° 29' 29" 
21 Umm Marihibiba (kara) 13° 21' 14" 29° 29' 53" 
22 Umm Marihibiba (Aburasoul) 13° 20' 47" 29° 30' 16" 
23 Abu Saadeen 13° 15' 54" 29° 31' 57" 
24 Abu Khashaba 13° 11' 55" 29° 32' 28" 
25 halabeib 13° 09' 33" 29° 27' 28" 
26 Umm Kihael 12° 50' 15" 28° 27' 07" 
27 Wad Doomi 12° 49' 46" 28° 27' 47" 
28 Elkraneek wadeinna 12° 52' 55" 28° 29' 22" 
29 Abu fatina 12° 50' 25" 28° 30' 05" 
30 Umm Mariga (Deibebia) 12° 54' 07" 28° 31' 45" 
31 Abu Oshaar  12° 53' 37" 28° 38' 52" 
32 Turba Hammara 12° 54' 20" 28° 39' 55" 
33 Umm Elbadiri 12° 57' 13" 28° 41' 03" 
34 Elrawiana 12° 50' 28" 28° 42' 50" 
35 Abu Hammara 12° 50' 24" 28° 35' 05" 
36 Abu Showara 12° 04' 22" 28° 45' 24" 
37 Nabalat 12° 59' 15" 28° 47' 13" 
38 Elhurra Abu Tabir 12° 05' 35" 28° 45' 38" 
39 Eial Zoubiar  12° 50' 27" 28° 26' 25" 
40 Abu Domma 12° 54' 18" 28° 31' 36" 
41 Umm U’awashia  12° 52' 44" 28° 48' 12" 
42 Abu Dagal 12° 54' 43" 28° 38' 55" 
43 Umm Mariga (Hagar) 12° 48' 13" 28° 32' 55" 
44 Hammara 12° 53' 42" 28° 38' 44" 
45 Umm Deibebia 12° 50' 46" 28° 30' 23" 
46 Bouti 12° 09' 32" 28° 46' 33" 
47 Elneemair 12° 09' 40" 28° 49' 44" 
47 Ela’ayara 12° 10' 17" 28° 00' 37" 
49 saeed 12° 51' 50" 28° 44' 04" 
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Appendix 6. List of some grasses, herbs, shrubs and  trees in the study area  

No. Scientific name Local name 
1 Abutilon  figriuanum النيادة
2 Acacia   nilotica نطالس
3 Acacia   raddiana السمر
4 Acacia   senegal الهشاب
5 Acacia   tortilis السيال
6 Acicia   nubica اللعوت
7 Adansonia digitata التبلدى
8 Albizzia  amara العرد
9 Albizzia  anthelmantica شجرة الدود
10 Amaranthus  vridis لسان الطير
11 Andropogon  gayanus ابو رخيص
12 Anogeissus   leiocarpus الصهب
13 Arachis  hypogaea الفول السودانى
14 Aristida  paposa ام صميمة
15 Aristida  funculata  القو
16 Balinites  aegyptiaca الهجليج
17 Blepharis  linarifolia البغيل
18 Boscia  senegalensis ( المخيت(الكرسان 
19 Calatorpis  procera العشر
20 Cassia   senna سنمكة
21 Cenchrus biflorus الحسكنيت
22 Chrozophora  brocchiana عرقسى
23 Cloritoris  saltiana ام عراق
24 Combretum  kordofanum الهبيل
25 Commephora  Africana القفل
26 Cymbopogon  nervatus النال
27 Cymbopogon   proximus المرحبيب
28 Eragrostis   termula البنو
29 Euphorbia   spp. ام عجينة
30 Faidherbia  albida الحراز
31 Farsetia  singueana الطق طاقه
32 Geigeria  alata القدقاد
33 Guiera  senegalensis الغبيش
34 Hibiscus   sabdariffa الكرآدى
35 Ipomea  cordofana التبارة
36 Justica   schimperi النعناعة
37 Lannea   humilis الليون
38 Leptadenia   pyrotechnica المرخ
39 Maerua  crassifolia السرح
40 Ocimum  americanum الريحان
41 Pennisetum spp الدخن
42 Sclerocarya  birrea الحميض
43 Sesamum indicum سمسمال
44 Sesamum alatum سمسم الجمال
45 Sorghum  bicolor الذرة
46 Tamarindus  indica العرديب
47 Terminalia   brownie الصباغ
48 Vigna  unguiculata اللوبيا
49 Ziziphus  spina-christi السدر
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Appendix 7.  Conversion matrix of land use land cover in gum arabic in area A during 1999-
2007 (area in ha) 

