
Developing a Computational Framework for

Explanation Generation in Knowledge-based

Systems and its Application in Automated Feature

Recognition

A thesis submitted in fulfilment of the

requirements for the degree of

Doctor of Philosophy

Qingmai Wang

B.Sc., M.Eng.

School of Electrical and Computer Engineering

College of Science, Engineering and Health

RMIT University

May 2012

Declaration

I certify that except where due acknowledgement has been made, the work is

that of the author alone; the work has not been submitted previously, in whole or

in part, to qualify for any other academic award; the content of the thesis is the

result of work which has been carried out since the official commencement date of

the approved research program; and, any editorial work, pard or unpaid, carried out

by a third party is acknowledged; and, ethics procedures and guidelines have been

followed.

Signature:

Qingmai Wang

School of Electrical and Computer Engineering

RMIT University

Melbourne, VIC 3001, Australia.

May 2012

ii

Acknowledgement

Foremost, I would like to express my sincere gratitude to my primary supervisor

Prof. Xinghuo Yu for the continuous support of my Ph.D study and research, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped me

in all the time of research. Without him this thesis would not have been possible.

I also would like to thank my second supervisor Dr. Wei Peng, whose advices and

insights were invaluable to me, especially during the inception phase of the project.

In addition, I am grateful to the Cooperative Research Centre for Advanced Auto-

motive Technology (AutoCRC) for funding this research, and for their useful training

sessions which provided me many valuable information regarding how to conduct

research.

Thanks also go to my friends and colleagues, Dr. Christian Van der Velden,

Dr. Ajendra Dwivedi, Dr. Xiangjun Li, and Mr. Miguel Combariza, for their kind

suggestions and helps.

Finally I really appreciate the continuous support and understanding from my

loving family, especially my mom Maijun and my wife Yajun.

iii

Contents

Declaration ii

Acknowledgements iii

List of Tables x

List of Figures xi

Publications xiv

Abstract xv

1 Introduction 1

1.1 Introduction . 1

1.2 Explanation and Knowledge-Based Systems 1

1.2.1 Explanation . 2

1.2.2 Knowledge-Based Systems . 4

1.2.3 Explanation in Knowledge Based Systems 5

1.3 Motivations . 7

1.3.1 Integrating “Explaining Available Evidences” 7

iv

1.3.2 Reconstructive Explanations 8

1.4 Research Objectives and Research Questions 10

1.4.1 Research Objectives . 10

1.4.2 Research Questions . 11

1.5 Contributions . 12

1.6 Thesis Structure . 14

1.7 Summary . 16

2 Literature Review 17

2.1 Introduction . 17

2.2 Theories of Explanation . 18

2.2.1 Deductive-Nomological (DN) Model 18

2.2.2 The Pragmatic Theory of Explanation 20

2.2.3 Explanation in Cognitive Science 21

2.3 Explanation Models for KBSs . 24

2.3.1 Methods for Generating Basic Content 24

2.3.2 Users and Contexts Oriented Explanations 29

2.4 Models for “Explaining Available Evidences” 34

2.4.1 Rule-based Models . 34

2.4.2 Probabilistic Models . 36

2.4.3 Neural Network Models . 37

2.5 Summary . 38

3 Explanation Framework 40

3.1 Introduction . 40

v

3.2 Preliminaries . 41

3.3 General Structure of the Framework 42

3.4 Explanative Knowledge Base (EKB) 44

3.4.1 OWL Ontology . 45

3.4.2 SWRL Rules . 49

3.4.3 Capturing Domain Knowledge 50

3.5 Decision Explanation Model (DEM) 52

3.5.1 Existing OWL Reasoners . 53

3.5.2 Developing a Novel Reasoner 55

3.6 Software Diagnostic Model . 57

3.6.1 Abductive Reasoning . 58

3.6.2 Involving Interaction . 59

3.7 Summary . 61

4 Backward Chained ABox Reasoner 63

4.1 Introduction . 63

4.2 Preliminaries . 64

4.3 Concept Framework . 65

4.4 Building Rule Base . 66

4.5 Reasoning Algorithm . 67

4.5.1 Solution . 69

4.5.2 Searching for Solutions . 69

4.5.3 Generating Reasoning Results 71

4.5.4 Backward Chaining . 73

vi

4.6 Handling Special Rules and Atoms 73

4.7 Experiments . 75

4.7.1 Test Ontologies and Queries 76

4.7.2 Experimental Results . 78

4.8 Summary . 79

5 Multiple Run Interactive Certainty Network 81

5.1 Introduction . 81

5.2 Abductive Reasoning with Interactions 82

5.3 Certainty Network Construction . 83

5.4 An Algorithm for Interactive Behavior 86

5.5 General Interactive Reasoning Process 88

5.6 Case Study . 89

5.7 Summary . 94

6 Automated Feature Recognition 96

6.1 Introduction . 96

6.2 Overview of Automated Feature Recognition (AFR) 97

6.2.1 Why AFR? . 97

6.2.2 Major AFR Methods . 100

6.3 Boundary Representation of Solid Models 102

6.4 Standard for the Exchange Product Model Data (STEP) 104

6.4.1 Contents of STEP . 105

6.4.2 EXPRESS . 107

6.5 Existing AFR Systems . 108

vii

6.6 Summary . 111

7 Ontology-based AFR Explanatory System 112

7.1 Introduction . 112

7.2 Overview of OAES . 113

7.3 Building Explanative Knowledge Base 116

7.3.1 Capturing EXPRESS Schema of STEP AP203 116

7.3.2 Defining Feature Recognition Rules 117

7.3.3 Inserting Additional Descriptive Information 124

7.3.4 Inputting STEP Instances . 125

7.4 Decision Explanation Model . 127

7.4.1 Generating Decision Explanations 127

7.4.2 Demonstration Example . 129

7.5 Software Diagnostic Model . 132

7.6 Usage of OAES . 135

7.7 Summary . 145

8 Conclusion and Future Studies 147

8.1 Introduction . 147

8.2 Conclusions . 147

8.3 Limitations and Future Works . 150

8.4 Summary . 153

Bibliography 154

viii

A Recognition rules in OAES 174

A.1 Pocket Feature Family . 174

A.2 Hole Feature Family . 177

A.3 Blind Step Feature Family . 179

A.4 Through Step Feature Family . 181

A.5 Blind Slot Feature Family . 182

A.6 Through Slot Feature Family . 184

A.7 Basic constructs . 187

ix

List of Tables

1.1 Comparison between traditional computer-based information systems

and KBSs . 4

3.1 Syntax and semantics of OWL constructs and axioms 48

3.2 Syntax and semantics of SWRL atoms 50

4.1 Translating ECA to SWRL-like rules 67

4.2 Details of test ontologies . 76

5.1 Empirical data adopted from an automobile fault diagnostic scenario 91

7.1 Mapping from EXPRESS to OWL 117

7.2 Mapping between OWL and EXPRESS items within the triangular pocket

example . 123

7.3 Probabilistic causalities with conditional probabilities 133

x

List of Figures

2.1 Explanation equation of DN model 18

3.1 General structure of the explanation structure 43

3.2 An example of OWL ontology . 47

3.3 Capturing domain knowledge using OWL and SWRL 51

3.4 BCAR in generating decision explanations 56

3.5 The general process of interactive AR 60

4.1 Concept framework of BCAR . 65

4.2 The root of searching tree . 70

4.3 Generating branches . 71

4.4 Searching tree in BCAR . 72

4.5 Experimental results . 78

5.1 Causal network . 85

5.2 Interactive reasoning process . 88

5.3 Instantiated certainty network . 90

5.4 The functional process of MRICN . 92

5.5 The inference flow . 94

xi

6.1 CNC machines . 98

6.2 Concept framework of the GA-based intelligent CAD/CAM system . 99

6.3 CAPP-based design cycle for metallic aerospace components 100

6.4 Face-surface, edge-curve, and vertex-point 103

6.5 Basic data structure of B-rep . 104

7.1 Ontology-based AFR explanatory system 115

7.2 Portion of subtype entity hierarchy of representation item 118

7.3 Example of a triangular pocket . 119

7.4 Explainable features in OAES . 120

7.5 Descriptive information of edge . 125

7.6 Descriptive information of concave angular edge 126

7.7 A sequence of explanations for “why F001 is a triangular pocket . . 130

7.8 Probabilistic causality network for software diagnosis in OAES 132

7.9 The dialog history in the software diagnostic model 134

7.10 Internal structure of the F-35 strike fighter 135

7.11 The main interface of OAES . 136

7.12 Ontology class tab . 137

7.13 Ontology property tab . 137

7.14 The SWRL rule tab . 138

7.15 Class detail panel for face bound . 138

7.16 Explanation & query panel . 139

7.17 The explanation panel for obround hole feature 140

7.18 The explanation panel for obround hole feature cont’d 141

xii

7.19 The explanation panel for triangular pocket feature 142

7.20 The explanation panel for regular through slot feature 142

7.21 The query panel for concave angular edge 143

7.22 Interface of the software diagnostic model 144

7.23 Interface of the software diagnostic model cont’d 144

xiii

Publications

W. Peng, Q. Wang, B. Wang, X. Yu, “Putting simple hierarchy into ant foraging:

cluster-based soft-bots”, in Proceedings of the Third International Conference on Net-

work and System Security (NSS’09), pages 484-488, Gold Coast, Australia, 2009

Q. Wang, W. Peng and X. Yu, “Ontology based geometry recognition system for

STEP”, in Proceedings of the 2010 IEEE International Symposium on Industrial Elec-

tronics (ISIE 2010), pages 1686-1691, Bari, Italy, 2010

Q. Wang, W. Peng and X. Yu, “Building an explanation generation mechanism in

probabilistic knowledge-based systems”, in Proceedings of the Eighth IEEE Interna-

tional Conference on Industrial Informatics (INDIN 2010), pages 229-233, Osaka,

Japan, 2010

Q. Wang and X. Yu, “Improving reasoning capabilities for ontology-based geometric

product model”, in Proceedings of the 37th Annual Conference of IEEE Industrial

Electronics Society (IECON 2011), pages 3048-3053, Melbourne, Australia, 2011

Q. Wang and X. Yu, “Reasoning over OWL/SWRL ontologies under CWA and UNA

for industrial applications”, in Proceedings of the 24th international conference on

Advances in Artificial Intelligence (AI’11), pages 789-798, Perth, Australia, 2011

xiv

Abstract

A Knowledge-Based System (KBS) is essentially an intelligent computer system

which explicitly or tacitly possesses a knowledge repository that helps the system

solve problems. Researches focusing on building KBSs for industrial applications to

improve design quality and shorten research cycle are increasingly attracting interests.

For the early models, explanability is considered as one of the major benefits of using

KBSs since that most of them are generally rule-based systems and the explanation

can be generated based on the rule traces of the reasoning behaviors.

With the development of KBS, the definition of knowledge base is becoming much

more general than just using rules, and the techniques used to solve problems in

KBS are far more than just rule-based reasoning. Many Artificial Intelligence (AI)

techniques are introduced, such as neural network, genetic algorithm, etc. The ef-

fectiveness and efficiency of KBS are thus improved. However, as a trade-off, the

explanability of KBS is weakened. More and more KBSs are conceived as black-box

systems that do not run transparently to users, resulting in loss of trusts for the

KBSs. Developing an explanation model for modern KBSs has a positive impact on

user acceptance of the KBSs and the advices they provided.

This thesis proposes a novel computational framework for explanation generation

in KBS. Different with existing models which are usually built inside a KBS and

generate explanations based on the actual decision making process, the explanation

model in our framework stands outside the KBS and attempts to generate explana-

tions through the production of an alternative justification that is unrelated to the

actual decision making process used by the system. In this case, the knowledge and

xv

reasoning approaches in the explanation model can be optimized specially for explana-

tion generation. The quality of explanation is thus improved. Another contribution in

this study is that the system aims to cover three types of explanations (where most of

the existing models only focus on the first two): 1) decision explanation, which helps

users understand how a KBS reached its conclusion; 2) domain explanation, which

provides detailed descriptions of the concepts and relationships within the domain;

3) software diagnostic, which diagnoses user observations of unexpected behaviors of

the system or some relevant domain phenomena.

The framework is demonstrated with a case of Automated Feature Recognition

(AFR). The resulting explanatory system uses Semantic Web languages to implement

an individual knowledge base only for explanatory purpose, and integrates a novel

reasoning approach for generating explanations. The system is tested with industrial

STEP files, and delivers good quality explanations for user queries about how a certain

feature is recognized.

xvi

Chapter 1

Introduction

1.1 Introduction

This chapter discusses the backgrounds and motivations underpinning this research

work. Research objectives and contributions are also proposed.

The rest of the chapter is organized as follows: Section 1.2 introduces the concepts

of explanation and Knowledge-Based System (KBS), as well as the role of explanation

in KBS; Section 1.3 discusses the new ideas that inspire and underpin this research;

Section 1.4 proposes the research objectives and research questions; Section 1.5 high-

lights the main contributions; Section 1.6 shows the thesis structure; and finally

Section 1.7 summarizes the chapter.

1.2 Explanation and Knowledge-Based Systems

This section briefly introduces the philosophical ideas of explanation and the definition

of KBS, as well as the usage of explanation in KBS.

1

1.2.1 Explanation

Explanation, according to Oxford English Dictionary, is commonly regarded as a

statement or account that makes something clear. However, until now there still

is not any well-accepted theoretical model that perfectly defines explanation within

the philosophy of science. Historically, explanation usually refers to the causation,

namely to explain an event or phenomena is to find out what has caused it. Thus,

for many years, Aristotle’s theories of causation have been regarded as the foremost

theories of explanation.

In the Twentieth Century, philosophers started to look for theoretical models for

explanations. A model of explanation is a set of necessary and sufficient conditions

that determine whether an explanation correctly explains the question [2]. The first

formalized model, Deductive-Nomological (DN) model, which is also regarded as the

most significant model, was proposed by Hempel in 1940s [50], highlighting that the

occurrence of a phenomenon should be explained by showing that the phenomenon

is resulted from certain facts in accordance with a set of general laws. The major

dispute over DN model is that a DN explanation is not necessarily a cause for the

phenomenon to be explained. This leads to two issues: Explanatory Asymmetries

and Explanatory Irrelevancies [147]. Salmon’s Statistical Relevance (SR) model [110]

is a very influential attempt to address these issues in terms of the notion of statistical

relevance or conditional dependence relationships. The intuition underlying the SR

model is that statistically relevant relationships are explanatory, while statistically

irrelevant relationships are not [147]. As some philosophers argued that causal rela-

tionships are greatly underdetermined by statistical relevance relations [81], Salmon

2

finally abandoned the attempts in modeling explanations or causal relationships com-

pletely by using statistical methods. Instead, he proposed a Causal Mechanical (CM)

model [108], claiming that an explanation can be represented by the causal processes

and interactions leading up to the event that need to be explained.

In contrast to the above theoretical approaches which attempt to model an ex-

planation as a set of conditions, other researchers hold that such models actually do

not exist [2]. It seems that, no matter what model is applied, people can always find

counter examples that do not fit the model. Van Fraassen claimed in his pragmatic

theory of explanation [34] that “an explanation is not the same as a proposition,

or an argument, or a list of propositions; it is an answer to a why-question”. As a

consequence, instead of modeling the cause of the phenomenon to be explained, he

focused on capturing the context and intention of the why-question in order to eval-

uate explanations. A deeply pragmatic explanation theory, the Illocutionary Theory

proposed by Achinstein [1], described explanation as an illocutionary act that is typi-

cally performed by uttering words in certain contexts with appropriate intentions [2].

According to Achinstein, S (a person) explains q (an interrogative expressing some

question Q) by uttering u only if S utters u with the intention that his u render q

understandable by producing the knowledge of the proposition expressed by u that

it is a correct answer to Q [1].

Generally speaking, theories of explanation provide fundamental ideas and prin-

ciples for generating explanations using machines. For example, the DN model gives

a feasible format of explanation, that is, the facts that cause a certain event plus the

rules that lead the facts to the event can be generally accepted as the explanation

of the occurrence of the event. In addition, the pragmatic theory reminds us that

3

Table 1.1: Comparison between traditional computer-based information systems and

KBSs

Traditional Computer-Based

Information System

Knowledge-Based System

Gives a guaranteed solution and

concentrates on efficiency

Adds power to the solution and

concentrates on effectiveness without any

guarantee of solution

Data and/or information processing

approach

Knowledge and/or decision processing

approach

Assist in activation related to decision

making and routine transactions; supports

need for information

Transfer of expertise; takes a decision

based on knowledge, explains it, and

upgrades it, if required

Manipulation method is numeric and

algorithmic

Manipulation method is primarily symbolic

or connectionist

Theses systems do not make mistakes Theses systems learn by mistakes

Need complete information and/or data Partial and uncertain information, data, or

knowledge will do

Works for complex, integrated, and wide

areas in a reactive manner

Works for narrow domains in a reactive

and proactive manner

explanations should vary in different contexts or with different intensions.

1.2.2 Knowledge-Based Systems

A KBS is essentially a computer-based intelligent system which explicitly or tacitly

possesses a knowledge repository that helps the system make decisions or solve prob-

lems. The knowledge is usually generated from data or information inputted by a

user, and can be captured using various knowledge representation techniques, such

as rules, frames or connectionist models. The systems are capable of understand-

ing the information being processed and can make decisions based on it [3], whereas

traditional computer systems do not understand the data/information they process.

Table 1.1 [105] shows the differences between traditional computer-based information

systems and KBSs.

4

Some of the objectives of KBSs are listed below [134]:

• Provide a high intelligence level;

• Assist people in discovering and developing unknown fields;

• Offer a vast amount of knowledge in different areas;

• Aid in management of knowledge stored in the knowledge base;

• Solve social problems in a better way than the traditional computer-based in-

formation systems;

• Acquire new perceptions by simulating unknown situations;

• Offer significant software productivity improvement;

• Significantly reduce cost and time to develop computerized systems;

1.2.3 Explanation in Knowledge Based Systems

Modern KBSs integrate increasingly complex techniques and methodologies to solve

problems. Due to the complexity of the techniques integrated, systems’ problem

solving behaviors and strategies are usually opaque and vague to the end user. Mis-

understandings and ambiguities thus emerge and often result in users’ distrust of the

intelligent systems, finally decreasing the acceptance of the systems. Putting expla-

native processes into KBSs proves to be a viable solution. Explanations help users

understand the causality about system behavior so as to increase user acceptance.

Beliefs towards KBSs can be increased not only by the quality of its output, but

more importantly, by the evidence of how and where it was derived.

5

The importance of explanation in KBSs has long been realized. From the first ex-

pert system, MYCIN [114], to many other followers, explanatory facilities have been

integrated to help users understand systems better. According to Chandrasekaran

[24], the research of explanation for KBS includes three aspects: 1) generating expla-

nation’s basic content; 2) responsiveness; 3) the human-computer interface.

Generating the basic content of explanations refers to what explanation should be

provided and how to generate explanations from a KBS. For the first issue, Lacave and

Diez [75] summarized three basic explanation focuses in KBSs: 1) Explaining avail-

able evidences, which consists in determining which hypothesis justifies the observed

findings; 2) Explaining models, which provides detailed information for elements, rela-

tionships, components or events with the aim of helping users understand the system;

3) Explaining the reasoning process, which provides justification for the results ob-

tained by the system and reasoning process that produced them. For the second issue,

Chandrasekaran [24] classified existing approaches into two major categories: 1) by

introspecting: explanations are generated based on system’s own problem solving ac-

tivity and by picking appropriate traces of reasoning steps or knowledge base portions

used in making the decision; 2) by concocting: also known as reconstructive explana-

tions, which means that explanations are generated by producing a justification that

does not relate to how the decision was actually made.

Responsiveness, also called adaption [75], fulfills the need of generating explana-

tions for different users within different contexts. Cognitive studies of explanation

patiently remind us that users may have different intentions when they ask for expla-

nations. Capturing these intentions is critical to providing satisfactory explanations.

A responsive (or adaptive) explanation model should be able to apply user goals,

6

states of knowledge, and the dialogue structure to filter, shape, and organize process

output. This often requires User Modeling or Context Handler.

Researches regarding human-computer interface of explanatory facilities focus on

the ways in which the explanation can be effectively presented and displayed to users.

Which explanations are best presented in natural language and which in graphical

form (e.g. flow chart) is one major problem that this function needs to deal with.

Other issues include how a user should ask questions: by selecting items in a menu

or by nature language? Are users allowed to interrupt system running and request

an explanation?

1.3 Motivations

This section discusses two major ideas motivating this study: integrating “explaining

available evidences” and reconstructive explanations.

1.3.1 Integrating “Explaining Available Evidences”

As previously discussed, three explanation focuses have been identified: “explaining

available evidences”, “explaining models”, and “explaining the reasoning process”.

In most cases, people only mention the last two focuses when discussing the idea

of explanation in KBSs. Systems for explaining available evidences, which focus on

finding the root cause for any observed symptoms or evidences, are not considered to

be explanatory facilities in KBSs [75]. Instead, they are mostly utilized in medical

diagnosis or industrial failure detection, where the generation of a hypothesis is the

core activity of those systems.

7

In fact, if we carefully review several cognitive studies of explanation, it is common

for users to have questions such as “what’s wrong?” or “what did I do?” [48]. One of

the major findings in the survey in [37] is that “when a mismatch occurred between

system performance and user expectation, the user may be made confused and lead

to a decrease in trust”. We can then conclude that a user may need explanations

while he/she is experiencing an unexpected behavior of the system. In this case,

providing explanations becomes a form of diagnosing unexpected system behaviors,

and the explanatory facility here is more like a software diagnostic tool. Explanation

models for “explaining available evidences” can then be applied to address this issue.

For example, once a user finds unexpected behaviors, such as halting, generating

errors or warnings, or even collapsing, he or she can input these observations into the

explanation model as evidences. The explanation model should be able to uncover

the reasons for the observed evidences, present the reasons to user as explanations,

and give appropriate solutions.

1.3.2 Reconstructive Explanations

Traditionally, explanation models are mostly inside KBSs and generate explanations

“by introspecting” (see Section 1.2.3). This type of explanation generation heavily

relies on how the system obtains the results and how knowledge is represented in the

system. For early rule-based expert systems in the last century, this is a relatively

good approach. This is because the decision making process in such systems is simply

rule-based reasoning, so that the internal logical sequence can be perfectly explained

by tracing the rules that have been used. Many remarkable explanation models were

8

proposed in this line around 1980s and 1990s.

However, modern KBSs are becoming increasingly intelligent and may possess

very complex problem-solving mechanisms or very abstract knowledge representation.

They often involve hybrid computational algorithms, where human logic does not exist

and explicit causality between input and output is hardly recognized. Generating

satisfactory explanations “by introspecting” is difficult in this case. As it has been

observed, explanations in today’s systems are “even poorer than the first expert

system MYCIN” [75].

To address the above issue, we believe that the explanation model should be out-

side KBSs, and use the “by concocting” method for explanation reconstruction (see

Section 1.2.3), which means generating explanations through the production of an

alternative justification that is unrelated to the actual decision making process used

by the system. The explanation model, in this case, may own an independent ex-

planative knowledge base, and use this knowledge base to argue convincingly that

the answer is correct without actually referring to the derivation process. Compared

to the traditional way of generating explanations “by introspecting”, using the re-

constructive method, the explanation model can be optimized independently so that

more flexible and understandable explanations can be provided.

One of the major concerns is that reconstructive explanations may not be quite

accurate, since that it is more like that the explanation model uses its own knowledge

to “guess” how problems are solved and how decisions are made by the KBS. But

this does not quite matter. In most times, perfectly accurate explanations are not

necessary. Users are happy to accept plausible explanations that are simple, easy to

understand and in everyday language, just as the popularization of science, or math-

9

ematical proof which persuades without representing the exact process utilized by

mathematicians. Metaphorically, a KBS can be seen as an expert who can effectively

make decisions and solve problems, but is not good at explaining himself/herself,

while the explanation model acts as a teacher or tutor whose knowledge may not be

as expansive as the expert’s, but has far superior communication skills, so that he/she

can infer how the expert makes decisions based on his/her own knowledge and clearly

explain the inference to people with different backgrounds.

1.4 Research Objectives and Research Questions

1.4.1 Research Objectives

In general, the objective of this Ph.D study is to draw ideas from Philosophy and

Cognitive Science to develop an intelligent computational framework for explanation

generation in KBSs. Based on the motivations discussed in Section 1.3, the explana-

tion model inside the framework includes two key ideas:

1. The framework should cover all the explanation focuses. Namely it should be

able to provide explanations for:

• decisions that have been made by the KBS;

• domain concepts and relationships;

• system failures, such as software errors or warnings;

2. The explanation model in the framework should be outside the KBS, and gen-

erate explanations by producing a justification that does not relate to how the

10

decision was actually made. To this end, the model should:

• own a separate Explanative Knowledge Base (EKB);

• have an independent reasoning mechanism;

• be able to use its own knowledge to “guess” how the goal is achieved in

the KBS;

1.4.2 Research Questions

Three major research questions have been identified to achieve the research objectives.

1. How to build the framework for the explanation model?

This question refers to a set of questions within the framework design for the

explanation model, such as: What are the components included in the frame-

work? How do they connect with each other to share the information? What is

the information flow? How does the explanation model communicate with the

KBS? How does the explanation model interact with users? and etc.

2. How to build EKB for the explanation model?

This question refers to how knowledge is encoded in EKB. Many techniques are

available to represent knowledge, such as rule base, first order logic, bayesian

network, ontology and etc. It is critical to choose an appropriate method to

represent knowledge in EKB in the sense of understandability and descriptive-

ness. In addition, how to map the information from a particular domain to the

selected knowledge model is another issue that should be addressed.

11

3. How to generate explanations from EKB?

Once EKB has been built, how to generate explanations then becomes a rea-

soning issue in EKB. For example, the explanation about how a KBS reached

conclusions (output) is generated based on a knowledge track which logically

connects the output and input of the KBS in EKB.

1.5 Contributions

Major contributions of the research to the body of knowledge are listed below:

1. The proposing framework firstly covers all the three explanation focuses. Tradi-

tional works only consider the models for the second focus “explaining models”

and the third focus “explaining reasoning process” as the explanation facil-

ities in KBS. However, as we discussed, the first focus “explaining available

evidences”, is also integrated in our framework as a software diagnostic tool.

2. Differing from most of the existing explanation models, the explanation is gener-

ated using a reconstructive method in this study. The explanation model in the

proposing framework benefits from generating more flexible and understand-

able explanations, since that knowledge representation and reasoning methods

can be separately optimized for generating explanations in this case. Very few

researches has been done along this line. The only available literature [143] was

published about 20 years ago, with simple frame-based EKB, and only available

for early rule-based expert systems.

3. Semantic Web languages, Web Ontology Language (OWL) and Semantic Web

12

Rule Language (SWRL) are introduced to build EKB for generating explana-

tions. Semantic Web is motivated to represent web content in a form that

is more easily machine-processable [7], namely allowing the computer to un-

derstand human language. Conversely, if the computer can understand what

people speak, it is reasonable to believe they may speak what people under-

stand. To this end, general methods for mapping the domain knowledge of a

certain application to an OWL/SWRL ontology are developed.

4. A novel Backward Chained ABox Reasoner (BCAR) is developed for reasoning

through EKB to generate explanations for decisions made by a KBS. Comparing

with other general ontology reasoners, BCAR has advances in: 1) reasoning with

closed world based information model; 2) handling SWRL rules; 3) producing

explanations by using backward chaining;

5. A novel Multiple Run Interactive Certainty Network (MRICN) is developed to

improve the capability of handling context in the diagnostic model. MRICN is a

probabilistic reasoning network that provides interactive Abductive Reasoning

(AR) for the purpose of explanation generation and diagnosis. The network can

interact with users and draws new information to allow reflective searching for

the optimal set of knowledge with the maximal certainty gain.

6. The explanation framework is implemented and demonstrated with a case of

AFR as a novel Ontology-based AFR Explanatory System (OAES). With this

particular case, OAES generates explanations for: 1) features that have been

recognized; 2) geometrical concepts and relationships within the domain; 3)

failures, errors or warnings that have been observed while using OAES. The

13

development of OAES includes two sub-contributions: 1) A STEP-OWL inter-

preter that maps STEP instances to ontology ABox; 2) A set of SWRL rules

and OWL concepts describing design features;

1.6 Thesis Structure

This thesis is divided into seven chapters. This first chapter has provided an overview

of explanation in both theoretical studies and KBSs. Research objectives, research

questions and contributions of this study have also been addressed.

