7 research outputs found

    Manufacturing Feature Recognition With 2D Convolutional Neural Networks

    Get PDF
    Feature recognition is a critical sub-discipline of CAD/CAM that focuses on the design and implementation of algorithms for automated identification of manufacturing features. The development of feature recognition methods has been active for more than two decades for academic research. However, in this domain, there are still many drawbacks that hinder its practical applications, such as lack of robustness, inability to learn, limited domain of features, and computational complexity. The most critical one is the difficulty of recognizing interacting features, which arises from the fact that feature interactions change the boundaries that are indispensable for characterizing a feature. This research presents a feature recognition method based on 2D convolutional neural networks (CNNs). First, a novel feature representation scheme based on heat kernel signature is developed. Heat Kernel Signature (HKS) is a concise and efficient pointwise shape descriptor. It can present both the topology and geometry characteristics of a 3D model. Besides informative and unambiguity, it also has advantages like robustness of topology and geometry variations, translation, rotation and scale invariance. To be inputted into CNNs, CAD models are discretized by tessellation. Then, its heat persistence map is transformed into 2D histograms by the percentage similarity clustering and node embedding techniques. A large dataset of CAD models is built by randomly sampling for training the CNN models and validating the idea. The dataset includes ten different types of isolated v features and fifteen pairs of interacting features. The results of recognizing isolated features have shown that our method has better performance than any existing ANN based approaches. Our feature recognition framework offers the advantages of learning and generalization. It is independent of feature selection and could be extended to various features without any need to redesign the algorithm. The results of recognizing interacting features indicate that the HKS feature representation scheme is effective in handling the boundary loss caused by feature interactions. The state-of-the-art performance of interacting features recognition has been improved

    Automated Feature Recognition System for supporting conceptual engineering design

    No full text
    A computer based Feature-Recognition (FR) process is being developed to extract critical manufacturing features from engineering product CAD models. Feature-recognition technology is used for automating the extraction of data from CAD product models to minimise redundant user interaction with a product model. The feature-recognition process was developed using rule-based methods with wire-frame geometry extracted from an IGES neutral file format. Use of wire-frame models simplifies product geometry and has the potential to support rapid manufacturing shape evaluation at the conceptual design stage. The FR process is demonstrated using a range of typical metallic aerospace components

    Simulation-Based and Data-Driven Approaches to Industrial Digital Twinning Towards Autonomous Smart Manufacturing Systems

    Get PDF
    A manufacturing paradigm shift from conventional control pyramids to decentralized, service-oriented, and cyber-physical systems (CPSs) is taking place in today’s Industry 4.0 revolution. Generally accepted roles and implementation recipes of cyber systems are expected to be standardized in the future of manufacturing industry. Developing affordable and customizable cyber-physical production system (CPPS) and digital twin implementations infuses new vitality for current Industry 4.0 and Smart Manufacturing initiatives. Specially, Smart Manufacturing systems are currently looking for methods to connect factories to control processes in a more dynamic and open environment by filling the gaps between virtual and physical systems. The work presented in this dissertation first utilizes industrial digital transformation methods for the automation of robotic manufacturing systems, constructing a simulation-based surrogate system as a digital twin to visually represent manufacturing cells, accurately simulate robot behaviors, promptly predict system faults and adaptively control manipulated variables. Then, a CPS-enabled control architecture is presented that accommodates: intelligent information systems involving domain knowledge, empirical model, and simulation; fast and secured industrial communication networks; cognitive automation by rapid signal analytics and machine learning (ML) based feature extraction; and interoperability between machine and human. A successful semantic integration of process indicators is fundamental to future control autonomy. Hence, a product-centered signature mapping approach to automated digital twinning is further presented featuring a hybrid implementation of smart sensing, signature-based 3D shape feature extractor, and knowledge taxonomy. Furthermore, capabilities of members in the family of Deep Reinforcement Learning (DRL) are explored within the context of manufacturing operational control intelligence. Preliminary training results are presented in this work as a trial to incorporate DRL-based Artificial Intelligence (AI) to industrial control processes. The results of this dissertation demonstrate a digital thread of autonomous Smart Manufacturing lifecycle that enables complex signal processing, semantic integration, automatic derivation of manufacturing strategies, intelligent scheduling of operations and virtual verification at a system level. The successful integration of currently available industrial platforms not only provides facile environments for process verification and optimization, but also facilitates derived strategies to be readily deployable to physical shop floor. The dissertation finishes with summary, conclusions, and suggestions for further work