 
Class name 

 
1 

 
2 

 
3 

 
4 

 
5 

Total 1999  
(occupancy 

rate %) 
1 7394.78 18815.65 10835.55 2629.13 189.59 39864.69
 18.55 47.20 27.18 6.60 0.48 (36.08)

2 6496.11 27282.49 6760.28 2540.20 535.19 43614.27
 14.89 62.55 15.50 5.82 1.23 (39.48)

3 3054.83 10121.87 5250.22 1179.32 95.94 19702.17
 15.51 51.37 26.65 5.99 0.49 (17.83)

4 869.09 3182.83 1250.10 466.02 109.71 5877.74
 14.79 54.15 21.27 7.93 1.87 (5.32)

5 56.30 315.07 60.89 14.83 977.33 1424.41
 3.95 22.12 4.27 1.04 68.61 (1.29)

Total 2007 17871.10 59717.91 24157.04 6829.49 1907.75 110483.28
Rate of occupancy (%) (16.18) (54.05) (21.86) (6.18) (1.73) (100.00)
Rate of variety (%) -59.02 36.92 22.61 16.19 33.93  
Average annual rate (%) -7.38 4.62 2.83 2.02 4.24  
Average annual variety 
rate (ha) 

-2749.20 2012.96 556.86 118.97 60.42  

Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland, 5 
residential area. The bold values represent the percentages of class changed from 1999 to other classes in 2007 
 

Appendix 8. Conversion matrix of land use alnd cover in gum arabic in area A during 1985-
1999 (area in ha) 

 
Class name 

 
1 

 
2 

 
3 

 
4 

 
5 

Total 1985 
(Occupancy 
rate %) 

 
1 

2842.72 2641.68 1337.85 402.03 85.76 7310.04
38.89 36.14 18.30 5.50 1.17 (6.62)

 
2 

23488.3 27743.22 12264.221 3233.71 550.14 67279.59
34.91 41.24 18.23 4.81 0.82 (60.90)

 
3 

10752.44 10005 4765.28 1601.51 175.49 27299.72
39.39 36.65 17.46 5.87 0.64 (24.71)

 
4 

2769.08 3119.1 1326.29 627.37 8.89 7850.73
35.27 39.73 16.89 7.99 0.11 (7.11)

 
5 

10.67 105.06 4.91 17.33 605.23 743.2
1.44 14.14 0.66 2.33 81.44 (0.67)

Total 1999 39863.21 43614.06 19698.551 5881.95 1425.51 110483.28
Rate of occupancy (%) (36.08) (39.48) (17.83) (5.32) (1.29) 100.00
Rate of variety (%) 81.66 -35.17 -27.84 -25.08 91.81  
Average annual rate (%) 6.33 -2.51 -1.99 -1.79 6.56  
Average annual rate 
(ha) 

2325.23 -1690.40 -542.94 -140.63 48.74  

Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland, 5 
residential area. The bold values represent the percentages of class changed from 1985 to other classes in 1999 
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Appendix 9. Conversion matrix of land use land cover in gum arabic in area A during 1972- 
1985 (area in ha) 

 
Class name 

 
1 

 
2 

 
3 

 
4 

 
5 

Total 1972 
(Occupancy 
rate %) 

 
1 

1204.13 9411.00 3969.90 1092.78 12.24 15690.05
7.67 59.98 25.30 6.96 0.08 (14.20)

 
2 

2700.15 33664.50 12203.55 3664.50 180.54 52413.24
5.15 64.23 23.28 6.99 0.34 (47.44)

 
3 

2969.64 18616.23 8509.95 2147.58 156.60 32400.00
9.17 57.46 26.27 6.63 0.48 (29.33)

 
4 

421.83 5448.24 2569.77 938.06 24.30 9402.20
4.49 57.95 27.33 9.98 0.26 (8.51)

 
5 

23.67 127.71 46.17 8.73 371.52 577.80
4.10 22.10 7.99 1.51 64.30 (0.52)