Chapter 2 reviews existing methods and technologies relevant to this study. The-

ories of explanation in Philosophy and Cognitive Science are introduced first as the

foundation. Researches of explanation in KBS are then discussed according to the

explanation aspects mentioned in Section 1.2.3. Existing studies for “explaining avail-

able evidences” are reviewed separately since that traditionally they are not consid-

ered as capable of generating explanations for KBSs.

Chapter 3 explains the framework for explanation generation. Several key issues

are discussed first, followed by a detailed description of the framework. Further, three

major components are discussed in a sequence:

• EKB: Technologies used for building EKB and the methods for mapping domain

information to the EKB are described;

• Decision Explanation Model (DEM): Reasoning issues that were used to gener-

ate decision explanations are highlighted;

• Software Diagnostic Model (SDM): Key concepts within the diagnostic model

14

including AR and uncertainty handling are discussed;

Chapter 4 discusses the technical details of BCAR. The development of BCAR

includes building a unified rule base, developing a reasoning algorithm, and handling

some special logical atoms. A benchmark ontology is adopted to test the performance

of BCAR.

Chapter 5 describes the technical details of MRICN. An introduction of AR with

interactions is firstly given. Issues regarding how to construct the certainty network

and how to implement the interactive reasoning process are then discussed. An ex-

perimental test is finally carried out.

Chapter 6 gives an introduction to the background of STEP-based AFR, which is

used as the demonstration scenario for the explanation framework proposed in this

thesis. The introduction includes: an overview of AFR principles, a brief descrip-

tion of Boundary Representation and STEP standard, and a review of existing AFR

models.

Chapter 7 discusses the implementation and application of the explanation frame-

work within AFR. A novel AFR Explanatory System, OAES, is proposed. OAES is

developed to provide explanations for any AFR systems that recognize features from

STEP files. The explanations produced are not related to how the features are actu-

ally recognized in the AFR systems. Instead, a set of recognition rules are constructed

based on the face topology, and are used to generate explanations.

The final chapter concludes the thesis and proposes some future works.

15

1.7 Summary

This chapter has given a brief introduction of the concepts of explanation and KBS,

as well as the usage of explanation in KBS. It is, then, followed by the discussions of

motivations of the study, research objectives and questions, and contributions. Lastly,

the thesis structure has been outlined.

16

Chapter 2

Literature Review

2.1 Introduction

This study covers multiple research disciplines, including Cognitive Science, Knowl-

edge Engineering, Computer Science and Computer-aided Manufacturing design.

This chapter generally discusses background knowledge and reviews existing methods

and technologies in relation to this study.

The rest of this chapter is organized as follows: Section 2.2 reviews major the-

oretical ideas of explanation in both Philosophy and Cognitive Science; Section 2.3

discusses existing studies of explanations in KBS according to the three explanation

aspects; Section 2.4 introduces previous studies for “explaining available evidences”;

Section 2.5 summarizes the chapter.

17

2.2 Theories of Explanation

Several significant theoretical ideas mentioned in Section 1.2.1 are discussed in details

in this section, as well as some results achieved from cognitive studies of explanation.

2.2.1 Deductive-Nomological (DN) Model

The DN model was proposed by Hempel [50] in 1940s, and was considered to be the

first and most significant theoretical model of explanation.

According to Hempel, an explanation consists of two major constituents: an ex-

planandum and an explanans. The explanandum describes the phenomenon to be

explained and the class of those sentences that are adduced to account for the phe-

nomenon is enclosed in the explanans. The explanans falls into two subclasses: one

contains certain sentences C1, C2, ..., Ck which state specific antecedent conditions;

the other is a set of sentences L1, L2, ..., Lr which represent general laws. The

explanation equation is then defined as shown in Figure 2.1:

C1, C2, C3, ……, Ck Statements of antecedent

conditions

L1, L2, L3, ……, Lr General Laws

E Description of the

phenomenon to be

explained

Logical

deduction

Explanans

Explanandum

Figure 2.1: Explanation equation of DN model

Within this model, the constituents have to satisfy four conditions of adequacy

being a sound explanation:

18

(R1) The explanandum must be a logical sequence of the explanans;

(R2) The explanans must contain general laws, and these must actually be

required for the derivation of the explanandum;

(R3) The explanans must have empirical content;

(R4) The sentences constituting the explanans must be true;

One rather obvious problem in DN model has to do with the temporal relations

between explanatory facts (singular sentences in the explanans) and the event to be

explained (explanandum) [109]. For example, a total lunar eclipse can be satisfactorily

explained by deducing its occurrence from the relative positions of the earth, sun, and

moon at a certain time prior to the eclipse in conjunction with some laws of celestial

mechanics. However, although it is equally possible to deduce the occurrence of

the eclipse from the relative positions of the stars at some time after the eclipse

in conjunction with the very same laws, hardly anyone would admit that the latter

deduction qualifies as an explanation.

Another issue has to do with the role of causality in explanation. This includes

cases where an event fits the model, but is not explained, and cases where the event

is explained but does not fit the deductive structure of the model [47]. A classic

example is that the length of a shadow can not explain the height of a flagpole,

though the length of the shadow, the position of the sun, and the laws of geometry

can be combined into an explanation to fit the DN model.

19

2.2.2 The Pragmatic Theory of Explanation

The pragmatic theory of explanation highlights the impact of the context of expla-

nation. Van Fraassen [34] claimed that “an explanation is not the same as a propo-

sition, or an argument, or a list of propositions; it is an answer to a why-question”.

Consequently, instead of modeling the cause of the phenomena to be explained, the

pragmatic theory focuses on capturing the context and intention of the questions in

order to evaluate explanations. For example, he stated that both “because I flipped

the switch” and “because we are expecting company” are explanations of the ques-

tion “why is the light on?”, depending on the motivation for and the context of the

original question.

Van Fraassen identified the abstract why-question with a triple:

Q =< Pk, X,R >

where Pk is the topic of the question, X represents a contrast class which is a set

of alternatives regarding the motivation of the question, and R denotes a relevance

relation which determines what shall count as a possible explanatory factor.

More concretely, the contrast class provides information on why one particular

event occurred instead of another in its contrast class, so that every why question

“why x?” may be translated as “why x instead of y?”. For example, a question “why

did Adam eat the apple?” may have three different intentions: (1) looking for an

explanation which tells us why it was Adam (and not someone else) who ate the

apple, (2) looking for an explanation which tells us why Adam ate (as opposed to

doing something else to) the apple, and (3) wanting to know why Adam ate the apple

(as opposed to Adam eating something other thing). The only difference between

20

these three intentions is a difference in contrast classes. In (1) the contrast class

would consist in other people having eaten the apple. In (2), it would be Adam doing

other things to the apple, and in (3), it would be Adam eating something other than

the apple. After the contrast class is determined for a question, the best explanation

can then be identified if it offers a larger probability to the questions’ topic against

other alternatives in the contrast class.

A problem in the above theory is that the relevance relation R has not been clearly

defined. Van Fraassen only suggests that it is “determined by the context” in which

the question is asked. Salmon and Kitcher [73] argue that according to Van Fraassen

virtually anything can count as an answer to just about any why-question, because

he does not place constraints on R.

2.2.3 Explanation in Cognitive Science

While explanation is essentially an act of communication, the behavior of explaining

can be regarded as a purely cognitive activity, and an explanation can be considered

as a certain kind of mental representation that results from or aids in this activity.

Therefore, explanation has recently emerged as an important topic of study in both

cognitive development and cognitive psychology ([70], [69]).

Cognitive Science is the interdisciplinary scientific study of mind and its pro-

cesses. It integrates across multiple perspectives drawn from Biology, Psychology,

Computer Science, and others, in order to understand how information is processed,

represented, and transformed in behavior, nervous system or machine. In Cognitive

Science, the primary research method is experimentation with human participants.

21

People, usually undergraduates satisfying course requirements, are brought into the

laboratory so that different kinds of thinking can be studied under controlled con-

ditions [127]. With these human participated experiments, studies of explanation in

cognitive science usually help us understand explanations in an empirical way.

Gregor and Benbasaat [39] reviewed a group of empirical studies, mainly with

KBSs, aiming to address several questions concerning the importance of explana-

tions, such as “why are explanations needed?”, “what types of explanations should

be provided?”, “when and how are explanations likely to be used?”. Nine proposi-

tions are then nominated with respect to several important factors of explanations,

as listed below:

• Explanations will be used when a user experiences an expectation failure, or

perceives an anomaly.

• Explanations will be used more when a user has a goal of long-term learning.

• Explanations will be used when a user lacks the knowledge needed.

• Explanations that require less cognitive effort to access and assimilate will be

used more and will be more effective with respect to performance, learning, or

user perceptions.

• Use of explanations improves the performance achieved with a KBS as an aid.

• Use of explanations helps in learning (transfer of knowledge to non-KBS con-

texts).

• Novices will use explanations more for learning.

22

• Experts will use explanations more for resolving anomalies.

• Use of explanations conforming to Toulmin’s model (justification explanations)

will give rise to more positive user perceptions of a KBS than other explanations.

Intelligent agent is currently regarded as the most active topic in KBS. There-

fore recent studies of explanation are motivated to improve user acceptance of those

agents. [37] presents a survey of the testing users of CALO, a complex adaptive agent

system, to investigate themes surrounding trust and understandability. Six themes

regarding trustfulness were concluded based on participants’ feedback. For example,

one theme that has been identified states that “many users commented that knowing

what resources were being used to provide answers would aid them in trusting the

system”.

In most of the existing works regarding explanations in KBS, explanation only

refers to explaining decisions or actions made by the system itself. However, in a

recent paper [48], the authors claim that the explanatory facility in modern intelli-

gent agents should covers more, such as explanations of agent component or design

rationale. For this reason, the authors classify the explanations into four categories:

1) ontological explanation: request for information regarding identity, definition, re-

lation and event; 2) mechanistic explanation: request for information describing an

agent’s behavior; 3) operational explanation: request for instructional content; 4)

design rationale: request for information about design rationale. An experiment is

then presented and the result is interesting. Actually the requests for mechanistic

explanation only account for 19% of total requests, whereas the requests for onto-

logical explanation account for 58%. This result reveals a broader way of thinking

23

about explanation facility in KBS. Future explanation models should not only explain

“why?” and “how?” questions, but also attempt to explain “what?” questions.

2.3 Explanation Models for KBSs

This section reviews existing studies in building explanatory facilities for KBSs ac-

cording to the explanation aspects mentioned in Section 1.2.3. Methods for gener-

ating basic content of explanation are firstly discussed. A review of studies focusing

on providing adapted explanations is followed. The third aspect, developing human-

computer interface is not included since that it is only a software development issue.

In addition, the explanation models discussed in this section only deal with the “ex-

plaining models” and “explaining reasoning process”. Models for “explaining avail-

able evidences” are reviewed separately in the next section, since that traditionally

they are not considered as explanatory facilities in KBSs.

2.3.1 Methods for Generating Basic Content

The significance of explanations was realized since the early expert system MYCIN

[114]. MYCIN is a computer-based consultation system designed to assist physicians

in the diagnosis of therapy advice for patients. It contains an explanation system,

in which explanations are generated based on the rules that have been used or rules

that are going to be used. Two components are involved in providing explanations

[136]: 1) Question Answering (QA) program: QA answers simple English-language

questions concerning the decisions made by the system in a particular consultation

or the system’s knowledge in general. For example, to explain how the value of

24

a parameter is concluded, MYCIN retrieves the list of rules which were successfully

applied, and presents them to the user along with the conclusions drawn. 2) Reasoning

Status Checker: this component allows users to ask questions at any time during the

consultation, and provides answers by checking current reasoning status. For example,

when the user is asked a question, instead of answering the question he/she can ask

why the question was asked. By checking current reasoning status, MYCIN simply

answers that “because I’m trying to apply the following rule...”.

It has been argued that MYCIN has two major shortcomings [91]: firstly, there

is no strategy of explanation about why a certain rule is used; secondly, deep expla-

nations which justify the rules are not available in MYCIN. A series of the following

models was developed to address these issues.

In contrast to MYCIN in which strategy knowledge (the diagnostic procedure) is

implicitly embedded, NEOMYCIN [26], a successor of MYCIN, represents the strat-

egy knowledge explicitly. NEOMYCIN’s strategy is structured in terms of tasks,

which correspond to meta-level goals and subgoals, and meta-level rules (meta-rules)

which are methods for achieving these goals [46]. Strategic explanations, which de-

scribe the plan the system is using to reach a solution, can then be generated by

presenting the meta-rules to the user. A similar method, Generic Task approach

[18] classifies the problem solving behaviors into 6 generic tasks. For example, one

of the most important generic tasks is called hierarchical classification, which is to

classify a situation description as one or more elements in the classification hierar-

chy. Once a KBS is built using the generic-task approach, the trace of the system’s

problem solving behavior can be automatically represented at the architectural level

in terms of its control strategy goals. Strategic explanations are naturally included

25

in the trace. Another task-based model that can provide strategic explanations is

called CARMEN [132], which is a platform for building expert systems. CARMAN

is built based on the Methodology of Modeling Control Knowledge (MMCK) which

represents problem-solving entities explicitly and allows for flexible integration of dif-

ferent kinds of knowledge and reasoning strategies. MMCK divides a KBS into three

layers: task layer, meta-knowledge layer and basic knowledge layer. Four types of

explanation can be generated within this structure: 1) control decisions regarding

planning tasks; 2) control decisions regarding decomposing a goal into sub-goals; 3)

control decisions regarding evaluating the achievability of sub-goals; 4) how to apply

domain knowledge to solve sub-problems.

XPLAIN ([121], [92]) is the first system that highlights the importance of deep

explanation, a type of explanation that provides justification for the system behav-

ior based on domain knowledge. In XPLAIN, the domain knowledge, containing the

descriptive facts of the domain, such as causal relationships and classification hierar-

chies, and the domain principles (the procedural knowledge), containing the methods

and heuristics of the domain, are separately captured. An automatic programmer in-

tegrates these prescriptive principles together with the descriptive facts of the domain

to produce the performance program. This process of integration is recorded and used

as the justification for the expert system’s behavior. Different from XPLAIN in which

the deep knowledge is completely independent of the problem solving component, [23]

proposed a complied knowledge approach that has all the relevant deep knowledge

“complied” into the problem solving component. In such a way, the system can han-

dle all the diagnostic problems that the deep knowledge is supposed to handle if it is

explicitly represented and used in problem-solving.

26

Most of the explanation models generate explanations based on their own deci-

sion making process. An alternative approach is called reconstructive explanation

approach ([143], [145] and [144]). The author argues that “A human expert, when

asked to account for complex reasoning, rarely does so exclusively in terms of the

actual process used to solve the problem. Instead, an expert tends to reconstruct a

‘story’ that accounts for the problem solving. This story reflects the expert’s line of

explanation that is not necessarily the same as the original line of reasoning”. To this

end, a Reconstructive Explainer (REX) was developed. REX is a test-bed system

capable of producing reconstructive explanations for expert systems. The general

idea of REX is to search for a restricted subset of an separate explanatory knowledge

base in order to find a line of explanation supporting the KBS’s reasoning.

The authors of [52] believe that in-depth explanations are not necessary if the

structure information and the functionality of the system are transparent to the user.

They argue that “human explanations are based on the competence lacking in a

computer system. A computer cannot create the insight that is required to the user

to understand a specific aspect or decision. Instead, it can only communicate the

necessary information. The real explanation is then created by the users themselves”.

A four-layer explanation model is proposed, including a domain-layer (descriptive

system-independent knowledge about the domain), a system-layer (general aspects of

the system), a process-layer (dynamic behavior of the system) and a function-layer

(functions accomplished by the system).

Recent studies in building explanation model are becoming diversified and iso-

lated within different applications. One of the major branches focuses on explaining

the increasingly popular intelligent agent. Debrief [61] is the first agent behavior ex-

27

planation model that was implemented in an artificial fighter pilot with the ability

to explain the motivations for its actions, situation assessments, and beliefs. In De-

brief, explanations are generated by “recalling the situation in which a decision was

made”, “reconsidering the decision”, and “determining what factors were critical for

the decision”. Another explainable agent is called Full Spectrum Command (FSC)

[135] which is a training system developed for the U.S. Army by commercial game

developers and academic researchers. FSC includes an Explainable AI (XAI) feature

that allows the user to ask questions about the current behavior of the agent. XAI

can extract key events and decision points from the agents so as to explain their

behavior in response to the questions selected from the XAI menu. Harbers et al.

[45] discussed that the XAI system provides information about an agent’s physical

state and Debrief provides explanation in terms of an agent’s beliefs, and proposes

a new model for explainable Belief-Desire-Intension (BDI) agents which enables the

explanation of BDI agent behavior in terms of underlying beliefs and goals.

Another direction which has attracted a lot of interest is to explain recommen-

dation systems. The recommendation systems capture user preferences in order to

suggest items to assist users by offering relevant information on the web, and have

been successfully implemented in many commercial web sites, such as Netflix and

Amazon. The explanations, in this case, are often formulated as “Item A is recom-

mended to you because” [129]. [131] has summarized seven design criteria for

explanation facilities in recommendation systems, including: 1) Transparency: ex-

plaining how the system works; 2) Scrutability: allowing users to tell the system it

is wrong; 3) Trust: increasing user confidence in the system; 4) Effectiveness: help-

ing users make good decisions; 5) Persuasiveness: convincing users to try or buy; 6)

28

Efficiency: helping users make decisions faster; 7) Satisfaction: increasing the ease of

usability or enjoyment. These design criteria can also be used for general explanation

models, whereas the way in which an explanation can be measured for its effectiveness

in each of the criteria remains an issue. Existing models for generating explanations

for recommendations can be classified generally into three categories according to

[139]: 1) item-based explanations: a set of intermediary items serves as the expla-

nations by expressing the similarity between the items and the recommendations, as

is implemented in the Netflix system 1; 2) user-based explanations: explanation is

provided by showing how other users with similar taste rated the recommended item

[51]; 3) feature-based explanations: this type of approach uses features or charac-

teristics of the recommended item as intermediary entities. For example, one movie

recommender prototype uses movie features including genre, director, and cast to

justify recommendations [130].

2.3.2 Users and Contexts Oriented Explanations

Explanation is not only a matter of giving access to the knowledge contained in

the system. Pragmatic theories of explanation and many empirical studies suggest

that explanations have to be adapted to the user’s knowledge and responsive to the

user’s specific needs. A major part of research on explanation has been devoted

to modeling user profile and customizing explanations, which adapts the form and

content of explanations to the user’s perspective and to cooperate with the user during

problem solving.

The idea that computer systems would interact more effectively with users if they

1http://www.netflix.com

29

had knowledge about their characteristics has received much attention in human-

computer interaction. Modeling user profile refers to the process of gathering in-

formation about users and using the information to provide adaptive explanations.

According to [83], user models can be classified along several dimensions:

• Individual vs. canonical: distinction between models for individual users and

models for classes of users.

• Static vs. dynamic: dynamic models contain information that can change over

time, while static models remain unchanged.

• Short term vs. long term: this feature refers to whether the user model infor-

mation is discarded at the end of a session or is maintained for future usage.

• Explicit vs. implicit acquisition: user models can be defined through explicit

acquisition during the user’s interaction with the system or through implicit

acquisition using inference methods.

User profile model has been used a lot to improve human-computer communi-

cation. A computer system, TAILOR [97], was proposed to generate adaptive de-

scriptions of devices based on the user’s level of knowledge which is captured in a

user model. Two strategies were developed to construct a description for either a

novice or an expert, and can be merged automatically to produce a wide variaty of

different descriptions for users who fall between the extremes of novice and expert.

Another system [19] uses a user model that captures the user’s plans and goals in or-

der to deduce the intended meaning of the user’s input so as to enhance the quality of

30

human-computer communication. Benyon and Murray [14] concluded a common ar-

chitecture for applying user modeling to human-computer interaction design, which

includes three sub-models: the user model, the domain model and the interaction

model.

There are also many papers discussing the construction of the user profile model.

A typical implicit user model acquisition approach, GUMAC [67], was developed

in 1990s. GUMAC uses a set of heuristic rules to capture user beliefs from their

interactions with an expert system, and is utilized by an explanation generator to

tailor explanations the expert system gives to its users. Wu [148] argued that an

effective user model acquisition system should actively ask the questions to acquire

knowledge about the dialog partner, and he proposed an innovative architecture of

dialog agent that can actively query users based on reasoning failures. Reusability

was also discussed in order to reduce the cost of constructing and maintaining the

user model [68]. Recent studies of user profile modeling tend to integrate technologies

from many other disciplines. For example, fuzzy logic is introduced to describe the

user’s knowledge level [17] since that the author believes that “the description of

users’ knowledge level is an inaccurate one, so it is better to describe it in a fuzzy

way instead of accurately”. Ontological approaches [85] are also used to improve the

user profiling performance

Beside user profile modeling, according to [87], the ability “to identify what con-

text consists of and how each aspect of context can affect communication” is also

important to “understand how a flexible explanation module should be designed and

what knowledge sources it would be able to access”. Based on this point of view, five

elements of context were identified:

31

1. Problem solving situation: This refers to the problem solving situation in which

the communication is taking place: what it is, at which point in the process the

communication takes place, etc.

2. The participants: It is recognized that communication is affected by how much

the participants know about the domain or the task under consideration.

3. The mode of interaction: The mode of interaction that is taking place also af-

fects how it occurs, in particular, the medium used, whether feedback is allowed,

and the number of participants.

4. The discourse: The discourse typically refers to the dialogue history and the

current message, in terms of what is being communicated and how it was com-

municated and why.

5. The “external world”: Certain things do not change based on either the dis-

course or the problem solving state. For instance, different social situations

often call for specific patterns of communication.

Context includes so many aspects that none of the existing research can cover all

of them. They all focus on one or two aspects. In fact, context handling also includes

user profile modeling, as the participants are regarded as one aspect of context as well.

Generally, interactions between the user and the system are regarded as the major

source of contextual information in most of the existing studies. They either actively

request for more information or analyze the dialog history to identify the context.

In the following discussion, several typical adaptive explanation models with context

handling components are reviewed.

32

In an early command assistance system [104], examples are provided in explana-

tions to offer a concrete illustration of what is being explained. The examples are

tailored to be adapted to the context based on previous interaction. For example, if

a user has just asked about “PRINT” and then asks what a “queue” is, the system

would give examples of queues used for print jobs. Moore ([88], [89]) argued that

previous explanation systems cannot “clarify misunderstood explanations, elaborate

on previous explanations, or respond to follow-up questions in the context of the on-

going dialogue”, and a reactive approach to explanation was proposed. The approach

firstly identifies a discourse goal based on the user’s query or the expert system,

then heuristically searches for strategies to achieve the goal, taking into account the

previous dialog, and finally plans the explanation and records the plan for further

processing. An Explanatory Discourse GEnerator (EDGE) was proposed to gener-

ate explanations about electronic circuits ([21], [22]). The EDGE system combines

goal-based reasoning, captured in content-planning rules, with dialogue conventions

captured in dialogue-planning rules. Goal-based reasoning is used to identify and

organize the content of an explanation, and dialogue conventions are used to manage

the interaction and determine features such as the user of discourse makers and meta-

comments. Another typical dialogue based interactive explanation system, P.rex, was

developed to explain each proof step of a mathematical proof [32]. In P.rex, the user

may interrupt the system at anytime whenever the explanation provided does not

satisfy the user. The system then analyzes the dialog to uncover the reason, and

re-plans a better adapted explanation.

33

2.4 Models for “Explaining Available Evidences”

“Explaining available evidences” refers to generating explanations for what has been

observed, which are known as scientific explanations [128]. Systems for generating

scientific explanations are often not regarded as explanation components for other

KBSs. Instead, they are considered as independent KBSs themselves, which look

for reasons for any observations or symptoms, e.g. MYCIN [114]. In this case, they

can also be seen as a kind of diagnostic expert system [6]. The difference between

diagnostic systems and scientific explanation generation is that diagnostic systems of-

ten cover many other sub-topics than just looking for reasons for observed symptoms,

such as fault detection and system monitoring, while scientific explanation generation

only focuses on explaining why things happen, which is one of the most important

cognitive operations.

The core activity in “explaining available evidences” is called abduction (also

called AR), which is a form of inference that generates a hypothesis best explain-

ing the observation [63]. Several implementation models for AR are reviewed in the

following discussions, including rule-based model, probabilistic model and neural net-

work model.

2.4.1 Rule-based Models

Based on the classical deductive model, an explanation of a statement consists of a

set of particular facts and a set of general rules [50]. Thus, deductive explanations

often operate in rule-based systems in which the starting states, together with a set

of rules, explain the goal state. In the rule-based model, a simple form of AR can

34

be modeled as a kind of backward chaining. Backward chaining starts from the goal

state to find rules that could produce it from the starting state. It can also be seen

as the process of generating hypotheses. Using backward chaining, it is possible to

generate more than one competing hypotheses and users can accept only one of them

as the explanation, so that additional process is required to select the best explanatory

hypothesis and remove its competitors.

PI, which stands for “process of induction”, is a computational model that is able

to perform AR as the inference to the best explanation ([122], [124]). To explain

an observable data, the abductive inference integrated firstly generates a set of al-

ternative hypotheses since the rules used for achieving the data may have multiple

conditions (the observable data are regarded as the consequent of the rules). PI,

then, evaluates the alternatives and selects the most appropriate hypothesis as the

best explanation of the observable data, taking into account 3 criteria [128]: 1) con-

silience, which is a measure of how much a hypothesis explains; 2) simplicity, which is

a measure of how few additional assumptions a hypothesis needs to carry out an ex-

planation; and 3) analogy, which favors hypotheses whose explanations are analogous

to accepted ones.

There are many other similar works, except using different hypotheses evaluation

and selection methods. For example, some researchers developed a cost-based (also

called weight-based) abduction model ([25], [55]), in which they defined a “assignabil-

ity cost” (real number) for each rule and each conjunct in the condition of the rule.

This abduction model attempts to find the best explanation for a set of facts by find-

ing a minimal cost hypothesis for the facts, where the costs are computed by summing

the costs of assumption necessary for the hypothesis plus the cost for the rules.

35

2.4.2 Probabilistic Models

Bayesian Network (BN) is the dominant computational model for modeling explana-

tion probabilistically ([98], [99]). In general, a BN is a directed acyclic graph, in which

the nodes represent a set of random variables (often referring to the propositions in

the explanation models) and the edges represent conditional dependencies between

the random variables. BN is a convenient way for representing probabilistic causal

relationships between propositions. In the case of using BN for representing causal

relationships, a BN node represents a proposition which is a binary random variable

taking “true” or “false” for values, indicating whether the proposition is true or false.

On the other hand, a BN edge, directing from the cause to the consequent, represents

the causal relationship between two propositions and carries a conditional probability

implying how heavily the consequent depends on the cause. For example, a BN could

be applied to represent the probabilistic relationships between diseases and symp-

toms. Given symptoms, the network can be used to compute the probabilities of the

presence of various diseases.

Many powerful algorithms have been developed for making probabilistic infer-

ences in BN and for generating explanations for some observed evidences. Existing

approaches for generating explanations are mostly based on Maximum a Posteriori

assignment (MAP) and Most Probable Explanation (MPE) [98]. MAP finds a com-

plete instantiation of a set of potential hypotheses that maximizes the joint posterior

probability, given partial evidence on the other variables, while MPE is similar to

MAP, except that MPE defines the potential hypotheses to be all the unobserved

variables. However, these approaches always return a configuration of all the poten-

36

tial hypotheses as the explanation without identifying which of them are important.

Many other techniques have been introduced in order to find the most probable ex-

planations for the given evidences, such as divide and conquer approach ([76], [93]),

niching genetic algorithm [118] and junction tree algorithm [113]. Besides finding the

most probable explanations, there are also some approaches that were developed to

identify important hypothesis based on their relevance to the evidences ([27], [152]

and [151]).

However, it is unrealistic and impossible to expect that “a priori” joint conditional

probabilities between all the propositions in a BN are always available in the real

world. The process of developing “a priori” knowledge is somehow “sophisticated” [95]

and “arbitrary” [126]. Most Bayesian-based diagnostic models resort to reductionist

approaches to relax the Bayesian restrictions. For example, it is often assumed that

the fault variables are mutually exclusive and collectively exhaustive, and there is

conditional independence of evidence given any hypothesis ([65], [49]).

