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Abstract

Increasing shares of renewable energies and the transition towards electric vehicles pose major challenges to the
energy system. In order to tackle these in an economically sensible way, the flexibility of distributed energy
resources (DERs), such as battery energy storage systems, combined heat and power plants, and heat pumps, needs
to be exploited. Modeling and communicating this flexibility is a fundamental step when trying to achieve control
over DERs. The literature proposes and makes use of many different approaches, not only for the exploitation itself,
but also in terms of models.

In the first step, this thesis presents an extensive literature review and a general framework for classifying exploitation
approaches and the communicated models. Often, the employed models only apply to specific types of DERs,
or the models are so abstract that they neglect constraints and only roughly outline the true flexibility. Surrogate
models, which are learned from data, can pose as generic DER models and may potentially be trained in a fully
automated process.

In this thesis, the idea of encoding the flexibility of DERs into ANNs is systematically investigated. Based on
the presented framework, a set of ANN-based surrogate modeling approaches is derived and outlined, of which
some are only applicable for specific use cases. In order to establish a baseline for the approximation quality, one
of the most versatile identified approaches is evaluated in order to assess how well a set of reference models is
approximated. If this versatile model is able to capture the flexibility well, a more specific model can be expected
to do so even better.

The results show that simple DERs are very closely approximated, and for more complex DERs and combinations of
multiple DERs, a high approximation quality can be achieved by introducing buffers. Additionally, the investigated
approach has been tested in scheduling tasks for multiple different DERs, showing that it is indeed possible to use
ANN-based surrogates for the flexibility of DERs to derive load schedules. Finally, the computational complexity
of utilizing the different approaches for controlling DERs is compared.
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1 Introduction

In this chapter, the motivation behind this work, investigated research questions, and scientific contributions are
presented. Additionally, an overview of previous publications and an outline of the document structure are provided.

1.1 Motivation

Until the year 2050, the European Union aims to reach zero net emission of greenhouse gases (GHG). This goal
has been set by the European Green Deal [1] in 2019, tightening the previous target, which mandated a reduction
of at least 80%. Decarbonization plays a critical role in reaching this goal [1] and requires the replacement of
fossil fuels with other sources of useful energy, like wind and solar power. Consider Germany as an example.
The development of the share of renewable energies in Germany is depicted in Figure 1.1. In 2004, only 6.2%
of the gross final energy consumption was satisfied with energy from renewable sources. In 2020, energy from
renewables made up 19.6%. The share for heating and cooling developed similarly, starting at 7.4% in 2004 and
reaching 15.2% in 2020. While there also was an increase in the transport sector from 2004 to 2007, the share
stagnated since then. The strongest growth can be observed in the share of consumed electricity, which grew from
9.4% in 2004 to 45.4% in 2020.

The major contributors to the consumed electricity from renewable sources in Germany are wind and solar power,
which are both naturally fluctuating energy sources. In 2020, on-shore and off-shore wind power and solar power
had shares of 41.2%, 10.8% and 20.3%, respectively [2]. Hence, with 45.4% consumed electricity from renewables,
overall 45.4% · 72.3% = 32.8% of the consumed electricity originated from fluctuating sources. This percentage
will increase in the future, as the current legislation, in the form of the German Renewable Energy Sources Act
(Erneuerbare-Energien-Gesetz) [3], aims for a share of renewables of at least 80% in 2050 and 65% in 2030. With
an increasing percentage of electricity produced from wind and solar power, the traditional paradigm of electricity
supply following electricity demand is overthrown, since their availability is not guaranteed. While nuclear and
fossil power plants may balance out the random variations in supply, maintaining them solely as reserve capacity
is costly and using them would reduce the share of renewables in the energy consumption. The consequence is the
need for buffering energy and influencing energy consumers, for instance, to shift their demand from periods with
low electricity production to periods where there is excess energy. Such measures for influencing the demand side
in the electrical grid, that is, the consumers of electricity, are provided by demand side management (DSM).

When there is a high share of volatile electricity supply, it is necessary to coordinate many consumers simultaneously
in order to keep the balance between supply and consumption. For the overall balance it does not matter how the
perceived change in consumption is achieved by the demand side. Increasing local electricity production, for
instance, by starting a combined heat and power plant (CHPP), discharging a battery energy storage system
(BESS), or stopping the operation of a heat pump (HP), all lead to a decreased amount of power drawn from the
electrical grid. Devices able to provide such flexibility are called distributed energy resources (DERs). Another
recent development intensifying the need for DSM measures is the transition towards electric mobility. Even
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Figure 1.1: Share of renewable energies in Germany [2].

when battery electric vehicles (BEVs) are charged at home, the electric vehicle supply equipment (EVSE) needs
comparatively high power for a prolonged time.

There are various potential options for coordinating DERs, ranging from decentralized mechanisms with minimal
communication, to the centralized and direct control of the demand side. Most coordination approaches require
models of the influenced DERs or descriptions of how they can be influenced, i.e., a model of their flexibility (a
definition of the term “flexibility” is provided in Section 2.1.3). The question of how flexibility can be modelled
and communicated has been occurring in various research projects. For instance, in the German research project
grid-control [310], multiple buildings were operated by automated building energy management systems (EMSs),
which needed to describe their flexibility to some external entity trading on energy markets. Another example is
the project C/sells, funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) as part of
the SINTEG (Smart Energy Showcases — Digital Agenda for the Energy Transition) program1. In C/sells [4], the
energy system is understood as a network of cells, such as smart buildings, city districts or even entire regions.
How these cells are modeled and coordinated are two of many questions investigated in the project.

