1,170 research outputs found

    Automated Discharging Arguments for Density Problems in Grids

    Full text link
    Discharging arguments demonstrate a connection between local structure and global averages. This makes it an effective tool for proving lower bounds on the density of special sets in infinite grids. However, the minimum density of an identifying code in the hexagonal grid remains open, with an upper bound of 370.428571\frac{3}{7} \approx 0.428571 and a lower bound of 5120.416666\frac{5}{12}\approx 0.416666. We present a new, experimental framework for producing discharging arguments using an algorithm. This algorithm replaces the lengthy case analysis of human-written discharging arguments with a linear program that produces the best possible lower bound using the specified set of discharging rules. We use this framework to present a lower bound of 23550.418181\frac{23}{55} \approx 0.418181 on the density of an identifying code in the hexagonal grid, and also find several sharp lower bounds for variations on identifying codes in the hexagonal, square, and triangular grids.Comment: This is an extended abstract, with 10 pages, 2 appendices, 5 tables, and 2 figure

    Finding codes on infinite grids automatically

    Full text link
    We apply automata theory and Karp's minimum mean weight cycle algorithm to minimum density problems in coding theory. Using this method, we find the new upper bound 53/1260.420653/126 \approx 0.4206 for the minimum density of an identifying code on the infinite hexagonal grid, down from the previous record of 3/70.42863/7 \approx 0.4286.Comment: 18 pages, 5 figure

    Diddy: a Python toolbox for infinite discrete dynamical systems

    Full text link
    We introduce Diddy, a collection of Python scripts for analyzing infinite discrete dynamical systems. The main focus is on generalized multidimensional shifts of finite type (SFTs). We show how Diddy can be used to easily define SFTs and cellular automata, and analyze their basic properties. We also showcase how to verify or rediscover some results from coding theory and cellular automata theory.Comment: 12 page

    Present and Future Role of Battery Electrical Vehicles in Private and Public Urban Transport

    Get PDF
    The OECD estimates that more than 70% of the developed world population lives in urban environments2, which explains a larger concentration of vehicles there. In the EU-27, there were about 230 million passenger vehicles in 2007 and the new vehicle sales were nearly 16 million vehicles in that year. Notwithstanding the improvements in regulated air pollutants from road transport, the urban population remains at higher risk levels by directly suffering the impact of conventional vehicles because of their closeness to the pollutant source. On one hand urbanization means that people when travelling in their urban environment will typically travel less than 100 km a day. And on the other, that a large percentage of all transâ port and delivery of goods will take place in urban areas. Acceleration and deceleration freâ quency, traffic jams, thus energy efficiency and pollution per km are worst within urban traffic. Many business cases exist for urban electrified road transport because these offer a lower Total Cost of Ownership (TCO) than conventional means already today. The abov

    Energy storage systems and grid code requirements for large-scale renewables integration in insular grids