2.4.3 Neural Network Models

Thagard developed a general algorithm for using an Artificial Neural Network (ANN)

to perform abduction in his cognitive model ECHO ([125], [123]). In ECHO, hypothe-

ses and evidences are represented by simple artificial neurons, which are connected by

excitatory or inhibitory links corresponding to constraints between the propositions

they represent. The general process of the algorithm is:

1. For every proposition, construct a neuron node representing the proposition in

the network.

37

2. If a proposition supports another proposition, for example, a hypothesis explains

an evidence, construct a symmetric excitatory link between the corresponding

nodes.

3. If two propositions contradict each other, construct a symmetric inhibitory link

between the corresponding nodes.

4. Assign each node an equal initial activation value, then update the activation

value of all the nodes in parallel. The updated activation value of a node is

calculated on the basis of its current activation value, the weights on links to

other nodes, and the activation values of the nodes to which it is linked.

5. Continue the updating of activation value until all nodes have settled, i.e.

achieved unchanging activation values.

After the above process has been completed, among all the nodes that represent

potential hypotheses, the node which ends up with the highest positive activation

value can be accepted as the best explanation of the evidence.

2.5 Summary

This chapter has reviewed existing works related to this thesis. The first part has

introduced some significant ideas of explanation in Philosophy and Cognitive Science,

which can be regarded as the theoretical foundations for building explanation mod-

els. The second part has dealt with existing works in building explanatory facilities

for KBSs, which fall into two major categories according to the aspects of expla-

nation models: generating basic content and providing adapted explanations. The

38

last section has reviewed existing models for “explaining available evidences”, which

are usually regarded as independent KBSs that look for reasons for some observa-

tions (also called fact, evidence or symptom in different literatures), including three

different types: rule-based model, probabilistic model and neural network model.

39

Chapter 3

Explanation Framework

3.1 Introduction

As previously discussed (Section 1.4.1), the objective of this thesis is to develop an

computational framework for explanation generation in KBSs. An overview of the

framework is outlined in this chapter as well as the introductions of the sub-models

included in the framework.

The rest of this chapter is organized as follows: Section 3.2 explores some prelimi-

nary discussions relevant to the framework; Section 3.3 presents the general structure

of the framework; Section 3.4 describes the development of EKB and relevant tech-

nologies; Section 3.5 highlights the reasoning issues regarding how to generate deci-

sion explanations in DEM; Section 3.6 outlines general ideas about how to perform

software diagnostic in SDM; Section 3.7 summarizes the chapter.

40

3.2 Preliminaries

One of the major research objectives in this thesis is to provide explanations for all

the three explanation focuses: “explaining available evidences”, “explaining models”

and “explaining reasoning process”. We hereby give concrete definitions for these

focuses particularly within our study:

• Decision explanation, which refers to “explaining reasoning process”, provides

justification for how a KBS reaches its conclusions or how a KBS obtains the

results. More specifically, to explain how a KBS reaches its conclusions (output

of the KBS), based on the DN model (an explanation consists of a set of facts

and a set of general laws), our system presents the facts (the input of the KBS,

representing things that the user knows) together with some semantic rules,

which deductively link the facts to the conclusions.

• Software diagnostic, which refers to “explaining available evidences”, presents

reasons for the unexpected behaviors in software products, such as system fail-

ures, internal errors or warnings, and gives appropriate advice to solve the

problems.

• Domain explanation, which refers to “explaining models”, provides detailed

descriptive information of concepts and the relationships between the concepts

within the domain (e.g. explanations for questions such as “what is that?” or

“what does it mean?”).

Another research objective in our framework is to develop an independent expla-

nation model that can reconstruct explanations for KBSs from a separate EKB. To

41

achieve this goal, several design principles are identified:

• Generating explanations is essentially a human-computer interaction. The knowl-

edge representation method used in the EKB should have advances in informa-

tion sharing between human and computers. Namely, EKB should have a shared

and natural knowledge structure that captures human logics in an expressive

and explicit way.

• To generate all the three types of explanations, EKB should: 1) represent all

the domain concepts and relationships for decision explanations and software

diagnostics; 2) capture logical rules that deductively link the input and output of

KBSs for decision explanations; 3) encode detailed descriptions and definitions

for domain concepts and relationships for domain explanations.

• The decision explanations and software diagnostics should be treated separately,

as they have different focuses. Generally speaking, as DN model mentioned that

an explanation of an event consists of facts and rules, decision explanations

focus on uncovering the rules linking the facts and the event, while software

diagnostics are mindful towards the facts that cause the event.

3.3 General Structure of the Framework

Figure 3.1 shows the general structure of the framework. Generally, in this frame-

work, both the KBS and the explanation model have knowledge bases respectively.

The one in the KBS is used for making decisions and the EKB is developed for gener-

ating explanations. Information is shared between these two but in different formats.

42

Knowledge Based System Explanation Model

Knowledge Base
Explanative

Knowledge Base

Decision

explanation

model

Software

diagnostic

model

Share Information

Input Output
Explanation

of KBS’s

decisions

Soft

User’s

Observation

diagnostic

and advices

User

Explanation

of domain

knowledge

Figure 3.1: General structure of the explanation structure

The input and output of the KBS are together sent to DEM. DEM, then, backwards

tracks the knowledge in EKB using a proper reasoner to logically connect the output

and input of the KBS. An explanation about how KBS reaches its conclusions (out-

put) from the input is consequently generated based on the knowledge track (namely

the reasoning history). Once a user observes an unexpected system behavior, the

software diagnostic model executes AR to generate explanations for what has been

observed. An interaction process which handles context is considered. In addition,

the information for domain explanations is statically encoded in EKB and can be

directly provided to users upon request. In the following discussion, the tree major

sub-models, EKB, DEM and SDM, are introduced subsequently.

43

3.4 Explanative Knowledge Base (EKB)

Modern KBSs are weak in generating explanations, partly due to the fact that they

may possess a very abstract knowledge base where human logics are not explicitly

exist.

Considering the following example, [31] proposed a complex expert system for

power transformer fault diagnosis, which comprises a Support Vector Machine (SVM)

with Genetic Algorithm (GA) optimization. Such expert systems, which are combined

with some advanced mathematic techniques (e.g. ANN [155] [141], BN [150] [157],

Graph-based methods), are currently preferred by researchers in this area against

early rule-based models [86] [77] for various considerations (e.g. authors of [150] be-

lieve that rule-based models have difficulties in determine the faulty section among

multiple inferred possible choices and may lead to wrong conclusions). However, it

has been argued that such systems lack explaining capability and behave as black

boxes [20], since that explicit knowledge and human logic are not exist. In this case,

although the early rule-based systems may not perform as good as the above advanced

models, they proves there exists a chain of logic rules which links the observed symp-

toms and transformer faults. Such rule chains are usually regarded as explanations,

and are usually easier to be located for explanation generation than for decision mak-

ing (for explanation, the conclusion are given, so that the above mentioned problem

of multiple choices and wrong conclusion is avoided). Therefore, constructing such

a rule base only for explanation generation would be a solution for the black box

problem, which is also the core idea of EKB.

To achieve this objective, the EKB in our framework should capture knowledge in

44

a more explicit and perspicuous way, so as to improve the information sharing between

users and computers. For this reason, Semantic Web languages, OWL [82] and SWRL

[58] are introduced. Semantic Web is motivated to represent web content in a form

that is more easily machine-processable [7], so as to improve human-computer com-

munications. Our EKB normally consists of an OWL ontology and several SWRL

rules. The OWL ontology provides a shared, explicit and holistic view of domain

knowledge and the SWRL rules are usually used to represent logics explicitly or im-

plement some constraints. Information for domain explanation are also contained in

the ontology as annotations of concepts or relationships.

This section mainly focuses on introducing OWL ontology and SWRL rules, in-

cluding their definitions and syntax. An overview regarding how OWL and SWRL

can be used to capture domain knowledge is also given, whereas the details will be

discussed with a concrete application in Chapter 7.

3.4.1 OWL Ontology

Ontology is essentially a philosophical study of the nature of existence. Problems,

such as existence or classification of entities, are addressed in this study. In the

context of knowledge representation, ontology refers to the specification of a concep-

tualization. It represents a domain in terms of concepts and the relationships between

the concepts. An ontology usually holds a hierarchy, in which a concept may belong

to a super-concept that is more abstract, and may also subsume several sub-concepts

that are more concrete.

OWL has recently been recognized as the most popular language for constructing

45

an ontology [7]. OWL is a multi-disciplinary product, which integrates Philosophy,

Knowledge Engineering and Computer Science. In general, OWL is a family of on-

tology description languages, which is based on Description Logic (DL) and is imple-

mented using web technologies. The OWL family includes three sub-languages with

different levels of expressiveness: OWL-Lite, OWL-DL and OWL-Full. OWL-DL is

used in this study (OWL-DL is denoted by OWL in the following discussion).

An OWL ontology consists of three major components: class, individual and

property. Classes represent types of objects in the domain. They are described using

formal descriptions that precisely state the requirements for membership of a certain

class. Classes are usually organized into a superclass-subclass hierarchy in OWL,

which is also known as a taxonomy. Individuals refer to the actual objects in the

domain. They can be instances of classes or fillers of properties. Properties are

binary relations between individuals, namely they link two individuals together. A

property also can represent a relationship between two classes if all the instances of

both classes are linked by this property.

Figure 3.2 shows a simple example of ontology. “Person”, “Country” and “Pet”

are classes, which have individuals as their instances. For example, the individ-

uals “Gemma” and “Matthew” are instances of the class “Person”, while “Italy”,

“England” and “USA” are instances of the class “Country”. The arrows linking

individuals represent properties. For example, “livesInCountry” is a property that

represents a binary relationship between “Person” and “Country”, so that the in-

formation “Matthew is a person who lives in country England” is captured in the

ontology.

Beyond the three major components, OWL involves many constructs and ax-

46

Gemma

Matthew

Italy

England

USA

Fluffy

Fido

Person

Country

Pet

Figure 3.2: An example of OWL ontology

ioms for better expressiveness. The constructs and axioms are designed based on

SHOIN (D), which is a subset of DL. The expressivity of SHOIN (D) can be ex-

plained as follows:

• S is an abbreviation of ALC with transitive roles. AL represents the basic DL,

which allows: 1)atomic concept negation; 2)concepts intersection; 3)universal

restrictions; 4)limited existential quantification. C represents complex concept

negation.

• H refers to role hierarchy, which means super-property and sub-property are

allowed.

• O means enumerated classes that are directly defined by a set of instances are

allowed.

• I means description of inverse properties is supported.

• N means cardinality restrictions are supported.

47

Table 3.1: Syntax and semantics of OWL constructs and axioms

Constructor Name OWL Syntax DL Syntax Semantics

atomic class

object property

datatype property

individual

top owl:Thing

bottom owl:Nothing

conjunction intersectionOf()

disjunction unionOf()

negation complementOf()

enumerated class oneOf()

existential

quantification
restriction(someValuesFrom())

universal

quantification
restriction(allValuesFrom())

minimal cardinality restriction(minCardinality ())

maximal cardinality restriction(maxCardinality ())

Axiom Name OWL Syntax DL Syntax Semantics

concept inclusion subClassOf()

equivalent classes equivalentClasses()

disjoint classes disjointClasses()

property inclusion subPropertyOf()

property transitivity [Transitive]

inverse properties [inverseOf()]

• (D) means datatype properties, data values or data types can be used.

Syntax and semantics of major constructs and axioms of OWL are listed in Table

3.1.

OWL is also regarded as an extension of Resource Description Framework (RDF).

RDF is a XML-based language that focuses on describing web resources. The general

idea of RDF is to represent object-attribute-value statement. OWL is developed on

top of RDF with higher expressive power and stronger reasoning support. In fact, all

the OWL elements are represented by RDF resources in the RDF level. RDF offers

48

a set of utility properties to annotate RDF resources, giving the potential to encode

descriptive information for the purpose of providing domain explanations:

• rdfs:seeAlso: relates a resource to another resource that explains it.

• rdfs:isDefinedBy: relates a resource to the place where its definition is found.

• rdfs:comment: is used to provide additional information that is associated with

a resource for human readers.

• rdfs:label: is used to provide a human-friendly label that is associated with a

resource.

3.4.2 SWRL Rules

OWL is an ideal ontology description language which has considerable expressive

power, especially in representing concepts and their relationships between each other.

However, OWL also has expressive limitations. The language includes a relatively

rich set of class constructs, but the methods provided for talking about properties

is much weaker [57]. One particular weakness is the incapability of handling prop-

erty composition. For example, it is difficult to describe the relationship between

the composition of the “parent” and “brother” properties and the “uncle” property.

One way to address this problem, that has already been proposed in OWL2, is to

introduce a new axiom called property chain. However the property chain can only

capture simple property composition. Complex relationships, including, for example,

cardinality restrictions, are hardly represented by the property chain.

49

Table 3.2: Syntax and semantics of SWRL atoms

Atom Name SWRL Syntax SWRL Semantics

Class

Object property

Datatype Property

Same objects

Different objects

builtIn functions

An alternative way to overcome the above expressive limitations is to extend OWL

with some form of “rule language”. SWRL is thus proposed [57]. SWRL is generally

a combination of OWL with the Unary/Binary Datalog RuleML language [58]. The

language allows users to write horn-like rules that can be expressed in terms of OWL

constructs. A rule takes the form of an implication between an antecedent (body)

and a consequent (head). A rule body may contain multiple atoms, and is treated

as a conjunction of these atoms. The intended meaning of a rule can be read as:

whenever the atoms specified in the antecedent hold, the atom in the consequent

must also hold.

The syntax and semantics of atoms in SWRL are listed in Table 3.2, where EC is

a mapping from classes and datatypes to a set of ontology resources and a set of literal

values respectively, ER is a mapping from properties to a set of binary relations, L

is the mapping from typed literals to elements in a set of literal values, and S is a

mapping from individual names to the actual individuals in the ontology.

3.4.3 Capturing Domain Knowledge

With OWL and SWRL, we hereby describe a general method for representing do-

main knowledge in EKB. Details of the mapping will be discussed with a concrete

50

application in Chapter 7.

OWL Classes &

Properties (TBox)
RDF annotations of

relevant classes

and properties

SWRL rules & OWL

ECA

OWL Individuals

(ABox)

Domain

knowledge

Domain concepts and

relationships between them

Definitions and

descriptions of concepts

and relationships

Design rules &

constraints

A particular input instance

from a user

Explanative KB

(Ontology)

Figure 3.3: Capturing domain knowledge using OWL and SWRL

As shown in Figure 3.3, the domain knowledge can be divided into four parts:

1. Domain concepts and relationships, which refer to the information of the concep-

tualization of the domain, such as concept identities, subsumption hierarchies

of concepts, relationships between concepts, and properties of the relationships

(whether they are transitive, functional or symmetric). Such information is also

called TBox, which are captured using OWL constructs regarding classes and

properties, representing the terminological knowledge within the domain.

2. Definitions and descriptions of the concepts and relationships, which refer to the

51

descriptive information, such as detailed definitions or references for a particular

concept or relationship. Such information is encoded using RDF utility proper-

ties (see Section 3.4.1) as annotations of relevant concepts or relationships, and

can be directly accessed once a user asks for domain explanations.

3. Design rules and constraints, which refer to a human logic based presentation

about how a KBS achieved its results (output) from the input facts, such as

how the system moves from the current state to the next state and what are the

rules underpinning such movements. These logics are represented using SWRL

rules and OWL Equivalent Classes Axiom (ECA) which implicitly represents a

rule by claiming that two class expressions are equivalent.

4. Input instances from the user, which refer to the facts that the user already

knows in a particular case, can also be seen as an instantiation of the domain

concepts and relationships. Such information is transferred to the ABox of the

ontology, representing assertion knowledge within the domain.

3.5 Decision Explanation Model (DEM)

DEM reasons through EKB to logically connect the output and the input of a KBS,

and provides the resulting logical sequence as the explanation to how the KBS obtains

the output. Seeing as human logics are explicitly captured using rules in our model,

the logical connection here means a rule trace which links the input facts and output

results. Thus, how to build a reasoner that can reason through OWL and SWRL to

locate the rule trace is the key in DEM. In the following discussion, a quick review of

52

existing OWL reasoners are firstly given, followed by a proposal of a novel reasoner

that is used for explanation generation.

3.5.1 Existing OWL Reasoners

Many reasoners have been developed for OWL ontology and some of them support

SWRL rules. Existing reasoners can be generally classified into two categories accord-

ing to their reasoning algorithms: rule-based algorithm and tableau-based algorithm.

Existing rule-based reasoners, include Bossam [60], Jena[53], SweetRules[94] and

KAON2[59]. They tend to translate OWL clauses into rules, and then apply optimized

rule-based algorithms for reasoning tasks. Among them, Bossam translates OWL

axioms into a set of OWL inference rules using a self-defined Bossam rule language

with extended expressiveness. The classical RETE algorithm is applied on the Bossam

rule base for major reasoning tasks. Jena is actually a JAVA framework for building

Semantic Web applications, and supports OWL inference by translating OWL into

RDFS rules. SweetRules engine is an indirect inferencing engine which only focuses

on translating OWL to other rule languages such as Jess or Prolog, and uses their

reasoning engine to finish the jobs. In KAON2, OWL ontology can be reduced to a

disjunctive datalog program and well known deductive database techniques, such as

magic sets or join-order optimization, are used to improve the performance.

The other category of reasoners, including Pellet [117], RacerPro [41] and FaCT++

[133], implements conventional DL tableau algorithm. Tableau algorithm basically

reduces all the reasoning tasks to the satisfiability check of a concept expression. For

example, a subsumption can be reduced to satisfiability as:

53

C ⊑ D ↔ C ⊓ ¬D is not satisfiable

After a concept satisfiability problem is constructed, the algorithm attempts to

find an interpretation that satisfies the concept. The interpretation is incrementally

constructed as a “tableau”. The general process is listed as follows:

• Transform the concept expression in to Negation Normal Form (NNF), namely,

negation occurs only in front of concept names. The NNF transferring rules are

listed below:

– ¬(C1 ⊔ C2) ≡ ¬C1 ⊓ ¬C2

– ¬(C1 ⊓ C2) ≡ ¬C1 ⊔ ¬C2

– ¬∃R.C ≡ ∀R.¬C

– ¬∀R.C ≡ ∃R.¬C

– ¬¬C ≡ C

• The algorithm initializes the transformed expression C with a single assertion,

A = C(x0) (A denotes the initial ABox). The concept expression is then ex-

panded using a set of consistency-preserving transformation rules defined below,

until either a clash is found, or the rules can no longer be applied.

– AND-rule1: IF A contains (C1 ⊓ C2)(x), but does not contain C1(x),

THEN A→ A ∪ C1(x)

– AND-rule2: IF A contains (C1 ⊓ C2)(x), but does not contain C2(x),

THEN A→ A ∪ C2(x)

54

– OR-rule: IFA contains (C1⊔C2)(x), but contains neither C1(x) nor C2(x),

THEN A→ A ∪ C1(x) and A→ A ∪ C2(x),

– EXISTS-rule: IFA contains ∃R.B(x), and there is no y such that R(x, y) ∈

A and B(y) ∈ A, THEN A→ A ∪ {R(x, y), B(y)} for a new y

– FORALL-rule: IFA contains ∀R.B(x), and there is a y such that R(x, y) ∈

A and B(y) /∈ A, THEN A→ A ∪ {B(y)}

• The algorithm terminates once either a clash is found, or the rules can no longer

be applied. An expanded ABox is said to contain a clash, if and only if, for a

concept C and an instance x, C(x) and ¬C(x) are both included. Otherwise it

is clash-free. A concept expression C is satisfiable if and only if there exists an

interpretation in A that is clash-free.

3.5.2 Developing a Novel Reasoner

Existing reasoners that were mentioned above are all developed for general reasoning

purposes for Semantic Web. Thus, they are not efficient in generating explanations.

We hereby propose a novel ontology ABox reasoner, BCAR.

BCAR is an ABox query reasoner, originally designed to retrieve instances which

implicitly belong to some defined concepts. Defined concepts, here, refer to concepts

which are defined by rules. Generally speaking, to retrieve instances for these defined

concepts, BCAR automatically searches for solutions for the conditions of the relevant

rules (a solution is a combination of the facts which makes all the condition atoms

hold true) in the ABox, and generates query results based on the solutions that have

been found.

55

The usage of BCAR in generating explanations is similar. To explain why a rule

consequent holds true, BCAR first searches the ABox to determine whether there is

a solution for the rule conditions. If there is a solution, the facts contained in the

solution are then presented to the user together with the rule as the explanation.

BCAR

Explanative Knowledge Base

(Ontology)

Input Facts

(ontology ABox)

p
Rules

A1 ^ A2 … => A

B1 ^ B2 … => B

A11^A12 … => A1

….

Why A is

true?

Matching Searching

A1 ^ A2 … => A

A is true because A1, A2 … are

true, and A1 is true because A11,

A12, …. are true, and A11 is true

because it is asserted as truebecaus

Figure 3.4: BCAR in generating decision explanations

Figure 3.4 illustrates a simple example showing the role of BCAR in generating

explanations. In the example, a KBS has made a decision saying that “A is true”.

A user then needs the explanation model to explain “why A is true?”. The reasoner

first fires the rule whose consequent matches the goal, as shown in the figure. Then it

needs to search the ABox in order to find a solution which proves that all the condition

56

atoms “A1”, “A2”, ..., are true. Some of the atoms may be directly asserted as true,

while the other atoms, e.g. “A1”, act as sub-goals needed to be explained, to which it

then activates some other rules, e.g. “A11 ∧ A12 ... → A1”. BCAR keeps repeating

this process until all the atoms are directly explained by the facts, and, lastly, it can

output the explanation, as shown in the figure.

Comparing with other existing reasoners, BCAR has following features:

1. BCAR interprets OWL and SWRL under Closed World Assumption and Unique

Name Assumption (only for ABox) to improve the reasoning performance for

closed world based information models.

2. Some existing OWL reasoners support SWRL by translating SWRL to some

other formats (Jess, Jena or Seasame) ([84], [94]). BCAR directly works on

SWRL without any translation, which improves its efficiency.

3. BCAR adopts backward reasoning, similar to the Prolog derivation tree. The

reordering technique from Optimized Conjunctive Query (OCQ) [116] is inte-

grated to improve the performance

Details of BCAR are discussed in Chapter 4.

3.6 Software Diagnostic Model

The software diagnostic model diagnoses user observations of unexpected behaviors

within a system. The concept of diagnostic is based on AR. AR is a form of inference

that generates a hypothesis that best explains an observation [140]. Traditionally,

AR in most of the existing diagnostic systems is only a one time process. However,

57

the process of diagnosis is actually a multiple run interactive process in real life.

Considering the example of a patient seeing a doctor, the doctor firstly generates a

hypothesis based on the patient’s initial description of his or her symptoms. He or

she then needs to ask the patient for further information to confirm the hypothesis.

If the hypothesis is supported by the new information, the doctor then has a stronger

belief of the hypothesis; otherwise, he or she may generate another hypothesis based

on the new information. This interaction will keep going until the doctor is largely

convinced that a particular hypothesis is the correct one. In the following discussion,

a brief introduction of AR is firstly given, followed by a general discussion about how

to implement interaction into AR. The details of the implementation are described

in Chapter 5.

3.6.1 Abductive Reasoning

Abduction (or inference to the best explanation) is a form of inference that gener-

ates a hypothesis best explaining the observation [63]. The process of AR involves

identifying the symptoms (also called observations or evidences) which needs to be

explained, generating hypotheses that potentially explain the evidence, evaluating

competing hypotheses and selecting the best explanation according to some criteria.

Pople [100] defined the AR within the following schema:

• rule: ∀[P (x)→ Q(x)]

• case: P (a)

• conclusion: Q(a)

58

Deductive Reasoning (DR) is from the rule and the case to the conclusion, namely

if both the rule and the case P (a) is true, Q(a) is then concluded. Inductive Reasoning

(IR) is from the case and the conclusion to the rule. If P (a) and Q(a) are both

observed to be true, we may hypothesize that “perhaps all things P are also Q”. AR

refers to the third option - it direct from the fact and the rule to the case. If Q(a) is

observed to be true, and the rule “all things P are Q” is known to be true, “perhaps

a is P” is then hypothesized.

There are four computational paradigms to approach AR [128]: 1) the deductive

paradigm implemented in logic or rule-based systems; 2) the schematic approach us-

ing explanation patterns or analogies; 3) the probabilistic method implemented using

BN; and 4) the connectionist approach built from ANN. Existing models for these

paradigms have been reviewed in Section 2.4. Among these models, the probabilistic

approaches provide a quantitative base allowing us to model human diagnostic pro-

cesses under uncertain circumstances. As is discussed in Section 2.4.2, a fundamental

research challenge for implementing the Bayesian theory is to handle missing joint

probabilistic information, so that most Bayesian-based systems resort to approaches

that relax the Bayesian assumptions [95] [126].

3.6.2 Involving Interaction

Interactions are defined as mutual influences between the two coupled dynamic sys-

tems. For example, an agent and its environment are jointly responsible for the

agent’s behavior [12]. The agent interacts with the environment so as to adaptively

fit the constraints of the trajectory of one large coupled dynamic system [13]. With-

59

out interaction, algorithms would produce direct mappings completely determined

by their inputs, which are memoryless and history-independent. In contrast, interac-

tive systems that provide history dependent services can, over time, learn from and

adapt to experience [142]. Interactive approaches provide supplementary means to

the algorithmic computation paradigm. The implementation of the interactive ap-

proaches can be traced back to diagnostic systems built 30 years ago. For example,

the MEDAS system [11], which was designed to provide clinicians with decision sup-

ports, can identifies medical disorders, and reasons through the associated unknown

features, and, subsequently, interacts with users to locate clinical relevant features.

Environment

Agent

Generate

Hypotheses

A

Input

Symptoms

Criteria

(Utility

satisfaction)

Evaluate

Hypothesis

Users Users

Figure 3.5: The general process of interactive AR

The process of AR with interaction is illustrated in Figure 3.5. Users provide

feedback and new information, through which an agent can re-generate hypotheses

that maximize its knowledge fitness in respect to uncertainty reduction.

MRICN is designated to provide this interactive AR. This certainty network is

developed based on Bayesian theory and Opinion Pooling (OP) approach. To differ-

60

entiate the Bayesian approaches in which probability is used to represent the degree

of a system’s trust of a hypothesis, MRICN adopts the notion of “certainty” to rep-

resent this degree of trust. When the generated hypothesis is not valid within the

interaction, a search algorithm is involved to look for new symptoms that provide the

maximum certainty gain. The system subsequently interacts with the environment

to acquire feedback for this new symptom. Details of MRICN will be discussed in

Chapter 5.

3.7 Summary

In this chapter, an innovative and novel explanation framework has been introduced.

The framework consists of three major components: EKB, DEM and SDM. In EKB,

an OWL/SWRL ontology is built to capture the domain knowledge. The knowledge

for providing domain explanations is encoded statically in the ontology as RDF an-

notations. DEM reconstructs decision explanations by reasoning through EKB to

logically connect the inputs of the KBS and the decision that has been made. Exist-

ing ontology reasoners have also been reviewed. A novel reasoner, BCAR, has been

proposed. SDM interactively diagnoses user observations of a system’s unexpected

behaviors to explain mismatches between system behaviors and user expectations,

which is one of the major reasons why people need explanations. The diagnostic is

based on AR. General ideas of AR have been discussed. The importance of involving

interactions into traditional AR has been identified.

Traditionally, most of the explanation models are viewed as sub-models or func-

tional components of the main KBSs. Different with such models which are quite

61

application-oriented and heavily constrained by the main system, the proposed frame-

work possesses a complete new structure that allows the explanation model to stand

outside the main system and is possible to adapt to many applications. This general

applicability is one of the major merits of the proposed framework. In addition, the

introduction of ontology techniques brings better quality explanations than tradi-

tional rule-traces since that ontology provides a holistic view of knowledge. Thirdly,

as previously mentioned, the explanation model in the framework firstly covers all

the three explanation focuses: “explaining models”, “explaining reasoning process”

and “explaining available evidences”.

This chapter is just an overview of the framework. General ideas regarding the

structure of the framework and how the sub-models work have been given, as well

as some background knowledge of relevant technologies. Detailed methods and algo-

rithms, including BCAR and MRICN, will be discussed in the following chapters.