    Developing a computational framework for explanation generation in knowledge-based systems and its application in automated feature recognition

    Get PDF
    A Knowledge-Based System (KBS) is essentially an intelligent computer system which explicitly or tacitly possesses a knowledge repository that helps the system solve problems. Researches focusing on building KBSs for industrial applications to improve design quality and shorten research cycle are increasingly attracting interests. For the early models, explanability is considered as one of the major benefits of using KBSs since that most of them are generally rule-based systems and the explanation can be generated based on the rule traces of the reasoning behaviors. With the development of KBS, the definition of knowledge base is becoming much more general than just using rules, and the techniques used to solve problems in KBS are far more than just rule-based reasoning. Many Artificial Intelligence (AI) techniques are introduced, such as neural network, genetic algorithm, etc. The effectiveness and efficiency of KBS are thus improved. However, as a trade-off, the explanability of KBS is weakened. More and more KBSs are conceived as black-box systems that do not run transparently to users, resulting in loss of trusts for the KBSs. Developing an explanation model for modern KBSs has a positive impact on user acceptance of the KBSs and the advices they provided. This thesis proposes a novel computational framework for explanation generation in KBS. Different with existing models which are usually built inside a KBS and generate explanations based on the actual decision making process, the explanation model in our framework stands outside the KBS and attempts to generate explanations through the production of an alternative justification that is unrelated to the actual decision making process used by the system. In this case, the knowledge and reasoning approaches in the explanation model can be optimized specially for explanation generation. The quality of explanation is thus improved. Another contribution in this study is that the system aims to cover three types of explanations (where most of the existing models only focus on the first two): 1) decision explanation, which helps users understand how a KBS reached its conclusion; 2) domain explanation, which provides detailed descriptions of the concepts and relationships within the domain; 3) software diagnostic, which diagnoses user observations of unexpected behaviors of the system or some relevant domain phenomena. The framework is demonstrated with a case of Automated Feature Recognition (AFR). The resulting explanatory system uses Semantic Web languages to implement an individual knowledge base only for explanatory purpose, and integrates a novel reasoning approach for generating explanations. The system is tested with an industrial STEP file, and delivers good quality explanations for user queries about how a certain feature is recognized

    Automated feature recognition system for supporting engineering activities downstream of conceptual design.

    Full text link
    Transfer of information between CAD models and downstream manufacturing process planning software typically involves redundant user interaction. Many existing tools are process-centric and unsuited for selection of a "best process" in the context of existing concurrent engineering design tools. A computer based Feature-Recognition (FR) process is developed to extract critical manufacturing features from engineering product CAD models. FR technology is used for automating the extraction of data from CAD product models and uses wire-frame geometry extracted from an IGES neutral file format. Existing hint-based feature recognition techniques have been extended to encompass a broader range of manufacturing domains than typical in the literature, by utilizing a combination of algorithms, each successful at a limited range of features. Use of wire-frame models simplifies product geometry and has the potential to support rapid manufacturing shape evaluation at the conceptual design stage. Native CAD files are converted to IGES neutral files to provide geometry data marshalling to remove variations in user modelling practice, and to provide a consistent starting point for FR operations. Wire-frame models are investigated to reduce computer resources compared to surface and solid models, and provide a means to recover intellectual property in terms of manufacturing design intent from legacy and contemporary product models. Geometric ambiguity in regard to what is ?solid? and what is not has plagued wire-frame FR development in the past. A new application of crossing number theory (CNT) has been developed to solve the wire-frame ambiguity problem for a range of test parts. The CNT approach works satisfactorily for products where all faces of the product can be recovered and is tested using a variety of mechanical engineering parts. Platform independent tools like Extensible Mark-up Language are used to capture data from the FR application and provide a means to separate FR and decision support applications. Separate applications are composed of reusable software modules that may be combined as required. Combining rule-based and case-based reasoning provides decision support to the manufacturing application as a means of rejecting unsuitable processes on functional and economic grounds while retaining verifiable decision pathways to satisfy industry regulators
    corecore