Total 1985 7319.41 67267.68 27299.34 7851.65 745.20 110483.28
Rate of occupancy (%) (6.62) (60.88) (24.71) (7.11) (0.67) (100.00)
Rate of variety (%) -53.35 28.34 -15.74 -16.49 28.97 
Average annual rate (%) -4.10 2.18 -1.21 -1.27 2.23 
Average annual rate (ha) 3967.51

 
-4031.78 -392.35 298.77 12.87 

 
Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland, 5 
residential area. The bold values represent the percentages of class changed from 1972 to other classes in 1985 
 

 

Appendix 10. Conversion matrix of land use land cover in gum arabic in area B during 1999- 
2007 (area in ha) 

 
Class name 

 
1 

 
2 

 
3 

 
4 

 
5 

Total 1972 
(Occupancy 

rate %)
 

1 
2251.82 8112.07 3164.49 1388.48 130.52 15047.38

14.96 53.91 21.03 9.23 0.87 (9.79)
 

2 
7290.59 54180.22 22405.75 9013.10 516.47 93406.11

7.81 58.01 23.99 9.65 0.55 (60.77)
 

3 
2692.69 18110.84 8682.64 3093.75 144.90 32724.81

8.23 55.34 26.53 9.45 0.44 (21.29)
 

4 
586.13 6049.17 2810.70 1842.08 30.68 11318.75

5.18 53.44 24.83 16.27 0.27 (7.36)
 

5 
116.01 264.51 158.58 16.70 669.83 1225.62

9.47 21.58 12.94 1.36 54.65 (0.80)
Total 2007 12937.23 86716.81 37222.16 15354.09 1492.39 153722.66
Rate of occupancy (%) (8.42) (56.41) (24.21) (9.99) (0.97) (100.00)
Rate of variety (%) -14.02 -7.16 13.74 35.65 21.77  
Average annual rate (%) -1.75 -0.90 1.72 4.46 2.72  
Average annual rate (ha) -60.29 -191.12 128.50 115.30 7.62  

Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed  Woodland, 5 
residential area. The bold values represent the percentages of class changes from 1999 to other classes in 2007. 
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Appendix 11. Conversion matrix of land use alnd cover in gum arabic in area B during 1972- 
1985 (area in ha) 

 
Class name 1 2 3 4

 
5 

Total 1972 
(Occupancy 

rate %)
1 3692.16 7537.68 7507.44 617.94 176.04 19531.26

18.90 38.59 38.44 3.16 0.90 (12.71)
2 7771.50 37515.78 13420.87 6722.17 145.98 65576.30

11.85 57.21 20.47 10.25 0.22 (42.66)
3 9404.55 19599.30 16626.69 3527.34 277.92 49435.80

19.02 39.65 33.63 7.14 0.56 (32.16)
4 2258.10 10055.61 3954.42 1991.30 79.83 18339.26

12.31 54.83 21.56 10.86 0.44 (11.93)
5 170.73 162.99 135.43 20.52 350.37 840.04

20.32 19.40 16.12 2.44 41.71 (0.55)
Total 1985 23297.04 74871.36 41644.85 12879.27 1030.14 153722.66
Rate of occupancy (%) (15.16) (48.71) (27.09) (8.38) (0.67) (100.00)
Rate of variety (%) 19.28 14.17 -15.76 -29.77 22.63  
Average annual rate (%) 2.41 1.77 -1.97 -3.72 2.83 
Average annual rate (ha) 107.59 265.57 -222.60 -156.00 5.43 

Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland, 5 
residential area. The bold values represent the percentages of class changed from 1972 to other classes in 1985. 
 

Appendix 12. Conversion matrix of land use land cover in gum arabic in area B during 1985- 
1999 (area in ha) 
 

Class name  
 

1 
 

2 
 

3 
 

4 
 

5 
Total 1972 

(Occupancy 
rate %) 

1 2899,89 14630,20 4440,93 1083,90 238,23 23293,15
12,45 62,81 19,07 4,65 1,02 (15,15)

2 7109,73 47260,29 15057,34 5186,89 270,36 74884,61
9,49 63,11 20,11 6,93 0,36 (48,71)

3 3836,76 24460,56 9830,35 3250,94 252,58 41631,19
9,22 58,76 23,61 7,81 0,61 (27,09)

4 1148,05 6685,20 3286,33 1750,92 18,07 12888,57
8,91 51,87 25,50 13,59 0,14 (8,38)