62

Chapter 4

Backward Chained ABox Reasoner

4.1 Introduction

As is discussed in Chapter 3, DEM uses a proper reasoner to logically connect the

output and input of a KBS. Explanations about how the KBS reaches conclusions

(output) from the input are consequently generated based on the knowledge track

(namely the reasoning history) in EKB. A novel reasoner, BCAR, has been proposed

to carry out this task. Features of BCAR have been highlighted. This chapter mainly

focuses on the technical details of BCAR.

The rest of this chapter is organized as follows: Section 4.2 sets out the preliminary

discussion; Section 4.3 outlines the concept framework of BCAR; Section 4.4 explores

how to build the unified rule base; Section 4.5 presents the core reasoning algorithm;

Section 4.6 describes how to handle some special rules or atoms in the reasoner;

Section 4.7 tests BCAR with a benchmark ontology, and shows the experiment result;

Section 4.8 summarizes the chapter.

63

4.2 Preliminaries

In general, BCAR is an ABox query reasoner for OWL ontology with SWRL rules.

The objective of BCAR is to help users retrieve implicit instances or fillers for some

defined classes or properties. Different from existing OWL reasoners, BCAR inter-

prets OWL and SWRL under Closed World Assumption (CWA) and Unique Name

Assumption (UNA). The inspiration for our research comes from the fact that OWL

ontology has been widely used to capture closed world based information models

([71], [5], [149], [36] and [156]), despite all existing reasoners holding Open World As-

sumption (OWA). Because of this, applying an OWA-based reasoner to CWA-based

information model will produce some reasoning errors. As such, BCAR is proposed

to address the problem.

More specifically, BCAR has to hold the following assumptions:

Assumption 1: The ontology contains only the explicitly expressed individu-

als. There is not any unknown individual.

Assumption 2: Only defined classes (or properties) are allowed to have implicit

instances (or fillers). Other classes (or properties) only contain instances (or

fillers) that are explicitly expressed.

Assumption 3: If a class (or property) cannot be proved to contain an instance

(or filler), then the class (or property) does not contain the instance (or filler).

If a class (or property) cannot be proved to contain any instance (or filler), then

the class (or property) contains nothing (negation as failure).

Assumption 4: Two individuals are the same if and only if their names are

64

the same.

In OWL/SWRL ontologies, the most two popular methods to define classes and

properties are SWRL rules and OWL ECA. BCAR only considers classes (or prop-

erties) which have corresponding ECAs or appear in the heads of SWRL rules as

defined classes (or properties), and the corresponding ECAs and SWRL rules are

their definitions.

4.3 Concept Framework

Ontology

Rule Base

TBoxOWL SWRL

MatchingQuery
Reasoning Engine

Matching

ogy

ABox

Query

result

Translation

Figure 4.1: Concept framework of BCAR

Figure 4.1 shows the concept framework. BCAR firstly creates a unified rule base

with SWRL rules and OWL ECAs. Once a query has been inputted, the rule which

matches the query fires. The reasoning engine is then applied to the fired rule to

search for its solutions. The engine requires information from the ABox and also may

fire some other rules if required. After the searching is finished, the query result is,

then, generated based on the obtained solutions.

65

4.4 Building Rule Base

As mentioned above, BCAR only accepts two ways to define classes and properties:

SWRL rule and ECA. Because the backward chained reasoning engine requires a

unified rule base, there is a need to translate ECAs to SWRL-like rules, so that the

process of building the rule base for BCAR is actually the process of translating all

the OWL ECAs to SWRL rules.

Originally ECA refers to a type of axiom representing bidirectional equivalency

relationship between two classes, and is usually used to describe the necessary and

sufficient condition for an atomic class, indicating that the class is equivalent to

another complex class expression. In the case of rule representation, an ECA can

be read as: if an instance holds all the conditions specified in the complex class

expression, it then belongs to the atomic class, and vice versa.

Normally, ECAs cannot be translated to rules directly, as they represent bidirec-

tional relationships. However, BCAR considers ECAs only as class definition rules,

and processes ECAs equally with SWRL rules. In this case, interpreting ECA as one

direction logic, from the definition to the class, is reasonable.

The translation is generally based on the First Order Logic (FOL) semantics of

the OWL constructs. Considering the following ECA (written in DL syntax) as an

example:

∃R.B ≡ C

According to [8], the left side of this ECA can be translated to the following FOL

formula (ϕ maps OWL class B and property R into unary and binary predicates

ϕC(x) and ϕR(x, y) respectively):

66

Table 4.1: Translating ECA to SWRL-like rules

Construct Name ECA Syntax Rules

owl: intersectionOf C = A and B A(?x) ^B(?x) -> C(?x)

owl: unionOf C = A or B A(?x) -> C(?x)

B(?x) -> C(?x)

owl: complementOf C = not A Not (A(?x))-> C(?x)

owl: someValuesFrom C = R some A R(?x,?y)^A(?y) -> C(?x)

owl: allValuesFrom C = R only A ?y(R(?x,?y)^A(?y))->C(?x)

owl: hasValue C = R has I R(?x, I) -> C(?x)

owl: minCardinality C = R min n (R >= n) (?x) ->C(?x)

owl: maxCardinality C = R max n (R <= n) (?x) -> C(?x)

owl: cardinality C = R exactly n (R = n) (?x) -> C(?x)

Complex ECA C = A and (R some B) R(?x,?y)^B(?y) -> H(?x) (create an

intermediate class H)

A(?x)^H(?x) -> C(?x)

"

∃x(ϕR(x, y) ∧ ϕB(y))

Since that BCAR regards the bi-directional equivalence as one-directional impli-

cation, the whole ECA can be transferred to:

∀x(ϕR(x, y) ∧ ϕB(y)→ ϕC(x))

which is exactly the FOL semantic of the SWRL rule:

R(?x, ?y) ∧B(?y)→ C(?x)

The translation is then completed. Other translations are described in Table 4.1.

(A, B, C are classes, P is a property, I is an individual and n is a number)

4.5 Reasoning Algorithm

In BCAR, retrieving instances (or fillers) of defined classes (or properties) activates

their definition rules. The process of query is then transformed into a process of

67

searching the ABox for solutions for the definition rules. Reasoning results are gener-

ated based on the solutions. In the following discussion, the solution is firstly defined,

the searching algorithm is then given, followed by a description of how to generate

results based on solutions, and the backward chaining in the rule base is finally dis-

cussed.

For the purpose of simplicity, we introduce the following terms to represent rea-

soning tasks (C and P denote defined class and property respectively):

C (?) : query for all the instances of C

C (? = a) : check whether a is an instance of C

P(?, ?) : query for all the fillers of property P

P(? = a, ?) : query for the instances which are the property values of a for P

P(?, ? = a) : query for the instances whose property value is a for P

P(? = a, ? = b) : check whether (a, b) is a filler of property P

The example ontology given below is for the following algorithm description:

TBox

Atomic Classes:A;B;C;D

Defined Class:E = OP4 some C;

Object Properties:OP1(Domain : A,Range : B);OP2(Domain : B,Range : C,D)

Defined Object Property:OP4(Domain : A,Range : C)

rule 1(SWRL):OP1(?x, ?y) ∧OP2(?y, ?z) ∧ C(?z)→ OP4(?x, ?z)

ABox

A{A1;A2;A3};B{B1;B2;B3;B4};C{C1;C2;C3;C4};D{D1;D2}

OP1{(A1, B1); (A1, B2); (A2, B3); (A3, B3); (A3, B4)}

OP2{(B2, C2); (B2, C3); (B3, D1); (B4, C4)}

68

4.5.1 Solution

In a solution, each variable in the rule is bound to a value (value can be individual

or datatype value such as integer and string), which makes all the atoms in the rule

body hold true. In the example ontology, rule 1 has three variables: ?x, ?y, ?z. With

the above ABox, solutions for rule 1 are:

{?x← A1; ?y ← B2; ?z ← C2}

{?x← A1; ?y ← B2; ?z ← C3}

{?x← A3; ?y ← B4; ?z ← C4}

All the reasoning results of BCAR is generated based on solutions, details of which

are discussed later.

4.5.2 Searching for Solutions

Searching for solutions is the key of BCAR. The searching process in BCAR is gen-

erally an OCQ process based on the well-known Prolog derivation tree. The idea of

atoms reordering [116] is integrated to improve the performance.

Taking the example ontology, assuming the reasoning task is OP4(?, ?), rule 1

fires. The search is then started with the following steps:

1. Preprocessing: Build a Temporary Atom List (TAL) from the rule body. Define

a Value Range (VR) for each variable based on the Assumption 2. In the

example, from rule 1, it is easy to figure out that ?x belongs to A, ?y belongs

to B, and ?z belongs to C. Based on Assumption 2, ?x, ?y and ?z can only be

the explicitly asserted members of A, B and C respectively. Figure 4.2 shows

the TAL and VRs of the example. Other cases are listed below:

69

(a) The VR of ?x (or ?y) contains only A1 (or B1) if the reasoning task is

OP4(? = A1, ?) (or OP4(?, ? = B1));

(b) For a constant, BCAR creates a new variable whose VR contains only the

constant’s value;

(c) For variable belonging to a defined class, the VR = ⊤ (Assumption3);

(d) For datatype variable, the VR = ∞

OP1^OP2^C

?x<- ?y<- ?z<-

A1,A2,

A3

B1,B2,

B3,B4

C1,C2,

C3,C4

Temporary Atom List

Value binding

Value range

Figure 4.2: The root of searching tree

2. Variable choosing and branching: The performance of CQ relies heavily on the

query ordering. In BCAR, the reasoning always starts from the variable which

has the minimal size of VR and has not been bound to a value, so that the

number of branches of the searching tree is minimized. The selected variable is

called SV. In the example, ?x is SV, since it has the minimal size of VR among

all the variables. BCAR then generates branches for each value in VR of ?x.

3. Binding and intersecting: In each branch, the SV is bound to a value. BCAR

then processes the atoms related to the SV in TAL, which may reduce the size

of VR of SV or other variables related to SV by an intersecting process. After

that, the processed atoms are removed from TAL. In the example, ?x is bound

to A1 in the first branch. BCAR then processes OP1(?x(= A1), ?y) which is

70

the only atom related to ?x in TAL. Based on the ABox and Assumption 3, ?y

can only be either B1 or B2. BCAR then intersects {B1, B2} with ?y’s original

VR {B1, B2, B3, B4} to be the new VR of ?y, as Figure 4.3 shows:

OP1^OP2^C

?x<- ?y:<- ?z:<-

A1,A2,

A3

B1,B2,

B3,B4

C1,C2,

C3,C4

Let ?x <- A1
Let ?x <- A2

Let ?x <- A3

OP2^C

?x<-A1 ?y:<- ?z:<-

A1 B1,B2 C1,C2,

C3,C4

OP2^C

?x<-A2 ?y:<- ?z:<-

A2 B3 C1,C2,

C3,C4

OP2^C

?x<-A3 ?y:<- ?z:<-

A3 B3,B4 C1,C2,

C3,C4

Figure 4.3: Generating branches

4. Termination: BCAR repeats the above step 2 and step 3 until: 1)VR of any

variable turns out to be empty (based on Assumption 1&2, it means this variable

is unsolvable in this branch); 2)Every variable has been bound to a value (a

solution has been found in this branch); Figure 4.4. shows how the search

tree finds solutions and how it is terminated. Since that the size of VR of a

variable is bounded by the size of ontology ABox, the algorithm is guaranteed

to terminate.

4.5.3 Generating Reasoning Results

BCAR generates results for every reasoning task as follows (assuming the head of the

definition rule of C and P are C (?x) and P(?x, ?y) respectively):

1. C (?) : returns all the values of ?x from all the solutions;

71

OP1^OP2^C

?x<- ?y:<- ?z:<-

A1,A2,

A3

B1,B2,

B3,B4

C1,C2,

C3,C4

Let ?x <- A1
Let ?x <- A2

Let ?x <- A3

OP2^C

?x<-A1 ?y:<- ?z:<-

A1 B1,B2 C1,C2,

C3,C4

OP2^C

?x<-A2 ?y:<- ?z:<-

A2 B3 C1,C2,

C3,C4

OP2^C

?x<-A3 ?y:<- ?z:<-

A3 B3,B4 C1,C2,

C3,C4

C

?x<-A1 ?y:<-B1 ?z:<-

A1 B1 ø

C

?x<-A1 ?y:<-B2 ?z:<-

A1 B2 C2,C3

C

?x<-A2 ?y:<-B3 ?z:<-

A2 B3 ø

C

?x<-A3 ?y:<-B3 ?z:<-

A3 B3 ø

C

?x<-A3 ?y:<-B4 ?z:<-

A3 B4 C4

?x<-A1 ?y:<-B2 ?z:<-C2

A1 B2 C2

?x<-A1 ?y:<-B2 ?z:<-C3

A1 B2 C3

?x<-A3 ?y:<-B4 ?z:<-C4

A3 B4 C4

Unsolvable Unsolvable

Unsolvable

Solution Solution Solution

Figure 4.4: Searching tree in BCAR

72

2. C (? = a) : sets the initial VR of ?x to be {a}, checks whether a solution can

be found;

3. P(?, ?) : picks up all the values of ?x and ?y from all the solutions;

4. P(? = a, ?)(orP(?, a)) : sets the initial VR of ?x (or ?y) to be {a}, returns all

the values of ?y (or ?x) from all the solutions;

5. P(? = a, ? = b) : sets the initial VR of ?x and ?y to be {a} and {b} respectively,

checks whether a solution can be found;

4.5.4 Backward Chaining

In the “Binding and intersecting” step of the searching process, if BCAR needs to

process an atom corresponding to a defined class or property, another rule fires.

For example, considering the defined class E = OP4 some A, from Table 4.1 the

translation rule is OP4(?x, ?y)∧D(?y)→ E(?x). Assuming the reasoning task (goal)

is E(? = A1), while searching for the solutions for the translation rule, the “Binding

and intersecting” step will add another reasoning task (new goal) OP4(? = A1, ?)

and rule 1 consequently fires. This is the so-called backward chained reasoning.

4.6 Handling Special Rules and Atoms

In Table 4.1, some of the translation rules can be solved normally using the above

algorithm (e.g. owl:intersectionOf; owl:unionOf; owl:someValuesFrom), while the oth-

ers can not. This section generally discusses how BCAR handles some special rules

and atoms.

73

• owl:complementOf

C = notA is translated to Not(A(?x)) → C(?x). Based on Assumption 3

(negation as failure), BCAR handles the translation rule as follows:

1. C(?) : returns the individuals which cannot be proved to be instances of

A;

2. C(? = a) : returns false if a is proved to be an instance of A, otherwise

returns true;

• owl:allValuesFrom

C = R only A is translated to ∀?y(R(?x, ?y) ∧ A(?y)) → C(?x) . Based on

Assumption 2, BCAR handles the translation rule as follows:

1. C(?) : returns the individuals which are proved to have some property

values for R and all these values are proved to be instances to A;

2. C(? = a) : returns true if a is proved to have some property values for

R and all these values are proved to be instances of A, otherwise returns

false;

• owl:minCardinality/maxCardinality/cardinality

C = min or max or exactly a is translated to (R ≥ or ≤ or = a)(?x)→ c(?x).

Based on Assumption 2, BCAR handles the translation rule as follows:

1. C(?) : returns the individuals which are proved to have more than or less

than or exactly a different property values for R;

74

2. C(? = a) : returns true if a is proved to have more than or less than or

exactly a property values for R, otherwise returns false;

• Complex ECA

A complex ECA is a combination of basic OWL constructs. As Table 4.1

shows, BCAR transforms complex ECA to multiple basic rules with self-created

intermediate classes between them.

• swrl:differentFrom/sameAs

A SWRL rule may contain atoms such as “differentFrom(?x,?y)” and “sameAs(?x,?y)”.

In this case, BCAR firstly removes these atoms from TAL, before searching for

solutions. After solutions are found, these comparison atoms are used to validate

each solution based on Assumption 4. Only validated solutions are outputted

in the end.

4.7 Experiments

As previously discussed, BCAR is developed majorally to address the ABox reasoning

issues under CWA and UNA, which is demonstrated in Chapter 7 with a concrete

case study. Besides that, in this section, several experiments are conducted to test

the efficiency of the BCAR in searching solutions, proving that the general query

performance of BCAR is reasonable compared with other general reasoners.

75

Table 4.2: Details of test ontologies
Ontology Class Property Sub-class Equiv. Sub-Prop. Domain Range C(a)

(ABox)

R(a,b)

(ABox)

lubm_0

43 25 36 6 5 25 18

18128 49336

lubm_1 40508 113463

lubm_2 58897 166682

lubm_3 83200 236514

vicodi_0

194 10 193 0 9 10 10

16942 36711

vicodi_1 33884 73422

vicodi_2 50826 110133

vicodi_3 67768 146844

4.7.1 Test Ontologies and Queries

Two popular, well established ontologies, LUBM1 and VICODI2, are chosen for the

experiments. LUBM is a benchmark ontology developed at the Lehigh University

for testing performance of ontology management and reasoning systems [40]. The

ontology describes organizational structure of universities and it is relatively simple.

LUBM comes with an ABox generator which generates ontologies (denoted as lubm n)

with different sizes of ABox by setting the number of universities to n. VICODI

is another ontology that is often used for evaluating the performance of ontology

reasoners [90] [16]. The ontology is about European history, manually created in the

EU-funded project VICODI. Originally VICODI ontology is written in RDFS, and

has been translated to OWL in order to test BCAR. Different from LUBM which

has its own ABox generator, for VICODI, a subset of ontologies are generated by

duplicating original ABox axioms for n (n = 1, 2, 3, 4) times, and are denoted as

vicodi n. Details of the ontologies are listed in Table 4.2.

LUBM provides 14 standard queries for testing the ontologies. Four of them are

1http://swat.cse.lehigh.edu/projects/lubm/index.htm
2http://www.vicodi.org

76

selected in this study. The queries are written as:

GraduateStudent(?x) ∧

takesCourse(?x,www.Department0.University0.edu/GraduateCourse0)→ Query01(?x);

GraduateStudent(?x) ∧ University(?y) ∧Department(?z) ∧memberOf(?x, ?z) ∧

subOrganizationOf(?z, ?y) ∧ undergraduateDegreeFrom(?x, ?y)→ Query02(?x);

Professor(?x) ∧ worksFor(?x,www.Department0.University0.edu) ∧ name(?x, ?y1) ∧

emailAddress(?x, ?y2) ∧ telephone(?x, ?y3)→ Query03(?x);

Student(?x) ∧ Faculty(?y) ∧ Course(?z) ∧ advisor(?x, ?y) ∧ teacherOf(?y, ?z) ∧

takesCourse(?x, ?z)→ Query04(?x);

With above SWRL rules, in BCAR, generating results for query Query01(?),

Query02(?), Query03(?) and Query04(?), is the process of searching for solutions for

the rule body, which is essentially a conjunctive query of body atoms. In this way,

BCAR is compared with other general reasoners that are available for conjunctive

queries.

For VICODI ontologies, two queries adopted from [90] are used in the experiments,

which are written in SWRL rules as well:

Individual(?x)→ Query01(?x);

MilitaryPerson(?x) ∧ hasRole(?y, ?x) ∧ raleted(?x, ?z)→ Query02(?x);

Please note that the above queries do not include any universal quantifier or exact

cardinality inside the rule body, so that holding different world assumptions does not

affect the reasoning results, otherwise BCAR is not comparable with other reasoners.

77

4.7.2 Experimental Results

The experiments compare BCAR with three other popular reasoners Pellet [117],

RacerPro [41] and KAON2 [59]. The results are shown in Figure 4.5 (The bars that

are over 1000000 ms line indicate time out).

1

10

100

1000

10000

100000

1000000

lubm_1 lubm_2 lubm_3 lubm_4

U
n

it
:

m
s

LUBM Query03

BCAR

KAON2

Pellet

RacerPro

1

10

100

1000

10000

100000

1000000

lubm_1 lubm_2 lubm_3 lubm_4

U
n

it
:

m
s

LUBM Query01

BCAR

KAON2

Pellet

RacerPro

1

10

100

1000

10000

100000

1000000

lubm_1 lubm_2 lubm_3 lubm_4

U
n

it
:

m
s

LUBM Query02

BCAR

KAON2

Pellet

RacerPro

1

10

100

1000

10000

100000

1000000

lubm_1 lubm_2 lubm_3 lubm_4

U
n

it
:

m
s

LUBM Query04

BCAR

KAON2

Pellet

RacerPro

1

10

100

1000

10000

100000

1000000

vicodi_1 vicodi_2 vicodi_3 vicodi_4

U
n

it
:

m
s

VICODI Query01

BCAR

KAON2

Pellet

RacerPro

1

10

100

1000

10000

100000

1000000

vicodi_1 vicodi_2 vicodi_3 vicodi_4

U
n

it
:

m
s

VICODI Query02

BCAR

KAON2

Pellet

RacerPro

Figure 4.5: Experimental results

78

From the experimental results, compared with other reasoners, the performance

of BCAR is decent. It most of the tests, BCAR can be ranked in the second place,

which is slightly faster than Pellet, but is slower than KAON2 which is regarded as

the fastest ontology reasoner recently [16]. In addition, BCAR performs very well for

queries with high selectivity (e.g. Query01 and Query03 for LUBM) on relatively

small datasets, due to the fact that the use of backward reasoning guarantees that

only necessary information is processed.

Generally speaking, since that the major motivation of BCAR is to address the

assumption mismatch issues, the general query performance is not significantly im-

proved. In these experiments, BCAR shows a reasonable performance which ensures

its usability.

4.8 Summary

This chapter has proposed a novel ABox Reasoner, BCAR, which is designed for

ABox query reasoning, and can be used to help users discover instances or fillers

for some defined classes or properties, defined using OWL ECAs and SWRL rules.

The reasoner first translates ECAs to SWRL-like rules, and then backward reasons

through the unified rule base to retrieve instances from the ABox of the ontology for

the query tasks. OCQ technique has been introduced to improve the performance of

reasoning. Experiments have shown that the BCAR has decent performance when

compared with other general reasoners.

Automatically mapping a closed world based information model to an OWL ontol-

ogy would definitely produce some reasoning problems, as they hold different assump-

79

tions. However, although the problems are obvious and the solution is not difficult,

until now, there has not been any well-developed OWL reasoners that even mentions

this problem. Researchers in knowledge engineering insist that OWL and SWRL are

OWA-based languages without realizing that these languages have been used a lot

for CWA-based information model. BCAR has filled this gap to a certain degree.

80

Chapter 5

Multiple Run Interactive Certainty

Network

5.1 Introduction

This chapter proposes the core algorithm used for the SDM discussed in Section

3.6. SDM generates explanations for user observations of unexpected behaviors of

a system, where AR is the most common cognitive model that has been used in

this case. AR is a kind of logical inference, referring to the process of arriving at

an explanatory hypothesis. Many computational AR models involve the process of

generating hypotheses, evaluating hypotheses and selecting one of them as the best

explanation. In this chapter, a novel probabilistic network, MRICN, which integrates

human decision-making heuristics into a probabilistic approach, is proposed to per-

form interactive AR. MRICN is built upon ideas drawn from “Opinion Pooling”,

“Probabilistic Network” and “Interaction”, allowing for reflective searching for the

81

optimal sets of knowledge with the maximal certainty gain. A simple automotive

diagnostic experiment is used to test the network.

The rest of this chapter is organized as follows: Section 5.2 discusses the general

ideas of interactive AR; Section 5.3 demonstrates how to construct the certainty

network; Section 5.4 describes the algorithm for the interactive behavior; Section

5.5 gives an overview of the interactive reasoning process; Section 5.6 considers the

implementation and experimental results with an automotive diagnostic case; and

Section 5.7 summarizes the chapter.

5.2 Abductive Reasoning with Interactions

In MRICN, AR is used to provide diagnosis for the observed evidences, and the

notion of interaction is introduced to the traditional AR to enhance adaptability of

the system. As discussed in Section 3.6.2, interactions are defined as mutual influences

between two coupled dynamic systems. The interaction between a computer system

and a user is usually regarded as Human-Computer Interaction (HCI) that occurs at

the user interface and often stands for a long term process of information sharing.

Compared to the traditional input-output mapping systems that are memoryless and

history-independent, interactive systems that provide history-dependent services can

over time learn from and adapt to experience [142].

The ideas of interactive AR in this chapter can be summarized as follows:

1. The interaction between the system and the user is usually a multiple run

process, indicating that the hypothesis generation using AR is a multiple run

process as well.

82

2. The system should be able to identify the most important absence informa-

tion, and can actively interact with the user in order to obtain the required

information.

3. During the interaction, the state and behavior of the system should adapt to the

dynamic context, which is updated upon the user’s feedback for the system’s

questions.

5.3 Certainty Network Construction

This section discusses how the certainty network is constructed and how OP theory

can be integrated. In most of the probabilistic causal networks, Bayesian theory is

used for inference under uncertain circumstances. The serial connection can be solved

by using the conditional probability method recursively. But the full-fledged joint

probabilistic information for diverging connections is very hard to achieve. In MRICN,

OP principle is applied to account for the diverging connection. Originally OP is used

to aggregate experts’ decisions [95] to support decision making in the presence of

uncertainty. There are two major methods for OP: Linear Opinion Pool (LNOP) and

Logarithmic Opinion Pool (LGOP). We are interested in LGOP because it is more

likely to indicate consensual values when decisions must be made [35]. Supposing we

have f(θ) representing the overall distribution of probability of a proposition θ, and

fi(θ) representing the suggested probability distribution of the proposition θ from

each expert i, the equation for LGOP is:

83

f(θ) = k
∏
i

fi(θ)
ωi (5.1)

where k is a normalizing constant that ensures f(θ) integrates to 1, and ωi is

the weight of each expert’s opinion, which sums to 1. From equation (5.1), a further

product of expert (POE) model was developed to provide sharper distribution without

ωi [54]:

f(θ) = k
∏
i

fi(θ) (5.2)

In Figure 5.1, a parent node A1 and a group of offspring nodes Bi(i = 1, 2, ..., n)

form a diverging connection (denoted as an offspring node Bi being caused by a parent

node A1). We apply the Bayesian approach to account for the single connection

between (A1, Bi) independently. This can be viewed as the judgments from n experts

in relation to the probability of A from the observations Bi respectively. Assuming

Bi are independent factors and experts make judgment independently, the overall

evaluation of the hypothesis A1 can be made by applying the OP approach to these

judgments.

Considering the causal network shown in Figure 5.1, the conditional probability

can be constructed from the statistic data set. The certainty of Bi is described as

C(Bi), and:

C(Bi) = 1− C(Bi) (5.3)

where Bi denotes that Bi is false.

84

A1

B1 B2 Bn
. . .

An

. . .

. . .

. . .

. . .

. . .

E1 E2 E3 E4 En . . .

Figure 5.1: Causal network

Using the Bayesian formula, the certainty of A1 can be calculated using the data

from each Bi:

C(A1(Bi)) = C(Bi, A1) + C(Bi, A1)

= C(Bi)× P (A1|Bi) + C(Bi)× P (A1|Bi)

(5.4)

C(A1(Bi)) = C(Bi, A1) + C(Bi, A1)

= C(Bi)× P (A1|Bi) + C(Bi)× P (A1|Bi) = 1− C(A1(Bi))

(5.5)

where C(A1(Bi)) indicates the independent calculation of certainty of A1 using the

data of Bi.

Under the assumption that all the propositions are independent of each other, the

OP equation (5.2) is applied, so that the certainty of A1 can be calculated as:

85

C(A1) =

∏
iC(A1(Bi))∏

iC(A1(Bi)) +
∏

iC(A1(Bi))
(5.6)

C(A1) =

∏
iC(A1(Bi))∏

iC(A1(Bi)) +
∏

iC(A1(Bi))
(5.7)

In this way, the certainty network can be constructed with only single conditional

probability for each link.

5.4 An Algorithm for Interactive Behavior

Using the certainty network constructed above, the system can perform interactive

reasoning. An interactive process is the process in which a system proactively pulls

more environmental information (e.g. asks user questions) when it is in uncertain

circumstances. For instance, after the system has calculated the certainties of all

the hypotheses for a given evidence, if the hypothesis with the highest certainty is

not valid in the interaction, the system requires additional environmental information

as new evidence in order to update the network. To guarantee that the request is

the most relevant one, the system searches for knowledge with the maximal fitness,

which, in this case, is the evidence that achieves maximal certainty gain for the current

activated hypothesis. Three steps are involved:

1. The system locates unknown evidences related to the activated hypothesis;

2. The certainty of each related unknown evidence is assumed to be 1 and the

system calculates certainties of the activated hypothesis respectively. These

certainties are called Alternative Certainty (AC);

86

3. Comparing ACs with one another, the system identifies the unknown evidence

that provides maximal certainty gain.