    Get PDF
    This thesis addresses the topic of energy storage systems supporting increased penetration of renewables in insular systems. An overview of energy storage management, forecasting tools and demand side solutions is carried out, comparing the strategic utilization of storage and other competing strategies. Particular emphasis is given to energy storage systems on islands, as a new contribution to earlier studies, addressing their particular requirements, the most appropriate technologies and existing operating projects throughout the world. Several real-world case studies are presented and discussed in detail. Lead-acid battery design parameters are assessed for energy storage applications on insular grids, comparing different battery models. The wind curtailment mitigation effect by means of energy storage resources is also explored. Grid code requirements for large-scale integration of renewables are discussed in an island context, as another new contribution to earlier studies. The current trends on grid code formulation, towards an improved integration of distributed renewable resources in island systems, are addressed. Finally, modeling and control strategies with energy storage systems are addressed. An innovative energy management technique to be used in the day-ahead scheduling of insular systems with Vanadium Redox Flow battery is presented.Esta tese aborda a temática dos sistemas de armazenamento de energia visando o aumento da penetração de energias renováveis em sistemas insulares. Uma visão geral é apresentada acerca da gestão do armazenamento de energia, ferramentas de previsão e soluções do lado da procura de energia, comparando a utilização estratégica do armazenamento e outras estratégias concorrentes. É dada ênfase aos sistemas de armazenamento de energia em ilhas, como uma nova contribuição no estado da arte, abordando as suas necessidades específicas, as tecnologias mais adequadas e os projetos existentes e em funcionamento a nível mundial. Vários casos de estudos reais são apresentados e discutidos em detalhe. Parâmetros de projeto de baterias de chumbo-ácido são avaliados para aplicações de armazenamento de energia em redes insulares, comparando diferentes modelos de baterias. O efeito de redução do potencial de desperdício de energia do vento, recorrendo ao armazenamento de energia, também é perscrutado. As especificidades subjacentes aos códigos de rede para a integração em larga escala de energias renováveis são discutidas em contexto insular, sendo outra nova contribuição no estado da arte. As tendências atuais na elaboração de códigos de rede, no sentido de uma melhor integração da geração distribuída renovável em sistemas insulares, são abordadas. Finalmente, é estudada a modelação e as estratégias de controlo com sistemas de armazenamento de energia. Uma metodologia de gestão de energia inovadora é apresentada para a exploração de curto prazo de sistemas insulares com baterias de fluxo Vanádio Redox

    Modeling and Communicating Flexibility in Smart Grids Using Artificial Neural Networks as Surrogate Models

    Get PDF
    Increasing shares of renewable energies and the transition towards electric vehicles pose major challenges to the energy system. In order to tackle these in an economically sensible way, the flexibility of distributed energy resources (DERs), such as battery energy storage systems, combined heat and power plants, and heat pumps, needs to be exploited. Modeling and communicating this flexibility is a fundamental step when trying to achieve control over DERs. The literature proposes and makes use of many different approaches, not only for the exploitation itself, but also in terms of models. In the first step, this thesis presents an extensive literature review and a general framework for classifying exploitation approaches and the communicated models. Often, the employed models only apply to specific types of DERs, or the models are so abstract that they neglect constraints and only roughly outline the true flexibility. Surrogate models, which are learned from data, can pose as generic DER models and may potentially be trained in a fully automated process. In this thesis, the idea of encoding the flexibility of DERs into ANNs is systematically investigated. Based on the presented framework, a set of ANN-based surrogate modeling approaches is derived and outlined, of which some are only applicable for specific use cases. In order to establish a baseline for the approximation quality, one of the most versatile identified approaches is evaluated in order to assess how well a set of reference models is approximated. If this versatile model is able to capture the flexibility well, a more specific model can be expected to do so even better. The results show that simple DERs are very closely approximated, and for more complex DERs and combinations of multiple DERs, a high approximation quality can be achieved by introducing buffers. Additionally, the investigated approach has been tested in scheduling tasks for multiple different DERs, showing that it is indeed possible to use ANN-based surrogates for the flexibility of DERs to derive load schedules. Finally, the computational complexity of utilizing the different approaches for controlling DERs is compared

    Application Of Formal Specification Technique To Microgrid Representation

    Get PDF
    This thesis uses formal specification techniques to analyze and model a microgrid. A microgrid is a small, local electrical grid, often supplied by a single generator, that can connect to the larger electrical grid, but can also disconnect from it, going into “island mode.” Thanks to the growth in renewable energy, microgrids represent a growing segment of the electrical power generation domain. And like any member of the domain they are safety-critical systems, meaning that even a small mistake in their implementation risks damage to life and property.Formal specification is a way to abrogate the risks of safety critical systems by ensuring that the system under consideration is fully described, modeled, and analyzed prior to implementation, and the description and model are robust and error-free. However, at present there is no established approach to the use of formal specification techniques of microgrid systems. This thesis proposes a specification that can serve as a foundation for future work in the microgrid domain as well as an aid to communication about microgrids. The work uses Unified Modeling Language (UML) graphical notation and an accompanying Object Constraint Language (OCL) formal specification. The model transformation accomplished through the use of Iterative Development techniques is outlined in detail to serve as a guide to future researchers
    corecore