5 40,79 386,97 115,34 45,36 436,68 1025,14
3,98 37,75 11,25 4,42 42,60 (0,67)

Total 1999 15035,22 93423,22 32730,29 11318,01 1215,92 153722,66
Rate of occupancy (%) (9,78) (60,77) (21,29) (7,36) (0,79) (100,00)
Rate of variety (%) -35,45 24,76 -21,38 -12,19 18,61  
Average annual rate (%) -2,53 1,77 -1,53 -0,87 1,33  
Average annual rate (ha) -235,94 529,67 -254,31 -44,87 5,45 

Where: 1 bare and farm land, 2 grass and bush land, 3 forest dominated by Hashab, 4 mixed woodland, 5 
residential area. The bold values represent the percentages of class changed from 1972 to other classes in 1999. 
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Appendix 13. ANOVA table for Acacia senegal volume (m3/ha) 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Regressio
n 13.735 1 13.735 38.711 .000 

Residual 10.999 31 .355     
Total 24.735 32      

     The independent variable is Mean B1 
 

Appendix 14. ANOVA table for Acacia senegal basal area (m2/ha) 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Regressio
n 5.502 1 5.502 41.360 .000 

Residual 4.124 31 .133     
Total 9.626 32      

                 The independent variable is Mean RVI 
 

Appendix 15. ANOVA table for Acacia senegal crwon area (m2/ha) 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Regressio
n 5.480 1 5.480 37.752 .000 

Residual 4.500 31 .145     
Total 9.981 32      

                  The independent variable is Mean RVI 
 

Appendix 16. ANOVA table for Acacia senega standl density (no. tree/ha) 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Regressio
n 

42708.4
39 1 42708.439 13.496 .001 

Residual 98097.6
22 31 3164.439     

Total 140806.
061 32      

                  The independent variable is Mean RVI 
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Appendix 17. Values of R² resulted from simple linear regressions for mean DBH (cm) of 
Acacia senegal trees with remote sensing data 

Regression equation B1 B2 B3 NDVI SAVI RVI DVI
Linear 0.068 0.088 0.181 0.008 0.008 0.009 0.095 
Logarithmic 0.068 0.089 0.184 0.008 0.008 0.009 0.085 
Exponential 0.127 0.145 0.255 0.027 0.027 0.028 0.081 
Polynomial-quadric 0.068 0.089 0.185 0.008 0.008 0.009 0.213 
Polynomial-cubic 0.068 0.089 0.188 0.008 0.008 0.009 0.216 
Power 0.126 0.145 0.253 0.027 0.028 0.029 0.071
Inverse 0.068 0.090 0.183 0.008 0.008 0.009 0.075

 
Appendix 18. Values of R² resulted from simple linear regressions for mean height (m) of 
Acacia senegal trees with remote sensing data 

Regression equation B1 B2 B3 NDVI SAVI RVI DVI
Linear 0.007 0.011 0.063 0.009 0.009 0.007 0.119 
Logarithmic 0.004 0.007 0.058 0.007 0.007 0.006 0.113 
Exponential 0.005 0.009 0.056 0.010 0.010 0.008 0.113 
Polynomial-quadric 0.148 0.102 0.129 0.054 0.055 0.037 0.149 
Polynomial-cubic 0.155 0.105 0.129 0.064 0.065 0.039 0.149 
Power 0.003 0.005 0.050 0.008 0.091 0.007 0.107 
Inverse 0.002 0.004 0.052 0.005 0.006 0.005 0.107

 
Appendix 19. Values of R² resulted from simple linear regressions for mean crown diameter 
(m) of Acacia senegal trees with remote sensing data 

Regression equation B1 B2 B3 NDVI SAVI RVI DVI
Linear 0.034 0.062 0.136 0.004 0.005 0.004 0.077 
Logarithmic 0.035 0.063 0.164 0.004 0.005 0.004 0.068 
Exponential 0.065 0.094 0.164 0.017 0.018 0.016 0.051 
Polynomial-quadric 0.036 0.062 0.138 0.005 0.006 0.006 0.196 
Polynomial-cubic 0.036 0.062 0.138 0.006 0.007 0.006 0.200 
Power 0.065 0.093 0.161 0.017 0.017 0.016 0.045 
Inverse 0.037 0.064 0.132 0.004 0.004 0.004 0.060

 
 

 

 

 