The ACs are calculated using a recursive method. Let x, y denote certain nodes

in the network, ψE denote the collection of all the unknown evidences, ψx denote the

collection of unknown evidences related to x, ϕx represent the collection of offspring

nodes of x (namely x is the cause of the members in ϕx) and acx is a mapping from

the members in ψx to their ACs, then

if x ∈ ψE, then ψx = {x}; else ψx =
∪
y∈ϕx

ψy (5.8)

and for each evidence e in ψx (assuming e comes from y0, which is an offspring node

of x), applying the equation (5.6), the AC of x assuming e is true can be calculated

as:

if x ∈ ψE, then acx(e) = 1; else acx(e) =∏
y∈ϕx,y ̸=y0

C(x(y))× acy0(e)∏
y∈ϕx,y ̸=y0

C(x(y))× acy0(e) +
∏

y∈ϕx,y ̸=y0
C(x(y))× (1− acy0(e))

(5.9)

For example, as shown in Figure 5.1, supposing E1 and E2 are the unknown

evidences related to B1, E2 and E3 are the unknown evidences related to B2. B1

and B2 can simply pass their related evidences to their parent node A. In this way,

the unknown evidences related to A are E1, E2, E3 respectively. Moreover, taking

an unknown evidence, for example E2, if we know the ACs of B1 and B2 assuming

E2 is true, the AC of the parent node A can be calculated using equation (5.9). So

when updating the network from bottom to top, both the certainty of a node and its

87

associated ACs can be calculated based on all of its offspring nodes. After MRICN

is updated, each node in the network will then contain a value of its certainty as well

as an array of its recorded ACs. The system searches the array of ACs of the current

activated hypothesis to identify the unknown evidence with maximal certainty gain,

which, in this case, is the difference between an AC and the certainty of the current

activated hypothesis.

5.5 General Interactive Reasoning Process

The interactive reasoning process of the diagnosis using MRICN is shown in Figure

5.2, which involves 4 phases:

 Reason with certain!es

Calculate Alterna!ve

Certain!es

Processing

evidence

Hypothesis

genera!on

Evalua!ng

Certainty

Ques!oning

user

Sort hypotheses

according to Certain!es

Environment

Decision threshold

Sa!sfied

Not sa!sfied

Check Alterna!ve

Certain!es

Ask for new evidence

Input evidence

User’s response

Output explana!on

Figure 5.2: Interactive reasoning process

88

1. Processing evidence: Analyzing the input data and identifying known or un-

known evidences;

2. Hypothesis generation: Reasoning using the equation (5.3)-(5.6) to generate

hypotheses for the existing evidences. The hypotheses are sorted according to

their certainties;

3. Evaluating certainty: Checking the certainties of hypotheses. The hypothesis

with the highest certainty can be chosen as a plausible explanation if it is above

the decision threshold. If none of the certainties is strong enough to support the

decision making, the system needs to pull more evidence from the environment

and re-assesses the certainties through the Questioning process;

4. Questioning: Identifying the unknown evidence that can provide maximal AC.

The system interacts with the environment (a user in this case) to acquire the

validity of the unknown evidences and re-assesses the circumstance by updat-

ing the certainty network, re-generating and re-ranking hypotheses accordingly.

Moreover, if a system finds that the regenerated hypothesis remains invalid (i.e.,

the highest certainty is always lower than the decision threshold and there is

no other unknown evidence provided for this hypothesis), the system runs a

questioning process on other hypotheses with lower certainties.

5.6 Case Study

In this section, a scenario of automobile diagnosis is discussed to exemplify the

MRICN model. The scenario is taken from [33], which discussed methods for provid-

89

ing explanations (or causes) for the observed symptoms of an automobile.

Trans/clutch

slipping

Bad

carburetor

chip

Excess

trans/clutch

wear

Unstable

idle

Too rich fuel

mix

Bad auto

choke

Too lean

fuel mix

Too rich fuel

Too lean fuel

Poor

mileage

Poor power

Stalls when

cold

Stalls when

hot

Causes Evidences

Figure 5.3: Instantiated certainty network

Figure 5.3 shows a portion of an instantiated certainty network. The nodes in

the right panel represent the observed or unobserved evidences which need to be

diagnosed, and the nodes in the left panel are causes that can be used to explain the

observations. The nodes in the middle panel are intermediate propositions linking

the causes to their potential effects. The links between nodes indicate probabilistic

causal relationship, and the conditional probability for each link is shown in Table

5.1.

For example, probabilities linking a cause “Trans/Clutch Slipping” (TCS) to an

intermediate proposition “Excess Trans/clutch Wear” (ETW) in the first line of Table

5.1 can be interpreted as:

90

Table 5.1: Empirical data adopted from an automobile fault diagnostic scenario

Causes (C)
 Intermediate

States (I)

Symptoms (S)

Trans/clutch

slipping

0.95 0.05 Excess trans/clutch

wear

0.3 0.7
Poor mileage

0.05 0.95 0.1 0.9

Trans/clutch

slipping

0.95 0.05 Excess trans/clutch

wear

0.9 0.1
Poor power

0.05 0.95 0.4 0.6

Bad carburetor

chip

0.7 0.3
Too rich fuel mix

0.8 0.2
Poor mileage

0.3 0.7 0.1 0.9

Bad carburetor

chip

0.7 0.3
Too lean fuel mix

0.8 0.2
Poor power

0.3 0.7 0.3 0.7

Bad carburetor

chip

0.7 0.3
Too lean fuel mix

0.7 0.3
Stalls when cold

0.3 0.7 0.5 0.5

Bad carburetor

chip

0.6 0.4
Unstable idle

0.9 0.1
Stalls when hot

0.1 0.9 0.1 0.9

Bad auto choke
0.7 0.3

Too rich fuel
0.7 0.3

Poor mileage
0.1 0.9 0.5 0.5

Bad auto choke
0.7 0.3

Too lean fuel
0.6 0.4

Stalls when cold
0.1 0.9 0.2 0.8

• if ETW is known to be true, the probability that TCS happens is 0.95;

• if ETW is known to be true, the probability that TCS does not happen is 0.05;

• if ETW is known to be false, the probability that TCS happens is 0.4;

• if ETW is known to be false, the probability that TCS does not happen is 0.6;

In this automobile diagnosis scenario, the system can be used to diagnose the

failures of a vehicle within an interactive process. For example, a user may observe

that his (or her) car has a poor mileage, and decides to use MRICN to find the

reasons for the failure. Assuming that the user only accepts a recommendation with

a certainty above a certain threshold (assuming 0.5 in this example), the functional

process of MRICN is listed below (as shown in Figure 5.4):

1. After processing the evidence PM, the system identifies that TCS is the hypoth-

esis with the highest certainty, in this case 0.4763, and the result is presented

91

Evidences:

PM is true;

TCS owns the

highest certainty

C (TCS) =0.4763

C (TCS) < 0.5

Rejected

PP is the US

which provide

max CG for FA

Evidences:

PM is true;

PP is false;

TCS remains the

highest certainty,

C (TCS) =0.4021

C (TCS) < 0.5.

Rejected

No other USs are

related to TCS,

system moves to

the next highest

one: BCC

SWH is the US

which provide

max CG for BCC

Evidences:

PM is true;

PP is false;

SWH is true;

BCC owns the

highest certainty

C (BCC) =0.6401

C (BCC) > 0.5

Accepted

User tells

that PM

happens

User responses

that PP doesn’t

happen

User responses

that SWH

happens

Ask user to

check whether

PP is true

Ask user to

check whether

SWH is true

BCC is accepted as

causes of environmental

change. The task is

finished.

END

Processing

Evidence

Hypothesis

generation

Evaluating

certainty

Questioning

START

Environment

Checking

ACs of TCS

Checking

ACs of TCS

Checking

ACs of BCC

PM = “Poor mileage”; PP = “Poor power”; TCS = “Trans/clutch slipping”; CG = Certainty Gain

BCC = “Bad carburetor chip”; SWH = “Stalls when hot”; US = unobserved symptoms;

Figure 5.4: The functional process of MRICN

92

to the user;

2. Since the certainty of the hypothesis is lower than the assumed decision thresh-

old 0.5, the user rejects this explanation. The system subsequently searches

the evidences and infers that if PP is true, the certainty of the TCS would be

maximally increased. The system then asks the user to validate the status of

the new evidence PP;

3. If the user indicates that PP is false, the system initiates a new reasoning

process based on this new observation, and indicates that TCS remains the

highest certainty, this time 0.4021. If the system cannot identify any other

unobserved evidences that can increase the certainty of the hypothesis TCS, it

uses the next highest certainty hypothesis, in this example, BCC;

4. After assessing the array of ACs of BCC, the system reasons that if SWH is true,

the certainty of BCC will be maximally increased. Consequently, the system

initiates another interaction with the user to check whether SWH happens;

5. If we assume the user discovers that SWH happens, MRICN updates the net-

work again and finds out that BCC has the highest certainty to cause this

problem, which is 0.6401;

6. The user finally accepts BCC as the explanation since the certainty is now larger

than the threshold, and the interactive reasoning process ends.

The inference flow of the above process is shown in Figure 5.5.

93

Trans/clutch

slipping

Bad

carburetor

chip

Excess

trans/clutch

wear

Unstable

idle

Too rich fuel

mix

Bad auto

choke

Too lean

fuel mix

Too rich fuel

Too lean fuel

Poor

mileage

Poor power

Stalls when

cold

Stalls when

hot

Causes Evidences

Start

End

Figure 5.5: The inference flow

5.7 Summary

In this chapter, a progressive interactive certainty network, MRICN, has been pro-

posed to generate explanations for observed evidences. The abduction theory under-

pinning MRICN is based on integrating OP theory into a probabilistic causal network.

The fusion of Bayesian theory with OP enables MRICN to postulate a plausible ex-

planation, despite the absence of detailed joint probability information. MRICN can

interact with a user and seek unobserved evidence to maximize the fitness of its knowl-

edge structures. A simple automobile fault diagnostic case has been adopted to test

MRICN and some preliminary results have been produced.

MRICN is a key technology that has been developed for SDM. The idea comes from

human-human medical diagnostic process which is essentially a multi-run interactive

94

process. In a real world medical diagnosis, the patient usually cannot at first identify

all of the symptoms that have manifested as a result of his or her illness, but only

the most obvious one. This preliminary checkup may not be enough for the doctor

to correctly diagnose the illness. Multiple interactions are, thus, necessary for the

doctor to draw new information, e.g. asking the patient to check whether some other

relevant symptoms is true or not. MRICN has been developed to model this process.

This chapter only focuses on how to build MRICN and how to use MRICN to

generate explanations. Issues regarding how to apply MRICN into software diagnosis

and how to integrate the network with other techniques proposed in this study have

not been discussed. In general, MRICN is the key technology used in SDM that helps

users in providing explanations for the problems they encounter while using a KBS

software. Details of integrating MRICN into the explanation model will be discussed

in Chapter 7.

95

Chapter 6

Automated Feature Recognition

6.1 Introduction

AFR is a technology that automatically extracts high-level information, e.g. in-

teresting geometrical patterns, from low-level shape representations for solid mod-

els of products or parts, so as to improve the efficiency of information sharing for

collaborative design or Computer-Aided Design (CAD)/Computer-Aided Manufac-

turing(CAM) automation. The explanation framework proposed in this thesis is

demonstrated through explanation production in AFR systems which act as KBSs

that implicitly or explicitly apply feature-related knowledge to extract features from

STEP-based solid models. STEP is the most popular data model for product in-

formation representation and exchange, which represents shapes based on Boundary

Representation (B-rep). This chapter gives an overview of AFR as well as some

background knowledge including B-rep and STEP.

The chapter is organized as follows: Section 6.2 gives an overview of AFR; Section

96

6.3 introduces B-rep which is the dominant approach for representing solid models;

Section 6.4 briefly describes the STEP standard; Section 6.5 reviews existing AFR

models; and Section 6.6 summarizes the chapter.

6.2 Overview of Automated Feature Recognition

(AFR)

6.2.1 Why AFR?

Modern shape model design of products or parts relies heavily on Computer-Aided

technologies (CAx). These systems are becoming highly collaborative and often in-

volve multi-disciplinary project teams at distributed sites with heterogeneous com-

puter systems. To share design information, existing product data formats (e.g.

STEP, IGES, ACIS, etc.) can only describe basic geometric information, such as

faces and edges, while the high level feature information which captures designer in-

tent and manufacturing patterns is lost. Since increasingly intelligent CAx require

the geometric model to be interpreted in terms of features [43] and manual feature

recognition for growingly complex models with large data volume is impossible, AFR

methods are developed. The features here can be explained as abstract concepts

regarding some interesting geometrical or topological patterns. The role of AFR sys-

tems is extracting such information from low-level representations of shape models

without interfering users.

Computer-Aided Process Planning (CAPP) is a typical application where AFR

plays an important role. CAPP can be seen as a combination of CAD and CAM.

97

Given that CAD data of a part (a component of a product to be manufactured)

is usually encoded using B-rep that only captures basic topological and geometrical

information, the goal of CAPP is to generate a sequenced set of instructions used to

manufacture the specified part [43]. In order to do that, CAPP has to interpret the

part in terms of features, so that AFR systems are required to automatically extract

features such as holes, slots and pockets, from the low-level representation of the

part. CAPP then uses these features to generate manufacturing instructions in order

to produce the part. For example, CAPP typically generates a drilling operation for

a hole.

Figure 6.1: CNC machines

CAPP has been widely implemented as intelligent CAD/CAM systems for Com-

puter Numeric Control (CNC) (as shown in Figure 6.1). A GA-based intelligent

98

CAD/CAM system for programming of CNC machine tools is proposed in [10], where

AFR is the first step after CAD models are inputted. Figure 6.2 [10] shows the frame-

work. Once features are recognized, the module for GA-based determination is taken

over in order to determine: cutting tools, cutting parameters and detailed tool path

planning. Afterwards post-processing takes place and encodes the tool-path data to

the defined numerical control and machine tool.

Figure 6.2: Concept framework of the GA-based intelligent CAD/CAM system

99

In addition, [62] proposed a CAPP approach manufacturing metallic aerospace

components, where the importance of AFR has been highlighted. As is shown in

Figure 6.3 [62], the original CAD model is converted to an IGES wire-frame model

and curve group manipulation is carried out using the ICAD system. Rule-based

algorithms are applied to groups of closed curves in order to identify fundamental

manufacturing features of the product.

Figure 6.3: CAPP-based design cycle for metallic aerospace components

6.2.2 Major AFR Methods

The AFR research has attracted much attention. Many methods have been pro-

posed to address this issue. In general, according to [43], there are three dominant

100

approaches in feature recognition:

1. graph-based algorithms: the graph-based approach creates a graph showing the

topology of the product shape and then analyzes the graph to extract subsets

of nodes and arcs that match any predefined template.

2. volumetric decomposition: two major methods are involved in this category:

one is called convex hull volumetric decomposition, which repeatedly subtracts

the input model from their convex hull in order to produce features; the other

cell-based approach partitions a complex shape into simple convex shapes that

are called cells.

3. hint-based approach: the hint-based algorithm recognizes features by identifying

a set of relevant hints that represent the minimal indispensable portions of the

feature.

Aside from the above three approaches, several other techniques in feature recog-

nition have been identified in [9], including syntactic pattern recognition, state tran-

sition diagrams and automata, logic (if-then) rules and expert systems, and hybrid

approach. Existing approaches vary greatly according to the recognition process, but

Babic et al. [9] concluded that most of the AFR systems “apply a common basic

principle: the structures identified in a part representation, formed using one of the

above methods, are matched with some patterns in the knowledge-base, using if-then

rules”. Therefore AFR systems are regarded as typical KBSs that have been used

in the industry. However, although the explanatory facility has been considered as

an important component for all KBSs, issues regarding explanation generation have

101

never been discussed in the existing AFR systems, which mostly focus on enhancing

the accuracy or handling more complex models. The demonstration of the proposed

explanation model with AFR applications fills this gap.

6.3 Boundary Representation of Solid Models

Most of the existing standards represent shape of products or parts based on B-rep,

which is also a major application domain of many AFR systems. This section briefly

introduces the basic ideas of B-rep.

B-rep is a popular method for representing the shape of solid models. In general,

B-rep represents objects in terms of their “skin”. The skin is divided up into surface

portions that are also called faces. The faces are surrounded by sequences of edges,

which are portions of curves between two adjacent surface portions. Edges, or curve

portions, are delimited by vertices, which are also meeting points for faces [120].

Figure 6.4 illustrates the relationships mentioned above.

The data structure of B-rep can be divided into two basic groups: one is respon-

sible for defining the structure of the object (the topology) and the other is used to

describe the form or shape of the object (the geometry). The main elements are the

faces, edges and vertices, as mentioned above, together with their geometric forms:

surfaces, curves and points. Other elements are also involved within the structure for

various purposes, such as shell and loop. Figure 6.5 shows such basic data structure.

102

SURFACE

FACE

CURVE

EDGE

VERTEX

POINT

Figure 6.4: Face-surface, edge-curve, and vertex-point

103

OBJECT

TOPOLOGY OBJECT

SHELL

FACE

LOOP

EDGE

VERTEX

SURFACE

CURVE

POINT

Figure 6.5: Basic data structure of B-rep

6.4 Standard for the Exchange Product Model Data

(STEP)

Our explanation model is applied to the AFR systems that recognize features from

STEP files. STEP is a very popular data model for product information representa-

tion and exchange. This section gives a general introduction of STEP.

STEP, also known as ISO 10303, is a top-rated data format for product exchange.

The standard represents product information along the necessary mechanisms and

definitions, which includes geometry, topology, tolerance, relations with other parts,

various attributes and contingence to appropriate assembly [9], to enable product data

to be exchanged among different computer systems and environments. Modern CAD

is usually collaborative design which involves diverse computer systems and different

organizations, so that STEP is developed to represent the product information in a

104

common computer-interpretable form that keeps the exchanged information complete

and consistent [112].

6.4.1 Contents of STEP

The application range of ISO 10303 contains many different product types (e.g. elec-

tronic, mechanical, sheet metal and fiber composites) and life-cycle stages (e.g. design,

analysis, planning and manufacture). A series of parts were issued continuously to

expand the range. These parts are referred to as ISO 10303-xxx, where xxx is the

part number. Each of them is a standard in its own right, and is independent on

other parts [102]. In addition, STEP uses application protocols (APs) to specify the

representation of product information for one or more application domains. APs are

constructed on the basis of a set of Integrated Resources (IRs), defining fundamental

constructs that can be specialized and applied for a wide variety of purposes [102].

Several important parts and APs are listed below:

• Parts:

– Part 01: Overview and fundamental principles.

– Part 11: EXPRESS language reference manual.

– Part 21: Clear text encoding of the exchange structure.

– Part 22: Standard data access interface specification.

– Part 28: XML representation for EXPRESS-driven data.

– Part 41: Fundamentals of product description and support.

– Part 42: Geometric and topological representation.

105

– Part 43: Representation structures.

– Part 44: Products structure configuration.

• Application protocols:

– AP 201: Explicit draughting.

– AP 202: Associative draughting.

– AP 203: Configuration-controlled 3D designs of mechanical parts and as-

semblies.

– AP 207: Sheet metal die planning and design.

– AP 210: Electronic assembly, interconnection and packaging design.

– AP 214: Core data for automotive mechanical design process.

– AP 224: Mechanical product definition for process planning using machin-

ing features.

– AP 225: Building elements using explicit shape representation.

– AP 238: Application interpreted model for computerized numerical con-

trollers.

The part of STEP that is currently most widely being used is AP 203 “Configuration-

controlled design”, which is also our focus in this case study. AP 203 represents

product shape models as explicit non-parametric models based on B-rep (see Section

6.3) [102], and is used to exchange geometry, product structure, and configuration

management data [112]. Many AFR systems have been proposed for recognizing fea-

tures from AP203-based shape models [103]. This is also the case for the explanation

framework proposed in this thesis.

106

6.4.2 EXPRESS

STEP primarily defines data models using the EXPRESS modeling language. EX-

PRESS is a standard data modeling language for product data that is defined in ISO

10303-11. Details of encoding mechanism that concerns data representation meth-

ods in accordance with a given EXPRESS schema are given in ISO 10303-21. Using

EXPRESS, the main object created for a particular AP is called schema. Within a

schema, sub-objects, including constants, types, entities, functions, procedures and

rules, may be involved [111]. Details of some major objects are listed below:

• Schema: A schema defines a collection of objects that have a related meaning

and purpose.

• Entity: An entity declaration creates a type that defines the properties of real-

world or conceptual objects.

• Attribute: Attributes define the material properties of an entity and always

have a value domain. There are two types of attribute: an explicit attribute

is a property of an entity whose value is static and independent; a derived

attribute is a property of an entity whose value changes in response to changes

of other attribute values.

• Constant: A constant declaration is used to create values that never change.

• Type: A type specifies the natural type and meaning for data values. Built-

in datatypes can be the common computational types (Boolean, integer, real,

string, enumeration). Defined types are used to distinguish conceptually differ-

ent collections of values that happen to have similar representations.

107

Generally, EXPRESS is used to represent the conceptual information within a

data model (similar to TBox in an ontology), and a STEP file can be seen as an

instantiation of the data model (similar to ABox in an ontology).

6.5 Existing AFR Systems

The AFR has long been realized as a key technology in automated design processes.

Many research projects have been done to address this issue. The review mainly

focuses on B-rep based geometric model, which have been the most commonly used

[9].

According to the recognition principle, AFR can be mainly classified into three

categories: graph-based approaches, volumetric decomposition approaches and hint-

based approaches.

Graph-based theory was firstly proposed in 1988 [64], when the Attributed Adja-

cency Graph (AAG) had been developed. Once a B-rep model is transferred to an

AAG, faces are represented as nodes, while the edges between the faces are repre-

sented as links between the nodes. In AAG, a link takes the attribute “0”, if the

faces represented by the link’s nodes have a concave adjacency relation; otherwise,

it takes the attribute “1”. A recognizer is then developed to recognize features by

analyzing sub-graphs of the AAG. The original AAG concept suffered from two ma-

jor shortcomings [9]: the possibility of application was only present for polyhedral

objects without curved faces, and also the impossibility of extracting boundary faces

(only basic faces). There were a series of later techniques developed to overcome these

limitations, including Multi-Attributed Adjacency Graph (MAAG) [138], Structured

108

Face Adjacency Graph (SFAG) [30], etc. The two major drawbacks for all of these

graph-based methods are their incapability of handling intersecting features and their

having no guarantee that the recognized feature will prove applicable in the sense of

manufacturability [43].

Volumetric decomposition methods decompose the geometric model into sub-

volumes repeatedly until the feature is recognized. Convex hull based volumetric

decomposition was originally introduced in 1991 to recognize form features as Alter-

nating Sum of Volumes (ASV) decomposition [146]. In ASV decomposition, volumes

of input models are decomposed by subtracting them from their convex hull and

repeating the process for all the resulting volumes [15]. A critical problem of ASV

decomposition is that the algorithm does not always converge. To solve this prob-

lem, the Alternating Sum of Volumes with Partitioning (ASVP) decomposition was

developed by combing ASV and remedial partitioning using cutting operations [72].

Another direction volumetric decomposition is cell-based volumetric decomposition.

The core idea of the cell-based approach is to partition a complex shape into simple

convex shapes called cell. A specific algorithm for polyhedral objects was developed

in [106], and is further extended to curved objects in [107].

Hint-based methods were developed with the motivation of overcoming the dif-

ficulties in handling the intersection. Hint-based approach was first implemented in

Object-Oriented Feature Finder (OOFF) [137]. In OOFF, face patterns in a solid

shape’s B-rep generate hints or clues for the existence of certain machining features.

For example, a cylindrical face could be a hint of a hole, and a pair of parallel oppos-

ing faces may be taken as a slot hint. These hints are tested for their validity through

geometric completion procedures that attempt to construct the largest volumetric

109

feature that is consistent with the boundary data [44]. An advanced system, the

integrated incremental feature finder (IF2), was further developed to extend OOFF

by providing it with the ability to reason through the hints generated from various

sources [44].

Another criterion to classify AFR systems is their recognition algorithm, accord-

ing to which AFR can generally be grouped into two groupsrule-based approaches and

ANN based approaches. In rule-based AFR systems, feature information is encom-

passed in a knowledge base using if-then rules. Features are recognized by applying

inference mechanism to the rule base. Most of the rule-based AFR systems have

been reviewed in [9]. The employment of ANN in feature recognition starts from

early 1990s. In the system proposed in [101], an adjacency matrix is generated from

a geometric model, which is similar to the AAG but includes more information. The

matrix is then inputted into the neural network for recognition. Following works,

including [80], [96] and [28] have later been developed to improve the performance of

handling more complex model.

STEP files have been adopted as the input source by many AFR systems. In

fact, most of the above methods have corresponding implementations on the STEP

standard. For example, the implementation of IF2 on STEP files was discussed in [42],

and [66] gave a demonstration about how the graph-based approach could be used

to recognize features from 3D sheet metal components that are represented by STEP

AP-203. All other STEP-based AFR systems have different focuses. [78] proposed

a modified graph-based approach that recognizes features from an auto-generated

mid-surface adjacency graph, rather than the original adjacency graph; and another

hybrid approach, which combines volume subtraction and face adjacency graph, was

110

put foward in [103]. For rule-based approaches, a STEP based AFR system was

developed in [15], where the feature is recognized by applying if-then rules to face and

edge information extracted from STEP files. Another interesting rule-based approach

that is implemented using Prolog was designed in [154].

6.6 Summary

This chapter has introduced some background for AFR and other relevant knowledge,

including the concepts of B-rep and STEP standard. In summary, STEP represents

the shape of a product or a part based on B-rep, and STEP files have been widely

adopted to represent and transfer product information. Hence, many AFR systems

take STEP files as the source data, and focus on extracting features that were implic-

itly captured. We take such AFR systems as the case study in order to demonstrate

our explanation framework, in so far as to propose an experimental Ontology-base

AFR Explanatory System in the next chapter.

111

Chapter 7

Ontology-based AFR Explanatory

System

7.1 Introduction

As discussed in Section 6.2, AFR systems are regarded as typical KBSs that explic-

itly or implicitly use rules to match the input shape models with some patterns in

the knowledge base in order to make decisions, which, in this case, is to recognize

features [9]. Therefore, it is reasonable to use AFR as a case study to demonstrate

the explanation framework. To this end, a novel AFR explanatory system, OAES,

which generates explanations for any AFR system used to recognize features from

STEP-based (AP203) shape models, is outlined in this chapter.

The rest of this chapter is organized as follows: Section 7.2 gives an overview of

OAES, including the concept framework; Section 7.3 describes the process of building

the EKB in OAES; Section 7.4 demonstrates the usage of DEM; Section 7.5 discusses

112

the implementation of MRICN in OAES as SDM; Section 7.6 shows the user interface

of the system; and Section 7.7 summarizes the chapter.

7.2 Overview of OAES

AFR systems extract features by automatically classifying groups of connected faces

into different features, so that decision explanations, here, refer to the explanations

of why a group of faces is recognized as a certain feature. OAES generates explana-

tions using a reconstructive method. That is, explanations do not rely on the actual

decision making process of the feature recognition, instead the explanatory system

encodes perspicuous and well accepted geometric rules; and presents them to users, in

order to explain how a feature is achieved. For example, it does not matter whether

an AFR system uses the graph-based approach or the hint-based approach, ANN

classification or logic rule matching, a pocket feature is always recognized based on

its basic topology, namely a face intersects with all neighbor faces in concave angles.

Different systems only differ in how the topology is represented and how the mapping

of the topology into a pattern is conducted. For this reason, it is reasonable to expect

a clear and understandable presentation of the topology to act as the explanation for

why a group of faces is recognized as a certain feature.

Domain explanations in OAES focus on providing descriptive information for ge-

ometry entities and attributes defined in the EXPRESS schema of AP 203 in STEP.

For example, they provide the definitions of “advanced face”, “edge curve”, “cartesian

point” and how they are related. This information is captured statically in an ontol-

ogy as RDF annotations of relevant classes or properties, and can be easily accessed

113

upon a user’s request.

For software diagnostic, it is assumed in OAES that the system may prompt warn-

ings or produce observable errors. MRICN (discussed in Chapter 5) is implemented

to diagnose such problems. In general, MRICN first generates hypotheses for the

problems that have been observed, then interacts with users to draws more situa-

tional information in order to evaluate the hypotheses, and finally selects one of the

hypotheses as the best explanation.

