3,555 research outputs found

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    A Hybrid Enhanced Independent Component Analysis Approach for Segmentation of Brain Magnetic Resonance Image

    Get PDF
    Medical imaging and analysis plays a crucial role in diagnosis and treatment planning. The anatomical complexity of human brain makes the process of imaging and analyzing very difficult. In spite of huge advancements in medical imaging procedures, accurate segmentation and classification of brain abnormalities remains a challenging and daunting task. This challenge is more visible in the case of brain tumors because of different possible shapes of tumors, locations and image intensities of different types of tumors. In this paper we have presented a method for automated segmentation of brain tumors from magnetic resonance images. An enhanced and modified Gaussian mixture mode model and the independent component analysis segmentation approach has been employed for segmenting brain tumors in magnetic resonance images. The results of segmentation are validated with the help of segmentation evaluation parameters

    MRI brain scan classification using novel 3-D statistical features

    Get PDF
    The paper presents an automated algorithm for detecting and classifying magnetic resonance brain slices into normal and abnormal based on a novel three-dimensional modified grey level co-occurrence matrix approach that is used for extracting texture features from MRI brain scans. This approach is used to analyze and measure asymmetry between the two brain hemispheres, based on the prior-knowledge that the two hemispheres of a healthy brain have approximately a bilateral symmetry. The experimental results demonstrate the efficacy of our proposed algorithm in detecting brain abnormalities with high accuracy and low computational time. The dataset used in the experiment comprises 165 patients with 88 having different brain abnormalities whilst the remaining do not exhibit any detectable pathology. The algorithm was tested using a ten-fold cross-validation technique with 10 repetitions to avoid the result depending on the sample order. The maximum accuracy achieved for the brain tumors detection was 93.3% using a Multi-Layer Perceptron Neural Network.

    A compressive survey on different image processing techniques to identify the brain tumor.

    Get PDF
    Medical imaging technology has revolutionized health care over the past three decades, allowing doctors to detect, cure and improve patient outcomes. Medicinal imaging involves pictures - of internal organs, parts, tissues and bones - for therapeutic examination and research purposes. X-ray and CT scanners are the two greatest results of progress in imaging methods supplanting 2D procedures. Magnetic resonance imaging (MRI) is an imaging procedure that is utilized in radiology to visualize interior structures of the body and better understand how they work. X-ray provides a 3D image of the body's interior; as well as being critical for tumor discovery, this also enables surgeons to more easily dissect infections or tumors than was possible with older X-beam technology, which provided a 2D image. This paper provides an overview of different systems that can be used for distinguishing and preparing medical images

    Computational methods to predict and enhance decision-making with biomedical data.

    Get PDF
    The proposed research applies machine learning techniques to healthcare applications. The core ideas were using intelligent techniques to find automatic methods to analyze healthcare applications. Different classification and feature extraction techniques on various clinical datasets are applied. The datasets include: brain MR images, breathing curves from vessels around tumor cells during in time, breathing curves extracted from patients with successful or rejected lung transplants, and lung cancer patients diagnosed in US from in 2004-2009 extracted from SEER database. The novel idea on brain MR images segmentation is to develop a multi-scale technique to segment blood vessel tissues from similar tissues in the brain. By analyzing the vascularization of the cancer tissue during time and the behavior of vessels (arteries and veins provided in time), a new feature extraction technique developed and classification techniques was used to rank the vascularization of each tumor type. Lung transplantation is a critical surgery for which predicting the acceptance or rejection of the transplant would be very important. A review of classification techniques on the SEER database was developed to analyze the survival rates of lung cancer patients, and the best feature vector that can be used to predict the most similar patients are analyzed

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    An Information Theoretic Approach For Feature Selection And Segmentation In Posterior Fossa Tumors

    Get PDF
    Posterior Fossa (PF) is a type of brain tumor located in or near brain stem and cerebellum. About 55% - 70 % pediatric brain tumors arise in the posterior fossa, compared with only 15% - 20% of adult tumors. For segmenting PF tumors we should have features to study the characteristics of tumors. In literature, different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) have been exploited for measuring randomness associated with brain and tumor tissues structures, and the varying appearance of tissues in magnetic resonance images (MRI). For selecting best features techniques such as neural network and boosting methods have been exploited. However, neural network cannot descirbe about the properties of texture features. We explore methods such as information theroetic methods which can perform feature selection based on properties of texture features. The primary contribution of this dissertation is investigating efficacy of different image features such as intensity, fractal texture, and level - set shape in segmentation of PF tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques respectively to discriminate tumor regions from normal tissue in multimodal brain MRI. Our research suggest that Kullback - Leibler Divergence (KLD) measure for feature ranking and selection and Expectation Maximization (EM) algorithm for feature fusion and tumor segmentation offer the best performance for the patient data in this study. To improve segmentation accuracy, we need to consider abnormalities such as cyst, edema and necrosis which surround tumors. In this work, we exploit features which describe properties of cyst and technique which can be used to segment it. To achieve this goal, we extend the two class KLD techniques to multiclass feature selection techniques, so that we can effectively select features for tumor, cyst and non tumor tissues. We compute segemntation accuracy by computing number of pixels segemented to total number of pixels for the best features. For automated process we integrate the inhomoheneity correction, feature selection using KLD and segmentation in an integrated EM framework. To validate results we have used similarity coefficients for computing the robustness of segmented tumor and cyst

    Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms

    Get PDF
    The authors present a new algorithm for identifying the distribution of different material types in volumetric datasets such as those produced with magnetic resonance imaging (MRI) or computed tomography (CT). Because the authors allow for mixtures of materials and treat voxels as regions, their technique reduces errors that other classification techniques can create along boundaries between materials and is particularly useful for creating accurate geometric models and renderings from volume data. It also has the potential to make volume measurements more accurately and classifies noisy, low-resolution data well. There are two unusual aspects to the authors' approach. First, they assume that, due to partial-volume effects, or blurring, voxels can contain more than one material, e.g., both muscle and fat; the authors compute the relative proportion of each material in the voxels. Second, they incorporate information from neighboring voxels into the classification process by reconstructing a continuous function, ρ(x), from the samples and then looking at the distribution of values that ρ(x) takes on within the region of a voxel. This distribution of values is represented by a histogram taken over the region of the voxel; the mixture of materials that those values measure is identified within the voxel using a probabilistic Bayesian approach that matches the histogram by finding the mixture of materials within each voxel most likely to have created the histogram. The size of regions that the authors classify is chosen to match the sparing of the samples because the spacing is intrinsically related to the minimum feature size that the reconstructed continuous function can represent
    corecore