According to the framework structure discussed in Chapter 3, the framework of

OAES is shown in Figure 7.1. The system is independent to the AFR system, and

generates explanations without referring to the actual feature recognition process

executed in the AFR system. EKB is implemented as a geometric ontology that

captures semantic rules and concepts for the domain knowledge. Once a STEP file

is inputted into the AFR system for feature recognition, the ontology in OAES is

instantiated by transferring the STEP file to the ABox of the ontology. Decision

explanations, namely the explanations about how a feature is achieved, are produced

by DEM, which uses BCAR to reason through the ABox of the ontology to logically

connects the input (STEP file) and the output (recognized features). For domain

explanation, detailed descriptions of objects in the domain, such as the definitions

of “advanced face” and “edge curve” according to ISO10303, are embedded in the

ontology as RDF annotations. In addition, MRICN is integrated in SDM with extra

probabilistic knowledge, and provides explanations for user observations of software

problems.

114

AFR System

User

STEP files

Explanative knowledge base (geometric ontology)

 TBox

EXPRESS schema

of STEP AP 203

Feature related

concepts
If … then…

OWL concepts SWRL rules ABox (facts)

plananananananananatatativ

Decision explanation

model

OAES

Software diagnostic

model

Backward chained

ABox reasoner (BCAR)

Multiple Run

Interactive Certainty

Network(MRICN)

User

User interface intntntntntntntnt

Output recognized features
Explanation

about how

the feature is

recognized

 Explanation of

the meaning of

an object (domain

explanation)

User’s

observations

of software

error

Explanation

of reasons

for the

observation

Figure 7.1: Ontology-based AFR explanatory system

115

7.3 Building Explanative Knowledge Base

The EKB in OAES refers to a geometric ontology, which aims to capture the domain

knowledge regarding STEP AP203 and feature recognition, in a more perspicuous

and explicit way. According to the four types of mapping discussed in Section 3.4.3,

the development of the ontology consists of four steps:

1. Capturing EXPRESS schema of STEP AP203, which refers to the process of

using ontology TBox to capture the domain concepts and relationships;

2. Defining feature recognition rules, which refers to the process of using SWRL

rules or OWL ECA to capture the design rules and constraints;

3. Inserting additional descriptive information, which refers to the process of using

RDF annotations to capture the definition and descriptions of the concepts and

relationships within the domain;

4. Inputting STEP instances, which refers to the process of capturing input in-

stances using ontology ABox;

7.3.1 Capturing EXPRESS Schema of STEP AP203

The first step of building the geometric ontology is to encode the concepts and rela-

tionships within the domain of STEP AP203 using OWL ontology.

As all the concepts and relationships involved in STEP AP203 are defined in its

EXPRESS schema, the process of capturing domain concepts and relationships of

AP203 is, in fact, the process of building an OWL ontology to map the EXPRESS

116

Table 7.1: Mapping from EXPRESS to OWL
EXPRESS OWL

schema ontology

entity type class

super type/sub type super class/sub class

explicit attribute of simple type datatype property

explicit attribute of type entity object property

entity name and entity attribute name identifier for OWL representations

schema with all the elements included. Similar works have been done in [74] [156].

The general mapping information can be found in Table 7.1.

The complete AP203 includes many constructs which are concerned with differ-

ent aspects of information in product design and configuration, such as organizations,

date, approvals, security, classifications and etc. Here we only focus on the portion

which represents product shapes: the representation item entity and all its subtype

entities. According to B-rep, the representation item entity has two direct sub-

type entities: geometric representation item and topological representation item.

A portion of the hierarchy of subtype entities of representation item is shown in

Figure 7.2.

In the following discussion, the concepts and relationships involved in the EX-

PRESS schema of AP203 are called Schema-Based Resource (SBR), and their corre-

sponding classes and properties are called Schema-Based Classes (SBC) and Schema-

Based Properties (SBP) respectively.

7.3.2 Defining Feature Recognition Rules

To explain why a group of faces is recognized as a feature, the system outputs in-

telligible recognition rules representing the topology of the face group to the users.

117

Representation_item

Geometric_representation_item Topological_representation_item

Curve

Conic

Line

…

Surface_curve

Pcurve

Surface

Boudned_surface

Elementary_surface

Conical_surface

…

Cylindrical_surface

Plane

…

Point

…

Connected_face_set

Closed_shell

Open_shell

Loop

Edge_loop

Poly_loop

Vertex_loop

Path

Face

Edge

…

Figure 7.2: Portion of subtype entity hierarchy of representation item

118

Taking the triangular pocket (shown in Figure 7.3) as an example, a group of four

faces is recognized as a triangular pocket because one of them is recognized as a

pocket bottom face, the other three are recognized as pocket wall faces, and they are

concavely connected with each other. Moreover, a face is recognized as the pocket

bottom face because it intersects with all its neighbor faces in concave angles. Figure

7.4 shows all the available features that can be explained by OAES. The set of the

feature is limited by the developed sets of rules. The list of the rules for those features

can be found in Appendix A.

Pocket wall face

Pocket bottom face

Figure 7.3: Example of a triangular pocket

There are two methods for building recognition rules: SWRL and OWL ECA.

The atoms (excluding comparison atoms and Built-in function atoms) in a SWRL

rule must have corresponding classes or properties in the OWL ontology. However

the recognition rules usually include some atoms that represent feature-related con-

119

Pocket Feature Family

Triangular Pocket Quadrangular Pocket Obround Pocket

Hole Feature Family

Triangular Hole Quadrangular Hole Obround Hole

Blind Step Feature Family

Chamfered Blind Step Circular Blind Step Quadrangular Blind Step

Through Step Feature Family

Regular Through Step 2-Side Concave Through Step 2-Side Convex Through Step

Blind Slot Feature Family

Regular Blind Slot Vertical Obround Blind Slot Horizontal Obround Blind Slot

Through Slot Feature Family

Circular Through Slot V Through Slot Regular Through Slot

Figure 7.4: Explainable features in OAES

120

cepts or relationships which are not SBRs and do not have corresponding SBCs or

SBPs. Thus these OWL classes and properties need to be created before SWRL

rules are constructed. In the following discussion, these feature related concepts and

relationships are called Feature-Related Resources (FRR), and their corresponding

classes and properties are called Feature-Related Classes (FRC) and Feature-Related

Properties (FRP) respectively.

In OAES, the recognition rule for a feature is also regarded as the definition of

the feature. Namely, in order to explain how a feature is recognized, OAES presents

the user with how the facts match the definition, so as to deduce the feature. The

general process of developing the recognition rules is as follows:

1. Other than the representation item class that covers all the SBCs, classes for

features are created to be the subclasses of another top class face set, indicating

that instances of features are essentially sets of faces.

2. After the creation of classes that represent features, for each feature class, the

face topology of the feature is analyzed, and is abstracted as if...then... rules

for recognizing the feature.

3. The if...then... rules may contain FRRs that have not been mentioned in the

ontology, so that corresponding FRCs and FRPs are further created for them.

4. These rules are, then, transferred to SWRL or OWL ECA involving the newly

created FRCs and FRPs.

5. The newly created FRCs and FRPs are further defined using rules similar to

the way described from the step 2 to 4. More undefined FRRs may be involved.

121

Repeat this process until all the FRRs involved are defined by rules.

A triangular pocket example is discussed here to demonstrate the above process.

An OWL class triangular pocket is first created as a subclass of face set according to

step 1. As shown in Figure 7.3, a triangular pocket consists of one bottom face and

three wall faces, which are neighbor faces of the bottom face (step 2). Corresponding

OWL classes (triangular pocket bottom face and pocket wall face) and properties

(face has neighbor) are created according to step 3. The SWRL recognition rule for

triangular pocket is then written as (step 4):

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

has member face(?x, ?d) ∧ triangular pocket bottom face(?a) ∧ pocket wall face(?b) ∧

pocket wall face(?c) ∧ pocket wall face(?d) ∧ face has neighbor(?a, ?b) ∧

face has neighbor(?a, ?c) ∧ face has neighbor(?a, ?d) ∧ face has neighbor(?b, ?c) ∧

face has neighbor(?c, ?d) ∧ face has neighbor(?d, ?b)→ triangular pocket(?x)

The above rule simply means: if a face set (?x) contains one triangular pocket

bottom face (?a) and three pocket wall faces (?b, ?c, ?d), and the three pocket neighbor

faces are circularly connected with each other and are all connected with the bot-

tom face ?a, then the face set (?x) is a triangular pocket. Seeing as the OWL class

triangular pocket bottom face, pocket wall face and the OWL property face has ne

ighbor are FRCs and FRPs which do not have corresponding entities or attributes in

the EXPRESS schema of AP203, they need to be further defined (step 5) as:

face ⊓ ∃face has neighbor.pocket bottom face ≡ pocket wall face;

triangular face(?x) ∧ pocket bottom face(?x)→ triangular pocket bottom face(?x)

face(?x) ∧ face(?y) ∧ face has edge(?x, ?e) ∧ face has edge(?y, ?e) ∧ differentFrom(?x, ?y)→

face has neighbor;

122

Table 7.2: Mapping between OWL and EXPRESS items within the triangular pocket

example

Express entities or attributes OWL classes or properties

face (entity) face (class)

plane(entity) plane (class)

face_ geometry (attribute of

“face_surface” entity)

face_surface_has_face_geoemetry (object

property)

bounds (attribute of “face” entity) face_has_face_bounds (object property)

bound (attribute of “face_bound” entity) face_bound_has_bound (object property)

edge_list (attribute of “edge_loop”entity) edge_loop_has_edges (object property)

edge_element (attribute of

“oriented_edge” entity)

oriented_edge_has_edge_element

(object property)

The OWL class pocket wall face is defined through an OWL ECA, which means

that a pocket wall face is a neighbor face of a pocket bottom face. Meanwhile, the

second SWRL rule states that a triangular pocket bottom face is a triangular face

as well as a pocket bottom face. The OWL property, face has neighbor is defined

using a SWRL rule as well, indicating that two different faces (?x, ?y) are neighbors

if they have a same edge (?e). In general, it is preferable to use SWRL, rather than

OWL ECA, to construct rules, unless some special logic is required, such as universal

quantification or cardinality restriction, which are not or partly supported in SWRL.

In addition, the above rules bring more OWL items that have not yet been defined,

including triangular face, pocket bottom face and face has edge, so that more rules

are added.

In such way, all the FRCs and FRPs involved for recognizing the feature triangular

pocket are now defined in above rules. Other atoms involved in these rules are all

SBRs. The creation of their corresponding SBCs and SBPs is discussed in the pre-

vious section, and is shown in Table 7.2. Generally speaking, these recognition rules

logically link the features to the facts stated in the STEP file, allowing the expla-

123

nations, regarding how a feature is recognized from a STEP file, to be provided by

presenting the rules to the user in a clear and descriptive way. How to present these

rules as explanations is discussed in Section 7.4.

7.3.3 Inserting Additional Descriptive Information

OWL is an ontology description language developed on top of RDF, so that all the

OWL items are essentially RDF resources. RDF allows additional support informa-

tion to be caught by a set of utility properties for each resource, including rdfs:seeAlso,

rdfs:isDefinedBy, rdfs:comment and rdfs:label. Using this method, OAES captures

additional descriptive information for generating domain explanations and polishing

decision explanations. The information includes: 1) descriptions of SBRs; 2) de-

scriptions of FRRs; 3) readable format of recognition rules for decision explanations;

All the three types of information are encoded as HTML text, which provides many

benefits for the presentation of the information, e.g. highlighting important text, or

integrating hyperlink to allow for user-system interaction.

For SBRs, descriptive information regarding their meaning and their attributes is

captured using the “rdfs:comment” property of the corresponding SBCs and SBPs.

This information is considered as domain explanations for the SBRs, which can be di-

rectly provided to the user upon request. The information comes from ISO/CD 10303-

42: 1992, and can be found in http://www.buildingsmart-tech.org/ifc/IFC2x4/

rc2/html/schema/ifcgeometryresource/lexical/. The URL link for each con-

cept is also mentioned in the value of the property “rdfs:seeAlso”. Figure 7.5 is an

example showing the descriptive information of the OWL class of edge.

124

An edge is the topological construct corresponding to the connection of two vertices. More abstractly, it may stand for a

logical relationship between two vertices. The domain of an edge, if present, is a finite, non-self-intersecting open curve

in RM, that is, a connected 1-dimensional manifold. The bounds of an edge are two vertices, which need not be distinct.

The edge is oriented by choosing its traversal direction to run from the first to the second vertex. If the two vertices are

the same, the edge is a self loop. The domain of the edge does not include its bounds, and 0 !"! !#$!%&&'()*+,-!.)+/!*0!

edge may be a geometric curve to locate the edge in a coordinate space; this is represented by the edge curve

(IfcEdgeCurve) subtype.

Attributes:

EdgeStart -> Start point (vertex) of the edge.

EdgeEnd -> End point (vertex) of the edge. The same vertex can be used for both EdgeStart and EdgeEnd.

rdfs:comment

rdfs:seeAlso http://www.buildingsmart-tech.org/ifc/IFC2x4/rc2/html/schema/ifctopologyresource/lexical/ifcedge.htm

Property Value

Figure 7.5: Descriptive information of edge

For FRRs which do not have corresponding entities in the STEP AP203 schema

nor formal definitions, their descriptions are generally based on their topology pat-

terns, and are also captured using “rdfs:comment” property. The FRRs do not have

the “rdfs:seeAlso” property, as they do not have other resources explaining them.

Instead, “rdfs:isDefinedBy” property gives a verbal description of the rules defin-

ing them. Two restrictions need to be applied when encoding the contents: 1) All

the terms representing basic SBRs must be encoded as HTML links which allow

the user to ask for domain explanations for the involved SBRs by clicking the links;

2) The verbal description of a definition rule must contains all the variables that

are included in the definition rule. The HTML text of descriptive information of

concave angular edge is shown in Figure 7.6 as an example.

7.3.4 Inputting STEP Instances

The process of inputting STEP instances refers to the process of instantiating the

ontology TBox by inputting facts. OAES creates OWL individuals to map instances

in the STEP files. OWL individuals represent objects in the domain of discourse, and

125

rdfs:comment

rdfs:isDefinedBy

A concave_angular_edge is an edge whose two adjecent face

intersects at an concave angle. The edge is defined by an SWRL rule which contains a function that

calculates angles between two faces.

?x is a concave_angular_edge because ?x is an edge of two different faces ?y and ?z, and the intersection angle

between ?y and ?z is smaller then 180 degree,.

Figure 7.6: Descriptive information of concave angular edge

can be referred to as “instances of concepts” [56].

An entity in the EXPRESS schema of AP203 refers to a concept in the domain;

and a STEP file, as an instantiation of the EXPRESS schema, is a collection of the

instances of the EXPRESS entities. Once the system reads an instance in the STEP

file, it first locates the corresponding OWL class of the EXPRESS entity that the

instance belongs to, then creates an OWL individual as a member of the OWL class,

and finally relates the individual to other existing individuals using OWL properties

based on the EXPRESS attributes of the corresponding STEP instance.

For example, an instance in STEP file is stated as:

#245 = LINE(′Line′,#242,#244)

The name of the corresponding OWL individual is ID245, and the individual

belongs to a concept line. Assuming there are two properties related to the concept

“line”: line has point and line has direction, the values of these two properties of

individual ID245 are individual ID242 and ID244 respectively.

OAES has implemented JSDAI technology to help the input of STEP instances.

JSDAI is a Java-based Application Programming Interface (API) for reading, writing

and runtime manipulation of object oriented data defined by an EXPRESS based

126

data model 1. The employment of JSDAI core libraries allows the system to access

STEP models and manipulate STEP data. In OAES, the system first uses JSDAI-

based functions to read the STEP instances in the system memory, then creates OWL

individuals for the instances in a certain sequence.

7.4 Decision Explanation Model

In OAES, decision explanations are the explanations of why a group of faces is recog-

nized as a certain feature. OAES generates explanations based on a set of recognition

rules showing the topology of the feature. Determining which recognition rules are

appropriate for a particular explanation task is essentially a reasoning issue, namely

to find out which recognition rules should be applied to recognize a particular feature

from a STEP file. Since Chapter 3 has given a general introduction of DEM and the

technical details of BCAR have been discussed in Chapter 4. This section mainly

focuses on how BCAR is used in OAES and how to generate explanations in natural

language. A simple example is then discussed to demonstrate the entire process.

7.4.1 Generating Decision Explanations

BCAR is a general rule-based ontology ABox reasoner. OAES applies BCAR to

reason through the ontology and locate the recognition rules explaining the recog-

nition process. Once a user wants to know why a set of faces has been recognized

as a certain feature, he or she may input these faces into OAES for explanation.

OAES first creates a new OWL individual under the OWL class face set. The newly

1http://www.jsdai.com

127

created individual is then related to the inputted faces through an OWL property

has member face, indicating that the newly created individual is a face set which

contains such member faces. The next process involves using recognition rules to

justify why the newly created OWL individual can be classified as the recognized

feature, and presenting the readable format of the rules to the user as an explanation.

The general process is as follows (let f denote the feature and i denote the newly

created individual):

1. The system firstly initializes BCAR and sets the reasoning task as f(? = i), in

other words, checking whether i is an instance of f .

2. After BCAR has completed the reasoning process, if it returns false, meaning

OAES cannot verify that i is an instance of f , the system then asks the user

to recheck the input. Otherwise if BCAR returns true, OAES proceeds to the

next step.

3. Combined with the reasoning solution concluded by BCAR, the primary rule,

which directly states that i belongs to f , is first presented to the user.

4. If the user requests further explanation about the conditions in the primary

rule, rules which have verified those conditions are then presented to the user

as a further explanation.

5. Repeat step 4 until all the recognition rules involved in this task are presented

or the user terminates the interaction.

In the above process, rules are presented in natural language. To this end, the

verbal description, which is captured by “rdfs: isDefinedBy” property (discussed in

128

Section 7.3.3), is used. BCAR solves the reasoning problems by obtaining solutions

for the rules involved (discussed in Chapter 4). In a solution, every variable in the

rule is bound to a value, making the rule conditions hold true. Since that the verbal

description of a rule contains all the rule variables, in order to generate explanations,

OAES finally outputs the rule’s verbal description with all the variables replaced by

the binding values in the solution. In addition, as a support to the natural language

representation, the original format of the rule is attached to the presentation with all

the variables replaced by the binding values as well.

All the explanations are presented as HTML texts, which contain HTML hyper-

links enabling a simple interaction between the user and the system. The hyperlinks

are used for three purposes: 1) referring to domain explanations; 2) referring to fur-

ther explanations of rule conditions; 3) referring to asserted facts. In this case, OAES

does not provide all the explanations at one time, as it contains too much information

and is difficult for the user to follow. Instead, the explanations are provided one by

one upon the user’s request, linking the feature to the asserted facts. Details of the

use of hyperlinks are demonstrated in the next subsection with a simple example.

7.4.2 Demonstration Example

A simple example is discussed in this section to demonstrate the process mentioned

in the previous section. Let us assume that four faces, ID001, ID002, ID003 and

ID004 (corresponding to the STEP instances #001, #002, #003, #004), have been

recognized as faces that constitute a triangular pocket as shown in Figure 7.3. An

OWL individual F001 is then created as a face set, and is related to ID001, ID002,

129

ID003 and ID004 with the has member face property. The reasoning task is set to

triangular pocket(? = F001).

Assuming the reasoner returns that F001 has been proved to be a triangular pocket

using the recognition rules, and a solution for the primary rule has been found as

“{?x ← F001; ?a ← ID001; ?b ← ID002; ?c ← ID003; ?d ← ID004}”, OAES then

presents a sequence of explanations as shown in Figure 7.7.

Figure 7.7: A sequence of explanations for “why F001 is a triangular pocket

In the explanation sequence, the readable format of the primary rule, with all the

130

variables replaced by the binding values, is first presented as the explanation for why

F001 is recognized as a triangular pocket (as shown in the top of Figure 7.7). Within

this first explanation, as the blue arrow shows, the user can click the HTML hyperlinks

to request for domain explanations regarding the concepts mentioned in the explana-

tion. For example, if the user wants to know what a triangular pocket bottom face

is, the domain explanation is provided by directly accessing the descriptive informa-

tion of triangular pocket bottom face, captured by the “rdfs:comment” property.

Moreover, as the green arrows show, by clicking the HTML hyperlink at the end of

the explanation, the user can also get the original SWRL format of the primary rule.

Each hyperlink in the original SWRL rule refers to a condition atom, which must

hold true in order to prove that F001 is a triangular pocket. By clicking a hyperlink,

the user is able to know why the corresponding condition holds true. There are two

alternatives in this case: 1) the condition atom is true because it is an asserted fact,

e.g. has member face(F001, ID001) (as the black arrow shows); 2) the truth of the

condition atom is explained by other rules, e.g. pocket wall face(ID001) (as the red

arrow shows).

In this way, the user can keep clicking the HTML links within the previous expla-

nation if they need further detailed explanations, until all the explanations reach the

bottom level (asserted facts). Figure 7.7 shows the sequence, while blue arrows point

to the domain explanations, green arrows point to the original rules, black arrows

point to the asserted facts and red arrows point to the explanations with other rules.

131

STEP file

damage

OWL class

error

OWL property

error

SWRL rule

error
SWRL rule

missing

Incorrect

inputted feature

Graphic

display error

Jsdai/OWL

mismatch

Incomplete

ABox

STEP loader

warning

Empty

query result

Feature not

justifiable

OWL/SWRL

mismatch

SWRL rule

loading

warning

Internal

reasoning

error

Reasoning

termination

Undefined

concepts or

relationship

Reasoning

optimization

failed

Long time

reasoning

No

explanation

provided

Incomplete

TBox

Figure 7.8: Probabilistic causality network for software diagnosis in OAES

7.5 Software Diagnostic Model

The software diagnostic model generates explanations for user observations of the

system’s unexpected behaviors, where AR is the most common cognitive model used

in this case. The diagnostic model implements MRICN to provide an interactive AR

function in generating explanations for the observations. MRICN interacts with users

and draws new information to allow for reflective searching for the optimal sets of

knowledge with the maximal probability gain. Details of MRICN have been discussed

in Chapter 5. The original objective of this diagnostic model is to diagnose other AFR

software products as one of the major functions of OAES. However, since most of

existing AFR systems are theoretical models and commercial AFR software products

are rarely available, the diagnostic model in this study diagnoses the software of

OAES itself, which gives a demonstration of how MRICN can be applied into software

132

Table 7.3: Probabilistic causalities with conditional probabilities

Cause(C) Effect(E) P(C/E) P(C/E) P(C/E) P(C/E)

STEP file damage Graphic display error 0.95 0.05 0.2 0.8

STEP file damage Incomplete ABox 0.4 0.6 0.1 0.9

OWL class error Jsdai/OWL mismatch 0.7 0.3 0.35 0.75

OWL class error Incomplete TBox 0.8 0.2 0.3 7

OWL class error OWL/SWRL mismatch 0.7 0.3 0.25 0.75

OWL property error Incomplete TBox 0.75 0.25 0.2 0.8

OWL property error OWL/SWRL mismatch 0.55 0.45 0.1 0.9

OWL property error Internal reasoning error 0.65 0.35 0.1 0.9

OWL property error Reasoning optimization failed 0.9 0.1 0.5 0.5

Incorrect inputted feature Feature not justifiable 0.8 0.2 0.05 0.95

SWRL rule error OWL/SWRL mismatch 0.6 0.4 0.3 0.7

SWRL rule error Internal reasoning error 0.8 0.2 0.2 0.8

SWRL rule missing
Undefined concepts or

relationships
0.95 0.05 0.25 0.75

Jsdai/OWL mismatch STEP loader warning 0.95 0.05 0.15 0.85

Jsdai/OWL mismatch Incomplete ABox 0.6 0.4 0.1 0.9

Incomplete ABox Empty query result 0.4 0.6 0.1 0.9

Incomplete TBox Empty query result 0.65 0.35 0.05 0.95

Incomplete TBox Feature not justifiable 0.6 0.4 0.3 0.7

Feature not justifiable No explanation provided 0.9 0.1 0.1 0.9

OWL/SWRL mismatch SWRL rule loading warning 0.95 0.05 0.05 0.95

OWL/SWRL mismatch Reasoning termination 0.6 0.4 0.35 0.65

Internal reasoning error Reasoning termination 0.8 0.2 0.15 0.85

Reasoning optimization failed Long time reasoning 0.6 0.4 0.15 0.95

diagnostics. Figure 7.8 shows the network. The network can be easily extended for

other applications by filling different propositions.

In Figure 7.8, the red nodes represent the system faults that may be observed

by users, and the green nodes represent hypotheses that are potential causes for the

system faults. The blue nodes are the intermediate propositions linking causes to their

effects. Table 7.3 shows the conditional probabilities between the nodes. For each

proposition, there exists a corresponding OWL class, which shares the same name with

the node. Descriptions of the propositions are also captured using “rdfs:comment”

property, and are also presented upon the user’s request by clicking the corresponding

133

HTML links.

In the software diagnostic model, MRICN is constructed with conditional proba-

bilities listed in Table 7.3, and is used to perform an interactive diagnostic process.

For example, a user may has observed that the system failed to provide explanations

for the input feature. The following dialog is then carried out as shown in Figure 7.9.

Figure 7.9: The dialog history in the software diagnostic model

In Figure 7.9, the blue texts are produced by the system and the black texts come

from the user. The domain explanations for the propositions can be provided by

clicking the corresponding HTML links, as the red arrow shows.

134

7.6 Usage of OAES

This section briefly discusses the usage of OAES by introducing the user interface of

the software.

Figure 7.10: Internal structure of the F-35 strike fighter

After the ontology (“.owl” file) and the STEP file are loaded into the memory, the

main interface of the software comes out as shown in Figure 7.11. The test file is a

simplified model of the internal structure of a modern fighter aircraft shown in Figure

7.10. The top left panel in the main interface is the Explanation & Query panel

carrying out the explanation and query tasks. The ontology panel in the middle left

displays the rules, classes and properties in the ontology. The bottom left panel is

the console, which displays the system’s running state, or warnings and errors that

have been produced. The visualization of the input part is displayed in the right of

the interface, where JAVA3D technique is used.

The ontology panel includes three tabs: ontology class tab, ontology property

tab and rule tab. The ontology class tab (shown in Figure 7.12) shows the class

hierarchy within the ontology, as well as some basic information, including name,

135

Figure 7.11: The main interface of OAES

136

URL, number of instances and short description. The property tab, as shown in

Figure 7.13, is similar to the class tab, and the rule tab is shown in Figure 7.14.

Figure 7.12: Ontology class tab

Figure 7.13: Ontology property tab

Once the user double clicks a class in the class tab, details of the class are shown in

Figure 7.15. In the class detail panel, the super-classes (top left), the sub-classes (top

middle) and the instances (top right) are displayed on the top, and the description of

the class is shown on the bottom.

In the Explanation & Query panel, shown in Figure 7.16, features and defined

137

Figure 7.14: The SWRL rule tab

Figure 7.15: Class detail panel for face bound

138

concepts are listed on the left. Once the user has selected an item in the list, the

definition and the description of the selected concept are displayed on the right and

bottom respectively. Two buttons sit on the top of the panel, representing two rea-

soning tasks: the left one is used for generating explanation for a face set which

has been recognized as the selected feature, and the right one is used for querying

instances for the selected feature.

Figure 7.16: Explanation & query panel

The explanation here refers to the decision explanation, namely the explanation of

why a face set has been recognized as a particular feature. For example, if a face set

has been recognized as an obround hole and the user wants to know why, he or she

can select the obround hole from the feature list in the reasoning panel, and then

click the “explanation” button. The explanation panel will then appear, as shown in

139

Figure 7.17. In the explanation panel, the description of the selected feature is shown

on the top right. The member faces of the face set that has been recognized as an

obround hole can be inputted at the middle right of the panel. After the face set

has been inputted, the user needs to press the button on the right asking for the

explanation. The visualization of the model with inputted faces highlighted is then

shown on the left, and the explanation is displayed on the bottom right.

Figure 7.17: The explanation panel for obround hole feature

In this case, the system firstly explains why the face set is an obround hole using

the primary recognition rule (as shown in Figure 7.17). The explanation, as Figure

7.18 shows, can then be extended if the user requires further information (the original

SWRL rules are shown in the balloons, and further explanations are displayed subse-

quently in the explanation display area). For example, if the user wants to know why

“ID388” is recognized as a curved hole wall face, he or she can click the correspond-

140

ing HTML link curved hole wall face(ID388) in the first balloon. The explanation

is then extended, as shown in the second part of the explanation. The third part is

generated once the user want to know why ID388 is a hole wall face.

Figure 7.18: The explanation panel for obround hole feature cont’d

Another two example cases of generating explanation are shown in Figure 7.19

and Figure 7.20: one is for explaining a triangular pocket, and the other is for a

regular through slot.

In addition, if the user presses the “query” button in the Explanation & Query

panel with the class concave angular edge selected, a query panel comes out as Figure

7.21 shows. In the query panel, the user can select query tasks on the top left, and

the query result is displayed on the top right. The user can also click each instance

in the query result to get an explanation about why the instance belongs to the class,

141

Figure 7.19: The explanation panel for triangular pocket feature

Figure 7.20: The explanation panel for regular through slot feature

142

which is shown in the bottom of the panel.

Figure 7.21: The query panel for concave angular edge

Finally, the software diagnostic model can be started from the tool menu on the

top of the main interface, and the interface of the model is shown in Figure 7.22.

Taking the example shown in Figure 7.9, the system firstly asks the user to tell what

is the problem by selecting one of the prompt options, as shown in the balloon in

Figure 7.22. After the user tells that the problem is “no explanation provided”,

the system, as Figure 7.23 shows, then replies that the most possible reason for “no

explanation provided” is “incorrect inputted feature”. The dialog history is recorded

on the bottom of the panel. In addition, descriptions (domain explanation) of the

propositions can be accessed by clicking the corresponding HTML link (shown in the

smaller balloon in Figure 7.23).

143

Figure 7.22: Interface of the software diagnostic model

Figure 7.23: Interface of the software diagnostic model cont’d

144

7.7 Summary

In this chapter, the explanation framework has been implemented to generate expla-

nations for AFR systems. A novel AFR explanatory system, OAES, has been thus

developed. OAES focuses on STEP-based AFR systems, and owns an independent

explanatory OWL ontology, which contains all the information needed for generating

explanations.

All of the three types of explanation have been integrated in OAES. For decision

explanation, OAES generates explanations for a recognized feature by giving a clear

and understandable description of the topology of the face set, without referring to

the actual decision making process in the AFR systems. For domain explanations, the

information is captured in the ontology using RDF utility properties, and is presented

to the user upon request. For software diagnostic, MRICN is implemented to diagnose

system failures or software running problems using the probabilistic causal network

presented in Section 7.5. The OAES has been implemented using JAVA, and the

interface has been discussed.

In fact, OAES is simply an application case study used to demonstrates the ex-

planation framework. Other applications can also be considered. For example, a

STEP-based mechanical assembly planning system was proposed in [153]. The sys-

tem represents the product assembly model with STEP, using mainly the entities of

integrated resources and partially the self-defined entities, and is able to plan assembly

sequences using a knowledge-based planning approach, which generates all feasible

assembly sequences of the product through reasoning and decomposition process. The

explanation model for this system will be similar to OAES, except it contains different

145

OWL classes and properties for the self-defined entities, and different rules that are

summarized from the knowledge used for assembly sequence planning. Other applica-

tions, such as a STEP-based process planning System [4] and a product configuration

system , all have the potential for explanation using the framework proposed in this

study.

146

Chapter 8

Conclusion and Future Studies

8.1 Introduction

This chapter concludes the whole work proposed in the thesis, and discusses the

current limitations and corresponding potential future works.

The rest of this chapter is organized as follows: Section 8.2 concludes the thesis;

Section 8.3 presents potential future works; Section 8.4 summarizes the chapter.

8.2 Conclusions

The thesis has proposed an innovative intelligent explanation framework for KBSs.

Different with existing models which are usually built inside a KBS and generate

explanations based on the actual decision making process, in our framework, the ex-

planation model stands outside the KBS and attempts to reconstruct the explanations

for the KBS behaviors by “concocting” as a third party. The knowledge structure and

reasoning methods have thus been optimized particularly for explanation generation

147

within this independent explanation model, so that the quality of explanation has

been improved.

In this thesis, introduction and literature review have been given in Chapter 1 and

Chapter 2. Chapter 3 has given an overview of the framework. Three sub-models,

EKB, DEM and SDM have been included. Technical details of a novel reasoner

BCAR that is used in DEM, and a novel probabilistic network MRICN that is used in

SDM, have been discussed in Chapter 4 and Chapter 5 respectively. The explanation

framework has been demonstrated using a concrete AFR scenario. Backgrounds of

AFR have been introduced in Chapter 6, and a novel AFR explanatory system OAES

has been proposed in Chapter 7.

The major results and contributions of the thesis are summarized as below:

1. The explanation framework has been designed to cover all the three types of

explanation: 1) decision explanation, which helps users understand how a KBS

reached its conclusions; 2) domain explanation, which provides detailed descrip-

tions of the concepts and relationships within the domain; 3) software diagnos-

tic, which diagnoses user observations of unexpected behaviors of the system or

some relevant domain phenomena.

2. The explanation framework contains an independent explanation model that

stands outside the KBS, and generates explanations by producing a justifica-

tion that does not relate to how the decision was actually made. The framework

generally includes three sub-models: 1) EKB, which refers to a separate explana-

tive knowledge base that is constructed as an ontology using OWL and SWRL;

2) DEM, which is used to provide decision explanations, where reasoning issues

148

have been highlighted; SDM, which is used to provide software diagnostics,

where the core activity is AR.

3. OWL and SWRL have been introduced to construct the explanatory ontology

for EKB. The ontology is created in Protege ontology editor, and is saved as a

“.owl” file. Methods for mapping domain knowledge to the ontology have been

discussed in Chapter 3, which can be generally divided into four parts: 1) using

ontology TBox to capture domain concepts and relationships; 2) using RDF

utility properties to capture descriptive information of the domain concepts and

relationships as annotations of relevant classes and properties; 3) using SWRL

rules or OWL ECAs to capture design rules and constraints; 4) using ontology

ABox to capture a particular input instance. Details of the above process have

been discussed in Chapter 7 with a concrete case.

4. BCAR has been developed to efficiently reason through the ontology to generate

explanations. The reasoner mainly focuses on solving the assumption mismatch

problem between OWL ontology and CWA-based information model, and has

achieved good performance in generating explanations by using backward chain-

ing mechanism, as explanation generation is basically a goal-oriented task.

5. MRICN has been developed for SDM. The network draws ideas from the actual

human-human medical diagnostic process, and performs interactive AR using

probabilistic computational methods. OP theory has been integrated into the

network enabling MRICN to “guess” a plausible explanation, despite the ab-

sence of detailed joint probabilistic information. It has been shown that MRICN

is able to interact with users and seek unobserved evidence in order to maximize

149

the fitness of its knowledge structures.

6. The explanation framework has been implemented and demonstrated within a

concrete AFR scenario as OAES, which generates explanations for any AFR

system that takes STEP files (AP203) as inputs. In this case, three types of

explanations are provided as: 1) justification of how a particular feature is

recognized; 2) descriptive information for geometric concepts and relationships

regarding B-rep of solid models; 3) reasons for software unexpected behaviors

while using OAES. In OAES, the “.owl” file, which contains only TBox infor-

mation, is first inputted to the system, and is then instantiated by loading a

STEP file. The user can then input the feature that has been recognized for

explanation. The explanation is presented as HTML text, which allows the

user to get descriptions of concepts or relationships mentioned by clicking the

corresponding HTML links. Once the user finds system errors or unexpected

system behaviors, the software diagnostic panel can be used to assist the user

to find out the reason for the observations.

8.3 Limitations and Future Works

Finally, the current limitations of the explanation framework and corresponding fu-

ture works are listed below.

• DEM only involves simple interactions allowing the user to ask for further de-

tailed explanations. Complex techniques regarding user profile modeling and

context handling are not integrated, so that adaptive explanations are not avail-

150

able in the current stage. In fact, capturing user profile in an ontology is not

difficult. Some works have already been proposed in this area [38] [115]. Once

the user profile is captured, providing adaptive explanations is also possible,

e.g. encode two rule bases or concept descriptions with different depths, and

present them to the user according to the user’s expertise. A fresh reasoning

method, which generates explanations taking account the user profile, may be

needed. Applying this change to the model will be relatively simple due to

the reconstructive explanation method. It offers great flexibility in designing

the system, as we can plan everything we want without considering the actual

decision making process in the KBS.

• BCAR needs to be improved in the following aspects:

– support more OWL constructs: Some of the OWL constructs are not sup-

ported in BCAR, and will result in reasoning errors if they are contained

in the input ontology, such as transitive and symmetric property;

– support more data formats: BCAR can only process “Float”, “Integer”,

“Boolean” and “String” as basic data types. Other data types, such as date

and time which are supported by both OWL and STEP, are not available

in BCAR;

– enrich built-in functions: The current SWRL built-in function library in

BCAR is relatively small. Only few built-in functions can be processed.

Future works in building more built-in functions can greatly improve the

computational capability of BCAR.

151

• Although DEM and SDM are both integrated in the explanation framework,

they are not quite closely related to each other. They are more like two inde-

pendent systems where the only relation between them is that they share the

same explanatory ontology for providing domain explanations. Furthermore,

neither the probabilistic causal relationships in MRICN can be captured in the

OWL ontology, nor BCAR can be applied to reason through the probabilistic

network. Future research addressing these issues, thus, has two stages:

– The first stage is to study how to implement MRICN using OWL con-

structs or SWRL rules, which refers to the research regarding how to put

uncertainty into OWL and SWRL. For OWL, existing related works in-

cludes Probabilistic Description Logics [79] and Bayesian approach based

OWL ontology [29]. For SWRL, a proposal of Fuzzy Extension of SWRL

was given in [119], but the probabilistic extension has never been discussed.

Future work will be along these directions.

– Once MRICN is implemented using OWL and SWRL, there is a need

to develop an ontology reasoner to reason through the ontology under

uncertainty. Very few studies have been proved to be effective and efficient.

Major difficulties include maintaining ontology consistence, dealing with

logic quantifiers, and etc.

• OAES contains a relatively small rule base, so that only basic features can

be justified and explained. Complex features, especially intersecting features,

are not available in the current stage. To improve the performance of OAES,

it is important to define more rules allowing for more complex features to be

152

explained, which is also the key motivation for many existing AFR systems.

8.4 Summary

This chapter has finally concluded the thesis and has discussed several limitations of

the framework and corresponding future research directions. In general, the thesis

has proposed an explanation framework, including theoretical foundation and com-

putational algorithms, and has demonstrated the framework through its application

to AFR systems. The results have shown that the general goal of this study, building

an computational framework for explanation generation in KBSs, has been achieved.

153

Bibliography

[1] P. Achinstein. The Nature of Explanation. Oxford University Press, 1985.

[2] P. Achinstein. Evidence, explanation, and realism: essays in the philosophy of

science. Oxford University Press, 2010.

[3] R. Akerkar and P. Sajja. Knowledge-Based Systems. Jones and Bartlett, 2010.

[4] S. Amaitik and S. Kilic. An intelligent process planning system for prismatic

parts using STEP features. The International Journal of Advanced Manufac-

turing Technology, 31:978–993, 2007.

[5] O. Andersen and G. Vasilakis. Building an ontology of CAD model information.

In Geometric Modelling, Numerical Simulation, and Optimization, pages 11–40.

2007.

[6] C. Angeli. Diagnostic expert systems: from expert’s knowledge to real-time sys-

tems. Advanced Knowledge Based Systems: Model, Application and Research,

1:50–73, 2010.

[7] G. Antoniou and F. Harmelen. A semantic Web primer. MIT Press, 2004.

154

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.

The Description Logic Handbook: Theory, Implementation and Applications.

Cambridge University Press, 2003.

[9] B. R. Babic, N. Nesic, and Z. Miljkovic. A review of automated feature recog-

nition with rule-based pattern recognition. Computers in Industry, 59:321–337,

2008.

[10] J. Balic. Intelligent CAD/CAM systems for CNC programming - an overview.

Advances in Production Engineering & Management, 1:13–22, 2006.

[11] M. B. Bassat, R. W. Carlson, V. K. Puri, M. D. Davenport, M. D. Schriver,

M. Latif, R. Smith, L. D. Portigal, E. H. Lipnick, and M. H. Weil. Pattern-

based interactive diagnosis of multiple disorders: the MEDAS system. IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-2:148–160,

1980.

[12] R. D. Beer. A dynamical systems perspective on agent-environment interaction.

Artificial Intelligence, 72:173–215, 1995.

[13] R. D. Beer. The dynamics of adaptive behavior: a research program. Robotics

and Autonomous Systems, 20:257–289, 1997.

[14] D. Benyon and D. Murray. Applying user modeling to human-computer inter-

action design. Artificial Intelligence Review, 7:199–225, 1993.

[15] M. P. Bhandarkar and R. Nagi. STEP-based feature extraction from STEP

geometry for agile manufacturing. Computers in Industry, 41:3–24, 2000.

155

[16] J. Bock, P. Haase, Q. Ji, and R. Volz. Benchmarking OWL reasoners. In

Proceedings of the ARea2008 Workshop, 2008.

[17] Z. Bofeng, W. Na, W. Gengfeng, and L. Sheng. Research on a personalized

expert system explanation method based on fuzzy user model. In Proceedings

of the Fifth World Congress on Intelligent Control and Automation, pages 3996–

4000, 2004.

[18] T. Bylander and B. Chandrasekaran. Generic tasks for knowledge-based rea-

soning: the right level of abstraction for knowledge acquisition. International

Journal of Man-Machine Studies, 26:231–243, 1987.

[19] S. Carberry. Modeling the user’s plans and goals. Computational Linguistics,

14:23–37, 1988.

[20] A. Castro and V. Miranda. Knowledge discovery in neural networks with appli-

cation to transformer failure diagnosis. IEEE Transactions on Power Systems,

20:717–724, 2005.

[21] A. Cawsey. Explanation and interaction: the computer generation of explana-

tory dialogues. MIT Press, 1992.

[22] A. Cawsey. Developing an explanation component for a knowledge-based sys-

tem: discussion. Expert Systems with Applications, 8:527–531, 1995.

[23] B. Chandrasekaran and S. Mittal. Deep versus compiled knowledge approaches

to diagnostic problem-solving. International Journal of Man-Machine Studies,

19:425–436, 1983.

156

[24] B. Chandrasekaran, M. C. Tanner, and J. R. Josephson. Explaining control

strategies in problem solving. IEEE Expert: Intelligent Systems and Their

Applications, 4:9–24, 1989.

[25] E. Charniak and S. E. Shimony. Cost-based abduction and MAP explanation.

Artificial Intelligence, 66:345–374, 1994.

[26] W. J. Clancey and R. Letsinger. NEOMYCIN: reconfiguring a rule-based expert

system for application to teaching. Technical report, Stanford, CA, USA, 1982.

[27] L. M. de Campos, J. A. Gamez, and S. Moral. Simplifying explanations in

bayesian belief networks. International Journal of Uncertainty, Fuzziness and

KnowledgeBased Systems, 2:167–196, 1994.

[28] L. Ding and Y. Yue. Novel ANN-based feature recognition incorporating design

by features. Computers in Industry, 55:192–222, 2004.

[29] Z. Ding, Y. Peng, and R. Pan. A bayesian approach to uncertainty modeling

in OWL ontology. In Proceedings of the International Conference on Advances

in Intelligent Systems - Theory and Applications, pages 9–13, 2004.

[30] B. Falcidieno and F. Giannini. Automatic recognition and representation of

shape-based features in a geometric modeling system. Computer Vision, Graph-

ics, and Image Processing, 48:93–123, 1989.

[31] S. Fei and X. Zhang. Fault diagnosis of power transformer based on sup-

port vector machine with genetic algorithm. Expert Systems with Applications,

36(8):11352 – 11357, 2009.

157

[32] A. Fiedler. P.REX: an interactive proof explainer. In Proceedings of the First

International Joint Conference on Automated Reasoning, pages 416–420, 2001.

[33] T. Finin and G. Morris. Abductive reasoning in multiple fault diagnosis. Arti-

ficial Intelligence Review, 3:129–158, 1989.

[34] B. Fraassen. The scientific image. Clarendon Press, 1980.

[35] C. Genest and J. V. Zidek. Combining probability distributions: a critique and

an annotated bibliography. Statistical Science, 1:114–135, 1986.

[36] S. A. Ghafour, P. Ghodous, B. Shariat, and E. Perna. Towards an intelligent

CAD models sharing based on semantic web technologies. In Proceedings of the

15th ISPE International Conference on Concurrent Engineering, pages 195–203,

2008.

[37] A. Glass, D. L. McGuinness, and M. Wolverton. Toward establishing trust in

adaptive agents. In Proceedings of the 13th international conference on Intelli-

gent user interfaces, pages 227–236, 2008.

[38] M. Golemati, A. Katifori, C. Vassilakis, G. Lepouras, and C. Halatsis. Creating

an ontology for the user profile: Method and applications. In Proceedings of the

First International Conference on Research Challenges in Information Science,

pages 407–412, 2007.

[39] S. Gregor and I. Benbasat. Explanations from intelligent systems: theoretical

foundations and implications for practice. MIS Quarterly, 23:497–530, 1999.

158

[40] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knolwedge base

systems. Journal of Web Semantics, 3:158–182, 2005.

[41] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The RacerPro knowledge

representation and reasoning system. http://www.semantic-web-journal.

net, 2011.

[42] J. Han, M. Kang, and H. Choi. STEP-based feature recognition for manufac-

turing cost optimization. Computer-Aided Design, 33:671–686, 2001.

[43] J. Han, M. Pratt, and W. C. Regli. Manufacturing feature recognition from

solid models: a status report. IEEE Transactions on Robotics and Automation,

16:782–796, 2000.

[44] J. Han and A. A. Requicha. Integration of feature based design and feature

recognition. Computer-Aided Design, 29:393–403, 1997.

[45] M. Harbers, K. van den Bosch, and J. J. Meyer. Design and evaluation of

explainable BDI agents. In Proceedings of the 2010 IEEE/WIC/ACM Interna-

tional Conference on Web Intelligence and Intelligent Agent Technology, pages

125–132, 2010.

[46] D. W. Hasling, W. J. Clancey, and G. Rennels. Strategic explanations for a

diagnostic consultation system. International Journal of Man-Machine Studies,

20:3–19, 1984.

[47] S. R. Haynes. Explanation in Information Systems: A Design Rationale Ap-

proach. PhD thesis, London School of Economics and Political Science, 2001.

159

[48] S. R. Haynes, M. A. Cohen, and F. E. Ritter. Designs for explaining intelligent

agents. International Journal of Human-Computer Studies, 67:90–110, 2009.

[49] D. Heckerman, J. S. Breese, and K. Rommelse. Decision-theoretic troubleshoot-

ing. Communications of the ACM, 38:49–57, 1995.

[50] C. G. Hempel and P. Oppenheim. Studies in the logic of explanation. Philosophy

of Science, 15:135–175, 1948.

[51] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining collaborative filtering

recommendations. In Proceedings of the 2000 ACM conference on Computer

supported cooperative work, pages 241–250. ACM, 2000.

[52] J. Herrmann, M. Kloth, and F. Feldkamp. The role of explanations in an

intelligent assistant system. Artificial Intelligence in Engineering, 12:107 – 126,

1998.

[53] Hewlett-Packard Development Company. JENA - a semantic web framework

for java. http://jena.sourceforge.net/index.html, 2002.

[54] G. E. Hinton. Products of experts. In Proceedings of the Ninth International

Conference on Artificual Neural Networks, pages 1–6, 1999.

[55] J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. Martin. Interpretation as

abduction. Artificial Intelligence, 63:69 – 142, 1993.

[56] M. Horridge, S. Jupp, G. Moulton, A. Rector, R. Stevens, and C. Wroe. A prac-

tical guide to building OWL ontologies using protege 4 and co-ode tools edition

160

1.1. http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/,

2008.

[57] I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL rules language.

In Proceedings of the Thirteenth International World Wide Web Conference,

pages 723–731, 2004.

[58] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A semantic web rule language combining OWL and RuleML. W3C

member submission, 2004.

[59] U. Hustadt. Reducing SHIQ- description logic to disjunctive datalog programs.

In Proceedings of the Ninth International Conference on the Principles ofKnowl-

edge Representation and Reasoning, pages 152–162, 2004.

[60] M. Jang and J. chan Sohn. Bossam: An extended rule engine for OWL. Rules

and Rule Markup Languages for the Semantic Web, 3323/2004:128–138, 2004.

[61] W. L. Johnson. Agents that learn to explain themselves. In Proceedings of the

National Conference on Artificial Intelligence, pages 1257–1263, 1994.

[62] T. J. Jones, C. A. Reidsema, and A. Smith. Automated feature recognition

system for supporting conceptual engineering design. KES Journal, 10:477–

492, 2006.

[63] J. R. Josephson and S. G. Josephson. Abductive Inference. Cambridge Univer-

sity Press, 1994.

161

[64] S. Joshi and T. C. Chang. Graph-based heuristics for recognition of machined

features from a 3D solid model. Computer-Aided Design, 20:58–66, 1988.

[65] J. Kalagnanam and M. Henrion. A comparison of decision alaysis and expert

rules for sequential diagnosis. In Proceedings of the Fourth Annual Conference

on Uncertainty in Artificial Intelligence, pages 271–282, 1990.

[66] T. R. Kannan and M. S. Shunmugam. Processing of 3D sheet metal compo-

nents in STEP AP-203 format. Part I: feature recognition system. International

Journal of Production Research, 47:941–964, 2009.

[67] R. Kass. Building a user model implicitly from a cooperative advisory dialog.

User Modeling and User-Adapted Interaction, 1:203–258, 1991.

[68] J. Kay. Reusable tools for user modelling. Artificial Intelligence Review, 7:241–

251, 1993.

[69] F. Keil and R. Wilson. Explanation and cognition. Bradford Books. MIT Press,

2000.

[70] F. C. Keil. Explanation and understanding. Annual Review of Psychology,

57:227–254, 2006.

[71] K. Y. Kim, D. G. Manley, and H. Yang. Ontology-based assembly design and

information sharing for collaborative product development. Computer-Aided

Design, 38:1233–1250, 2006.

[72] Y. Kim. Recognition of form features using convex decomposition. Computer-

Aided Design, 24:461 – 476, 1992.

162

[73] P. Kitcher and W. Salmon. Van Fraassen on explanation. The Journal of

Philosophy, 84:315–330, 1987.

[74] S. I. Krima, R. Barbau, X. Fiorentini, R. Sudarsan, and R. D. Sriram. On-

toSTEP: OWL-DL ontology for STEP. Technical report, NIST Interagency,

2009.

[75] C. Lacave and F. J. Diez. A review of explanation methods for heuristic expert

systems. Knowledge Engineering Review, 19:133–146, 2004.

[76] Z. Li and B. D’Ambrosio. An efficient approach for finding the mpe in belief

networks. In Proceedings of the Ninth international conference on Uncertainty

in artificial intelligence, pages 342–349, 1993.

[77] C. Lin, J.-M. Ling, and C.-L. Huang. An expert system for transformer fault

diagnosis using dissolved gas analysis. IEEE Transactions on Power Delivery,

8:231–238, 1993.

[78] H. L. Lockett and M. D. Guenov. Graph-based feature recognition for injection

moulding based on a mid-surface approach. Computer-Aided Design, 37:251–

262, 2005.

[79] T. Lukasiewicz. Expressive probabilistic description logics. Artificial Intelli-

gence, 172:852–883, 2008.

[80] M. Marquez, R. Gill, and A. White. Application of neural networks in feature

recognition of mould reinforced plastic parts. Concurrent Engineering, 7:115–

122, 1999.

163

[81] G. R. Mayes. Theories of explanation. In Internet Encyclopedia of Philosophy.

2001.

[82] D. L. Mcguinness and F. van Harmelen. OWL web ontology language overview.

W3C recommendation, W3C, 2004.

[83] M. F. McTear. User modelling for adaptive computer systems: a survey of

recent developments. Artificial Intelligence Review, 7:157–184, 1993.

[84] J. Mei and Paslaru. Reasoning paradigms for SWRL-enabled ontologies. In

Proceedings of International Workshop on Protege with Rules, 2005.

[85] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure. Ontological user pro-

filing in recommender systems. ACM Transactions on Information and System

Security, 22:54–88, 2004.

[86] T. Minakawa, Y. Ichikawa, M. Kunugi, K. Shimada, N. Wada, and M. Ut-

sunomiya. Development and implementation of a power system fault diagnosis

expert system. IEEE Transactions on Power Systems, 10:932–940, 1995.

[87] V. O. Mittal and C. L. Paris. Generating explanations in context: The system

perspective. Expert Systems with Applications, 8:491–503, 1995.

[88] J. D. Moore. A reactive approach to explanation. In Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence, pages 1504–

1510, 1989.

164

[89] J. D. Moore and W. R. Swartout. Pointing: A way toward explanation dia-

logue. In Proceedings of the Eighth National Conference on Artificial Intelli-

gence, pages 457–464, 1990.

[90] B. Motik and U. Sattler. A comparison of reasoning techniques for querying

large description logic aboxes. In Proceedings of the Thirteenth International

Conference on Logic for Programming, Artificial Intelligence, and Reasoning,

pages 227–241, 2006.

[91] B. Moulin, H. Irandoust, M. Bélanger, and G. Desbordes. Explanation and

argumentation capabilities: Towards the creation of more persuasive agents.

Artificial Intelligence Review, 17:169–222, 2002.

[92] R. Neches, W. Swartout, and J. Moore. Enhanced maintenance and expla-

nation of expert systems through explicit models of their development. IEEE

Transactions on Software Engineering, SE-11:1337 – 1351, 1985.

[93] D. Nilsson. An efficient algorithm for finding the m most probable configurations

in probabilistic expert systems. Statistics and Computing, 8:159–173, 1998.

[94] M. O’connor, H. Knublauch, S. Tu, B. Grosof, M. Dean, W. Grosso, and

M. Musen. Supporting rule system interoperability on the semantic web with

SWRL. In Proceedings of the Fourth International Semantic Web Conference,

pages 974–986, 2005.

[95] A. O’Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite, D. J.

Jenkinson, J. E. Oakley, and T. Rakow. Uncertain Judgements: Eliciting Expert

Probabilities. John Wiley, 2006.

165

[96] N. Ozturk and F. Ozturk. Neural network based non-standard feature recogni-

tion to integrate CAD and CAM. Computers in Industry, 45:123–135, 2001.

[97] C. L. Paris. Tailoring object descriptions to a user’s level of expertise. Compu-

tational Linguistics, 14:64–78, 1988.

[98] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible in-

ference. The Morgan Kaufmann series in representation and reasoning. Morgan

Kaufmann Publishers, 1988.

[99] J. Pearl. Causality: models, reasoning, and inference. Cambridge University

Press, 2000.

[100] H. E. Pople. On the mechanization of abductive logic. In Proceedings of the

Third International Joint Conference on Artificial intelligence, pages 147–152,

1973.

[101] S. Prabhakar and M. R. Henderson. Automatic form-feature recognition using

neural-network-based techniques on boundary representations of solid models.

Computer-Aided Design, 24:381–393, 1992.

[102] M. J. Pratt. Introduction to ISO 10303: the STEP standard for product data ex-

change. Journal of Computing and Information Science in Engineering, 1:102–

103, 2001.

[103] V. Rameshbabu and M. S. Shunmugam. Hybrid feature recognition method for

setup planning from STEP AP-203. Robotics and Computer-Integrated Manu-

facturing, 25:393–408, 2009.

166

[104] E. L. Rissland, E. M. Valcarce, and K. D. Ashley. Explaining and Arguing

with Examples. In Proceedings of the Fourth National Conference on Artificial

Intelligence, pages 288–94, 1984.

[105] P. S. Sajja. Knowledge-based systems for socio-economic rural development.

PhD thesis, Sardar Patel University, 2000.

[106] H. Sakurai. Volume decomposition and feature recognition: part 1 - polyhedral

objects. Computer-Aided Design, 27:833–843, 1995.

[107] H. Sakurai. Volume decomposition and feature recognition: part 2 – curved

objects. Computer-Aided Design, 28:519–537, 1996.

[108] W. Salmon. Scientific explanation and the causal structure of the world. Prince-

ton University Press, 1984.

[109] W. Salmon. Four Decades of Scientific Explanation. University of Pittsburgh

Press, 2006.

[110] W. Salmon, R. Jeffrey, and J. Greeno. Statistical Explanation & Statistical

Relevance. University of Pittsburgh Press, 1971.

[111] D. Schenck and P. Wilson. Information modeling: the EXPRESS way. Oxford

University Press, 1994.

[112] SCRA. STEP application handbook ISO 10303 version 3. http://www.uspro.

org/, 2006.

167

[113] B. Seroussi and J. Golmard. An algorithm directly finding the k most proba-

ble configurations in bayesian networks. International Journal of Approximate

Reasoning, 11:205 – 233, 1994.

[114] E. Shortliffe. Computer-based medical consultations, MYCIN. Artificial intelli-

gence series. Elsevier, 1976.

[115] A. Sieg, B. Mobasher, and R. Burke. Ontological user profiles for representing

context in web search. In Proceedings of the 2007 IEEE/WIC/ACM Inter-

national Conferences on Web Intelligence and Intelligent Agent Technology -

Workshops, pages 91–94, 2007.

[116] E. Sirin and B. Parsia. Optimizations for answering conjunctive abox queries:

first results. In Proceedings of the Inernational Description Logics Workshop,

pages 215–222, 2006.

[117] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical

OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World

Wide Web, 5:51–53, 2007.

[118] N. Sriwachirawat and S. Auwatanamongkol. On approximating K-MPE of

bayesian networks using genetic algorithm. In Proceedings of the 2006 IEEE

Conference on Cybernetics and Intelligent Systems, pages 1–6, 2006.

[119] G. Stamou, J. Z. Pan, V. Tzouzavas, and I. Horrocks. A fuzzy extension of

SWRL. http://www.w3.org/2004/12/rules-ws/paper/52/, 2004.

[120] I. Stroud. Boundary representation modelling techniques. Springer, 2006.

168

[121] W. R. Swartout. XPLAIN: a system for creating and explaining expert con-

sulting programs. Artificial Intelligence, 21:285–325, 1983.

[122] P. Thagard. Computational models in the philosophy of science. In Proceedings

of the Biennial Meeting of the Philosophy of Science Association, pages 329–

335, 1986.

[123] P. Thagard. Conceptual revolutions. Princeton paperbacks. Princeton Univer-

sity Press, 1992.

[124] P. Thagard. Computational Philosophy of Science. Bradford Books. MIT Press,

1993.

[125] P. Thagard. Coherence in Thought and Action. Life and Mind: Philosophical

Issues in Biology and Psychology. MIT Press, 2002.

[126] P. Thagard. Causal inference in legal decision making: Explanatory coherence

vs. bayesian networks. Applied Artificial Intelligence, 18:231–249, 2004.

[127] P. Thagard. Cognitive science. In The Stanford Encyclopedia of Philosophy.

2011.

[128] P. Thagard and A. Litt. Models of scientific explanation. In The Cambridge

handbook of computational cognitive modeling. Cambridge University Press,

2006.

[129] N. Tintarev. Explaining recommendations. In User Modeling 2007. Springer

Berlin, 2007.

169

[130] N. Tintarev. Explanations of recommendations. In Proceedings of the 2007

ACM conference on Recommender systems, pages 203–206, 2007.

[131] N. Tintarev and J. Masthoff. A survey of explanations in recommender sys-

tems. In Proceedings of the 23rd International Conference on Data Engineering

Workshop, pages 801–810, 2007.

[132] X. Tong and J. Ang. Explaining control strategies in second generation expert

systems. IEEE Transactions on Systems, Man and Cybernetics, 25:1483 –1490,

1995.

[133] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System descrip-

tion. In Proceedings of the Third International Joint Conference on Automated

Reasoning, pages 292–297, 2006.

[134] E. Turban. Decision support and expert systems (4th ed.): management support

systems. Prentice-Hall, Inc., 1995.

[135] M. van Lent, W. Fisher, and M. Mancuso. An explainable artificial intelligence

system for small-unit tactical behavior. In Proceedings of the 16th conference

on Innovative applications of artifical intelligence, pages 900–907, 2004.

[136] W. van Melle. MYCIN: a knowledge-based consultation program for infectious

disease diagnosis. International Journal of Man-Machine Studies, 10:313 – 322,

1978.

170

[137] J. H. Vandenbrande and A. A. G. Requicha. Spatial reasoning for the auto-

matic recognition of machinable features in solid models. IEEE Transaction on

Pattern Analysis and Machine Intelligence, 15:1269–1285, 1993.

[138] P. K. Venuvinod and S. Y. Wong. A graph-based expert system approach to

geometric feature recognition. Jounal of Intelligent Manufacturing, 6:155–162,

1995.

[139] J. Vig, S. Sen, and J. Riedl. TAGEXPLANATIONS: explaining recommenda-

tions using tags. In Proceedings of the 14th international conference on Intelli-

gent user interfaces, pages 47–56, 2009.

[140] D. Walton. Abductive reasoning. University of Alabama Press, 2004.

[141] Z. Wang, Y. Liu, and P. Griffin. A combined ANN and expert system tool for

transformer fault diagnosis. IEEE Transactions on Power Delivery, 13:1224–

1229, 1998.

[142] P. Wegner. Why interaction is more powerful than algorithms. Communications

of the ACM, 40:80–91, 1997.

[143] M. R. Wick. Reconstructive explanation: Explanation as complex problem

solving. In Proceedings of the 11th International Joint Conference on Artificial

Intelligence, 1989.

[144] M. R. Wick, P. Dutta, T. Wineinger, and J. Conner. Reconstructive explana-

tion: A case study in integral calculus. Expert Systems with Applications, 8:463

– 473, 1995.

171

[145] M. R. Wick and W. B. Thompson. Reconstructive expert system explanation.

Artificial Intelligence, 54:33 – 70, 1992.

[146] T. C. Woo. Feature extraction by volume decomposition. In Conference on

CAD/CAM Technology in Mechanical Engineering. MIT, 1982.

[147] J. Woodward. Scientific explanation. In The Stanford Encyclopedia of Philos-

ophy. Winter 2011 edition, 2011.

[148] D. Wu. Active acquisition of user models: Implications for decision-theoretic

dialog planning and plan recognition. User Modeling and User-Adapted Inter-

action, 1:149–172, 1991.

[149] D. Yang, M. Dong, and R. Miao. Development of a product configuration

system with an ontology-based approach. Computer-Aided Design, 40:863–878,

2008.

[150] Z. Yongli, H. Limin, and L. Jinling. Bayesian networks-based approach for

power systems fault diagnosis. IEEE Transactions on Power Delivery, 21:634

– 639, 2006.

[151] C. Yuan, H. Lim, and T. C. Lu. Most relevant explanation in bayesian networks.

Journal of Artificial Intelligence Research, 42:309–352, 2011.

[152] C. Yuan and T. C. Lu. Finding explanations in bayesian networks. In Proceed-

ings of the 18th International Workshop on Principles of Diagnosis, 2007.

172

[153] X. F. Zha. Planning for STEP-based electro-mechanical assemblies: an inte-

grated approach. International Journal of Computer Integrated Manufacturing,

17:305–326, 2004.

[154] H. L. Zhang, C. V. der Velden, X. Yu, C. Bil, T. Jones, and I. Fieldhouse.

Developing a rule engine for automated feature recognition from CAD models.

In Proceedings of the 35th Annual Conference of IEEE on Industrial Electronics,

pages 3925–3930, 2009.

[155] Y. Zhang, X. Ding, Y. Liu, and P. Griffin. An artificial neural network approach

to transformer fault diagnosis. IEEE Transactions on Power Delivery, 11:1836–

1841, 1996.

[156] W. Zhao and J. K. Liu. OWL/SWRL representation methodology for

EXPRESS-driven product information model. Computers in Industry, 59:590–

600, 2008.

[157] G. Zheng and Z. Yongli. Research of transformer fault diagnosis based on

bayesian network classifiers. In Proceedings of the second International Confer-

ence on Computer Design and Applications, pages 382–385, 2010.

173

Appendix A

Recognition rules in OAES

A.1 Pocket Feature Family

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

has member face(?x, ?d) ∧ triangular pocket bottom face(?a) ∧ pocket wall face(?b) ∧

pocket wall face(?c) ∧ pocket wall face(?d) ∧ face has neighbor(?a, ?b) ∧

face has neighbor(?a, ?c) ∧ face has neighbor(?a, ?d) ∧ face has neighbor(?b, ?c) ∧

face has neighbor(?c, ?d) ∧ face has neighbor(?d, ?b)→ triangular pocket(?x)

Readable format: The face set is a triangular pocket because: the face set contains

one triangular pocket bottom face (?a) and three pocket wall faces (?b, ?c, ?d), while

the three wall faces are circularly connected with each other and are all connected

with the bottom face.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

has member face(?x, ?d) ∧ has member face(?x, ?e) ∧ quadrangular pocket bottom face(?a) ∧

pocket wall face(?b) ∧ pocket wall face(?c) ∧ pocket wall face(?d) ∧ pocket wall face(?e) ∧

174

face has neighbor(?a, ?b) ∧ face has neighbor(?a, ?c) ∧ face has neighbor(?a, ?d) ∧

face has neighbor(?a, ?e) ∧ face has neighbor(?b, ?c) ∧ face has neighbor(?c, ?d) ∧

face has neighbor(?d, ?e) ∧ face has neighbor(?d, ?e)→ quadrangular pocket(?x)

Readable format: The face set is a quadrangular pocket because: the face set

contains one quadrangular pocket bottom face (?a) and four pocket wall faces (?b,

?c, ?d), while the four wall faces are circularly connected with each other and are all

connected with the bottom face.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

has member face(?x, ?d) ∧ has member face(?x, ?e) ∧ pocket bottom face(?a) ∧

plane pocket wall face(?b) ∧ plane pocket wall face(?d) ∧ curved pocket wall face(?c) ∧

curved pocket wall face(?e) ∧ face has neighbor(?a, ?b) ∧ face has neighbor(?a, ?c) ∧

face has neighbor(?a, ?d) ∧ face has neighbor(?a, ?e) ∧ face has neighbor(?b, ?c) ∧

face has neighbor(?c, ?d) ∧ face has neighbor(?d, ?e) ∧ face has neighbor(?d, ?e)→

Obround pocket(?x)

Readable format: The face set is an obround pocket because: the face set con-

tains one pocket bottom face (?a), two plane pocket wall faces (?b, ?d) and two

curved pocket wall faces (?c, ?e), while the wall faces are connected with each other

alternatively and are all connected with the bottom face.

face ⊓ ∀face has edge.concave angular edge ≡ pocket bottom face;

internally translated to:

face(?x) ∧ ∀?y(face has edge(?x, ?y) ∧ concave angular edge(?y))→ pocket bottom face;

175

Readable format: ?x is a pocket bottom face because: ?x is a face whose edges

(alternatives of ?y) are all concave angular edge.

triangular face(?x) ∧ pocket bottom face(?x)→ triangular pocket bootom face(?x)

Readable format: ?x is a triangular pocket bottom face because: ?x is a triangu-

lar face as well as a pocket bottom face.

quadrangular face(?x) ∧ pocket bottom face(?x)→ quadrangular pocket bootom face(?x)

Readable format: ?x is a quadrangular pocket bottom face because: ?x is a quad-

rangular face as well as a pocket bottom face.

face⊓ = 1face has neighbor.pocket bottom face ≡ pocket wall face;

internally translated to:

face(?x) ∧ (?y = 1)(face has neighbor(?x, ?y) ∧ pocket bottom face(?y))→ pocket wall face(?x)

Readable format: ?x is a pocket wall face because: ?x is a face and only one of the

neighbors (?y) of ?x is pocket bottom face.

pocket wall face(?x) ∧ face surface has face geometry(?x, ?y) ∧ plane(?y)→

plane pocket wall face(?x)

176

Readable format: ?x is a plane pocket wall face because: ?x is a pocket wall face

which locates on a plane surface.

pocket wall face(?x) ∧ face surface has face geometry(?x, ?y) ∧ cylindrical surface(?y)→

curved pocket wall face(?x)

Readable format: ?x is a curved pocket wall face because: ?x is a pocket wall face

which locates on a cylindrical surface.

A.2 Hole Feature Family

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

hole wall face(?a) ∧ hole wall face(?b) ∧ hole wall face(?c) ∧ face has neighbor(?a, ?b) ∧

face has neighbor(?b, ?c) ∧ face has neighbor(?c, ?a)→ triangular hole(?x)

Readable format: The face set is a triangular hole because: the face set contains

three hole wall faces (?a, ?b, ?c), while the three wall faces are circularly connected

with each other.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

face has face(?x, ?d) ∧ hole wall face(?a) ∧ hole wall face(?b) ∧ hole wall face(?c) ∧

hole wall face(?d) ∧ face has neighbor(?a, ?b) ∧ face has neighbor(?b, ?c) ∧

face has neighbor(?c, ?d) ∧ face has neighbor(?d, ?a)→ quadrangular hole(?x)

Readable format: The face set is a quadrangular hole because: the face set contains

four hole wall faces (?a, ?b, ?c, ?d), while the four wall faces are circularly connected

with each other.

177

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

face has face(?x, ?d) ∧ plane hole wall face(?a) ∧ curved hole wall face(?b) ∧

plane hole wall face(?c) ∧ curved hole wall face(?d) ∧ face has neighbor(?a, ?b) ∧

face has neighbor(?b, ?c) ∧ face has neighbor(?c, ?d) ∧ face has neighbor(?d, ?a)→

obround hole(?x)

Readable format: The face set is an obround hole because: the face set contains

two plane hole wall faces (?a, ?c) and two curved hole wall face (?b, ?d), and the two

types of wall faces are connected with each other alternatively.

face(?x) ∧ face inner bound(?m) ∧ face inner bound(?n) ∧ face has edge(?x, ?y) ∧

face has edge(?x, ?z) ∧ face bound has edge(?m, ?y) ∧ face bound has edge(?n, ?z) ∧

differentFrom(?m, ?n) ∧ differentFrom(?y, ?z)→ hole wall face(?x)

Readable format: ?x is a hole wall face because: it is a face which has two different

edges ?y and ?z, and the two edges belong to two different face inner bound ?m and

?n respectively.

hole wall face(?x) ∧ face surface has face geometry(?x, ?y) ∧ plane(?y)→

plane hole wall face(?x)

Readable format: ?x is a plane hole wall face because: ?x is a hole wall face which

locates on a plane surface.

hole wall face(?x) ∧ face surface has face geometry(?x, ?y) ∧ cylindrical surface(?y)→

curved hole wall face(?x)

178

Readable format: ?x is a curved hole wall face because: ?x is a hole wall face which

locates on a cylindrical surface.

A.3 Blind Step Feature Family

face set(?x)∧has member face(?x, ?a)∧has member face(?x, ?b)∧ blind step bottom face(?a)∧

plane blind step wall face(?b) ∧ face has concave neighbor(?a, ?b)→ chamfered blind step(?x)

Readable format: The face set is a chamfered blind step because: the face set

contains one blind step bottom face (?a) and one plane blind step wall face (?b), and

the two faces are concavely connected with each other.

face set(?x)∧has member face(?x, ?a)∧has member face(?x, ?b)∧ blind step bottom face(?a)∧

curved blind step wall face(?b) ∧ face has concave neighbor(?a, ?b)→ circular blind step(?x)

Readable format: The face set is a circular blind step because: the face set con-

tains one blind step bottom face (?a) and one curved blind step wall face (?b), and

the two faces are concavely connected with each other.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

blind step bottom face(?a) ∧ plane blind step wall face(?b) ∧ plane blind step wall face(?c) ∧

face has concave neighbor(?a, ?b) ∧ face has concave neighbor(?a, ?c) ∧

face concave has neighbor(?b, ?c)→ quadrangular blind step(?x)

Readable format: The face set is a quadrangular blind step because: the face set

contains one blind step bottom face (?a) and two plane blind step wall face (?b, ?c),

and the three faces are all concavely connected with each other.

179

face(?x) ∧ (face has convex neighbor = 2)(?x, ?y) ∧ face has convex neighbor(?x, ?m) ∧

face has convex neighbor(?x, ?n) ∧ face has convex neighbor(?m, ?n)→

blind step bottom face(?x)

Readable format: ?x is a blind step bottom face because: ?x is a face which has

exactly two convex neighbors, and these two neighbor faces connect with each other

in a convex angle.

face⊓ = 1face has concave neighbor.blind step bottom face ≡ blind slot wall face;

internally translated to:

face(?x) ∧ (?y = 1)(face has concave neighbor(?x, ?y) ∧ blind step bottom face(?y))→

blind slot wall face(?x)

Readable format: ?x is a blind step wall face because: ?x is a face which is con-

cavely connected with one blind step bottom face ?y only.

blind slot wall face(?x) ∧ face surface has face geometry(?x, ?y) ∧ plane(?y)→

plane blind slot wall face(?x)

Readable format: ?x is a plane blind slot wall face because: ?x is a blind slot wall face

which locates on a plane surface.

blind slot wall face(?x) ∧ face surface has face geometry(?x, ?y) ∧ cylindrical surface(?y)→

curved blind slot wall face(?x)

Readable format: ?x is a curved blind slot wall face because: ?x is a blind slot wall face(?x)

which locates on a cylindrical surface.

180

A.4 Through Step Feature Family

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧

through step bottom face(?a)∧through step wall face(?b)∧face has concave neighbor(?a, ?b)→

regular through step(?x)

Readable format: The face set is a regular through step because: the face set con-

tains one through step bottom face (?a) and one through step wall face (?b), and the

two faces are connected with each other.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

through step bottom face(?a) ∧ through step wall face(?b) ∧ through step wall face(?c) ∧

face has neighbor(?a, ?b) ∧ face has neighbor(?a, ?c) ∧ face has concave neighbor(?b, ?c)→

2side concave through step

Readable format: The face set is a 2side concave through step because: the face set

contains one through step bottom face (?a) and two through step wall faces (?b, ?c),

while all the faces are connected with each other and the two wall faces are concavely

connected.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

through step bottom face(?a) ∧ through step wall face(?b) ∧ through step wall face(?c) ∧

face has neighbor(?a, ?b) ∧ face has neighbor(?a, ?c) ∧ face has convex neighbor(?b, ?c)→

2side convex through step

Readable format: The face set is a 2side convex through step because: the face set

contains one through step bottom face (?a) and two through step wall faces (?b, ?c),

181

while all the faces are connected with each other and the two wall faces are convexly

connected.

face(?x) ∧ (face has convex neighbor = 3)(?x, ?y) ∧ face has convex neighbor(?x, ?a) ∧

face has convex neighbor(?x, ?b) ∧ face has convex neighbor(?x, ?c) ∧

face has convex neighbor(?a, ?b) ∧ face has convex neighbor(?b, ?c) ∧ swrlb :

opposite direction check(?a, ?c)→ through step bottom face(?x)

Readable format: ?x is a through step bottom face because: ?x is a face which has

exactly three convex neighbors ?a, ?b and ?c, and the three neighbor faces convexly

connect with each other in series while two side faces ?a and ?c have opposite surface

direction.

face⊓ = 1face has concave neighbor.through step bottom face ≡ through step wall face;

internally translated to:

face(?x) ∧ (?y = 1)(face has concave neighbor(?x, ?y) ∧ through step bottom face(?y))→

through step wall face(?x)

Readable format: ?x is a through step wall face because: ?x is a face which is

concavely connected with one through step bottom face ?y only.

A.5 Blind Slot Feature Family

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

has member face(?x, ?d) ∧ blind slot bottom face(?a) ∧ blind slot wall face(?b) ∧

182

blind slot wall face(?c) ∧ blind slot wall face(?d) ∧ face has neighbor(?a, ?b) ∧

face has neighbor(?a, ?c) ∧ face has neighbor(?a, ?d) ∧ face has neighbor(?b, ?c) ∧

face has neighbor(?c, ?d)→ regular blind slot(?x)

Readable format: The face set is a regular blind slot because: the face set contains

one blind slot bottom face(?a) and three blind slot wall face (?b, ?c, ?d), while the

three wall faces are connected with each other and are all connected with the bottom

face.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

has member face(?x, ?d) ∧ blind slot bottom face(?a) ∧ plane blind slot wall face(?b) ∧

curved blind slot wall face(?c) ∧ plane blind slot wall face(?d) ∧ face has neighbor(?a, ?b) ∧

face has neighbor(?a, ?c) ∧ face has neighbor(?a, ?d) ∧ face has neighbor(?b, ?c) ∧

face has neighbor(?c, ?d)→ vertical obround blind slot(?x)

Readable format: The face set is a regular blind slot because: the face set con-

tains one blind slot bottom face(?a), one curved blind slot wall face (?c), and two

plane blind slot wall face (?b, ?d), while the three wall faces are connected together

with the curved wall face in the middle, and are all connected with the bottom face.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

has member face(?x, ?d) ∧ blind slot bottom face(?a) ∧ curved blind slot wall face(?b) ∧

plane blind slot wall face(?c) ∧ curved blind slot wall face(?d) ∧ face has neighbor(?a, ?b) ∧

face has neighbor(?a, ?c) ∧ face has neighbor(?a, ?d) ∧ face has neighbor(?b, ?c) ∧

face has neighbor(?c, ?d)→ vertical obround blind slot(?x)

183

Readable format: The face set is a regular blind slot because: the face set con-

tains one blind slot bottom face(?a), one plane blind slot wall face (?c), and two

curved blind slot wall face (?b, ?d), while the three wall faces are connected together

with the plane wall face in the middle, and are all connected with the bottom face.

face(?x) ∧ (face has convex neighbor = 1)(?x, ?y)→ blind slot bottom face(?x);

Readable format: ?x is a blind slot bottom face because: ?x is a face which has

only one convex neighbor.

face⊓ = 1face has neighbor.blind slot bottom face ≡ blind slot wall face;

internally translated to:

face(?x) ∧ (?y = 1)(face has neighbor(?x, ?y) ∧ blind slot bottom face(?y))→

blind slot wall face(?x)

Readable format: ?x is a blind slot wall face because: ?x is a face which is a

neighbor of one blind slot bottom face ?y only.

A.6 Through Slot Feature Family

face set(?x) ∧ has member face(?x, ?a) ∧ circular through slot face(?a)→

circular through slot(?x)

Readable format: The face set is a circular through slot because: the face set con-

tains only one circular through slot face(?a).

184

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ V through slot face(?a) ∧

V through slot face(?b)∧face has concave neighbor(?a, ?b)∧face has convex neighbor(?a, ?m)∧

face has convex neighbor(?b, ?n) ∧ differentFrom(?m, ?n) ∧ swrlb :

same direction check(?m, ?n)→ V through slot(?x)

Readable format: The face set is a V through slot because: the face set contains

two V through slot face(?a, ?b) which are concavely connected with each other, and

they each have a concave neighbor which have same surface direction.

face set(?x) ∧ has member face(?x, ?a) ∧ has member face(?x, ?b) ∧ has member face(?x, ?c) ∧

through slot bottom face(?a) ∧ through slot wall face(?b) ∧ through slot wall face(?c) ∧

face has concave neighbor(?a, ?b) ∧ face has concave neighbor(?b, ?c)→

regular through slot(?x)

Readable format: The face set is a regular through slot because: the face set con-

tains one through slot bottom face(?a) and the two through slot wall faces (?b, ?c),

while the three faces are concave connected in series with the bottom face in the

middle.

quadrangular face(?x) ∧ face surface has face geometry(?x, ?y) ∧ cylindrical surface(?y) ∧

face has convex neighbor(?x, ?a) ∧ face has convex neighbor(?x, ?b) ∧

face has convex neighbor(?x, ?c) ∧ face has convex neighbor(?x, ?d) ∧ swrlb :

opposite direction check(?a, ?c) ∧ swrlb : same direction check(?b, ?d)→

circular through slot face(?x)

Readable format: ?x looks like a circular through slot face because: ?x is a quad-

rangular face which locates on a cylindrical surface ?y, and ?x has four convex neigh-

185

bors ?a, ?b, ?c and ?d, in which two faces (?a, ?c) have opposite surface directions

while the other two (?b, ?d) have same surface direction.

quadrangular face(?x) ∧ (face has concave neighbor =

1)(?x, ?a) ∧ face has convex neighbor(?x, ?b) ∧ face has convex neighbor(?x, ?c) ∧ swrlb :

opposite direction check(?b, ?c)→ V through slot face(?x)

Readable format: ?x looks like a circular through slot face because: ?x is a quad-

rangular face which has only one concave neighbor ?a, and two of ?x’s convex neighbor

?b, ?c have opposite surface directions.

quadrangular face(?x)∧ face has convex neighbor(?x, ?a)∧ face has concave neighbor(?x, ?b)∧

face has convex neighbor(?x, ?c) ∧ face has conconcave neighbor(?x, ?d) ∧ swrlb :

opposite direction check(?a, ?c) ∧ swrlb : opposite direction check(?b, ?d)→

through slot bottom face(?x);

Readable format: ?x is a through slot bottom face because: ?x is a quadrangular

face which has a pair of convex neighbor (?a, ?c) and a pair of concave neighbor (?b,

?d), and in both pair the partners have opposite surface directions.

face⊓ = 1face has neighbor.through slot bottom face ≡ through slot wall face;

internally translated to:

face(?x) ∧ (?y = 1)(face has neighbor(?x, ?y) ∧ through slot bottom face(?y))→

through slot wall face(?x)

Readable format: ?x is a through slot wall face because: ?x is a face which is a

neighbor of one through slot bottom face ?y only.

186

A.7 Basic constructs

face ⊓ ∃face surface has face geometry.plane⊓ = 3face has edge ≡ triangular face;

internally translated to:

face(?x) ∧ face surface has face geometry(?x, ?y) ∧ plane(?y) ∧ (face has edge = 3)(?x, ?e)→

triangular face(?x)

Readable format: ?x is a triangular face because: ?x is a face which locates on a

plane surface ?y and has exactly three edges (alternatives of ?e).

face ⊓ ∃face surface has face geometry.plane⊓ = 4face has edge ≡ triangular face;

internally translated to:

face(?x) ∧ face surface has face geometry(?x, ?y) ∧ plane(?y) ∧ (face has edge = 4)(?x, ?e)→

triangular face(?x)

Readable format: ?x is a quadrangular face because: ?x is a face which locates on

a plane surface ?y and has exactly four edges (alternatives of ?e).

face(?x)∧face(?y)∧face has edge(?x, ?e)∧face has edge(?y, ?e)∧differentFrom(?x, ?y)∧swrlb :

cancaveCheck(?x, ?y, ?e)→ concave angular edge(?e);

Readable format: ?e is a cancave angular edge because: ?e is the intersection edge

of two different faces ?x and ?y which intersect in a concave angle.

187

face(?x) ∧ face(?y) ∧ face has edge(?x, ?e) ∧ face has edge(?y, ?e) ∧ differentFrom(?x, ?y)→

face has neighbor(?x, ?y)

Readable format: face ?x and face ?y are neighbors because: they have a same

edge ?e.

face(?x)∧face(?y)∧face has edge(?x, ?e)∧face has edge(?y, ?e)∧differentFrom(?x, ?y)∧swrlb :

concaveCheck(?x, ?y, ?e)→ face has concave neighbor(?x, ?y);

Readable format: face ?x and face ?y are concave neighbors because: they have a

same edge ?e and they intersect in a concave angle.

face(?x)∧face(?y)∧face has edge(?x, ?e)∧face has edge(?y, ?e)∧differentFrom(?x, ?y)∧swrlb :

convexCheck(?x, ?y, ?e)→ face has convex neighbor(?x, ?y);

Readable format: face ?x and face ?y are convex neighbors because: they have a

same edge ?e and they intersect in a convex angle.

face(?x) ∧ face has face bounds(?x, ?y) ∧ face bound has bound(?y, ?z) ∧

edge loop has edges(?z, ?n) ∧ oriented edge has edge element(?m, ?n)→ face has edge(?x, ?n);

Readable format: ?n is an edge of face ?x because: ?x has a face bound ?y, and

?y locates on an edge loop ?z, and ?z contains an oriented edge ?m, and finally ?m

locates on the edge ?n.

188

face(?x)∧ face has face bounds(?x, ?y)∧ face outer bound(?y)∧ face bound has bound(?y, ?z)∧

edge loop has edges(?z, ?n) ∧ oriented edge has edge element(?m, ?n)→

face has outer edge(?x, ?n);

Readable format: ?n is an outer edge of face ?x because: ?x has a face outer bound

?y, and ?y locates on an edge loop ?z, and ?z contains an oriented edge ?m, and finally

?m locates on the edge ?n.

189