Standardized models are one way of describing DERs and their flexibility. While there are different propositions
(see Chapter 4), such a standard model does not yet exist. Furthermore, even when there is a standard model, it
is necessary to parameterize the model for every single DER in order to capture the individual local constraints
and circumstances. An alternative could be the usage of automatically learned models, which are trained from
observations. The automated generation of models has the potential of making manual model specification,
implementation, and parameterization superfluous. By describing how a DER behaves, the learned model acts
as a surrogate for the actual DER. Learning surrogate models for DERs and using them to influence the DERs’
operation could simplify the process of making the flexibility of DERs available to third parties, such as aggregators
1 https://www.sinteg.de/en
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1.2 Research Questions

or system operators. Furthermore, with an automated process in place, there is the potential of gaining influence
over many DERs in a short time frame, due to the reduced work needed.

The question of how the flexibility of DERs can be communicated and the goal of learning models for DERs
represent the core of this thesis. The field of machine learning provides many types of learnable models. However,
not every approach is suitable in the same way. Due to their versatility, in this thesis, artificial neural networks
(ANNs) have been selected as a promising subject of investigation. In the following, the exact research questions are
presented and explained, the contributions of this work are described, prior publications and their usage throughout
the thesis are summarized, and the structure of the document is outlined.

1.2 Research Questions

The investigated subjects are divided into three major research questions RQ1, RQ2 and RQ3. For each of these,
subquestions have been formulated in order to structure the investigation systematically. The individual research
questions build upon one another.

RQ1 Which models can be used for communicating flexibility?
The communication of the flexibility of DERs is investigated with the goal of developing a general framework
for classifying exploitation and modeling approaches. This framework is the basis for deriving possible ways
of modeling DERs with ANNs during the investigation of RQ2.

RQ1.1 What are the motivations for communicating flexibility?
Investigating the motivations may unveil aspects relevant for the subsequent development of a framework
and the investigation of possible ANN-based surrogate modeling approaches.

RQ1.2 How can flexibility be communicated and exploited?
The communication of flexibility is generally a step in its exploitation. Therefore, the intended exploita-
tion process, to a certain extent, dictates which information is required. Aiming to identify the general
approaches for exploiting flexibility, this question lays the basis for the development of the framework.

RQ1.3 Which modeling approaches do exist and how can they be categorized?
Based on the results of RQ1.2, general modeling approaches for describing DERs are explored in a
literature review and classified, resulting in the framework sought-after by RQ1. Additionally, for
the purpose of demonstrating its application, the framework is used to classify exemplary exploitation
approaches suggested in the research project C/sells.

RQ2 What is the quality of approximation ANN-based surrogate models can achieve?
Automatically learned models are only an alternative to manually specified ones, if they approximate the
behavior of the real DERs sufficiently well. With this research question, the quality of approximation of
ANN-based surrogates is investigated.

RQ2.1 What are the advantages and disadvantages of using surrogate models?
Exploring the general motivations and challenges associated to surrogate modeling may uncover re-
quirements, issues associated to their implementation, possible solutions to these issues, and best
practices. Additionally, the statements collected from the literature are translated to the topic of
modeling flexibility.
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RQ2.2 How can ANNs serve as surrogates for the flexibility of DERs?
This question entails two separate aspects. Firstly, the question of how ANNs can act as surrogates,
which is answered on the basis of the framework developed during the investigation of RQ1. Secondly,
the specification of the exploitation process, including how data is acquired and models are trained.

RQ2.3 What is the quality of the trained ANN-based surrogate models?
The goal is the assessment of how well ANNs can approximate the flexibility of DERs. For this purpose,
multiple experiments are conducted in order to create a baseline for the performance of ANN-based
flexibility models. The results are not only compared to other ANN-based models, but also to competing
surrogate modeling approaches found in the literature.

RQ3 How adequate are the different ANN-based modeling approaches for controlling schedules of flexibility
providers?
In order to make targeted use of DERs in a DSM application, the description of their flexibility must allow
the derivation of some sort of control signal. Control, in this context, does not only refer to direct control,
but also any other type of signal influencing their operation. Following up RQ2, this research question aims
at investigating the suitability of the different identified approaches for the application in an exploitation
scheme.

RQ3.1 Which criteria can be used for assessing the adequacy of a modeling approach?
In order to compare different ANN-based surrogate modeling approaches, it is necessary to identify
evaluation criteria.

RQ3.2 What is the assessment of the individual ANN-based modeling approaches?
Using the previously identified criteria, the different approaches are assessed, including an outline of
how the utilization of flexibility could be optimized. Afterwards, the general suitability of ANN-based
flexibility surrogates for controlling DERs is demonstrated for one selected approach.

Subquestions RQ1.1, RQ2.1 and RQ3.1 are answered with the help of the literature, since they explore the
motivations and serve as an introduction to the respective subject.

1.3 Contributions

This thesis continues and systemizes our previous published work on the subjects flexibility and ANN-based
surrogate models for DERs. The utilization of already published concepts and results is disclosed in Table 1.1, and
wherever previous insights are used in the text (see the subsequent section for more details). Overall, the major
contributions of this thesis are:

Development of a framework for classifying approaches for the exploitation of flexibility: An extensive liter-
ature review is presented in Chapter 4, investigating and classifying the modeling of DERs in the literature,
resulting in a list of general modeling approaches. The review is structured according to so-called exploitation
patterns, which have been taken from one of our previous publications and refined in the review process.
The updated patterns allow for a more precise distinction of approaches. Additionally, criteria for telling the
patterns apart are presented. With the resulting framework, approaches for the exploitation of flexibility can
be distinguished in terms of their modeling approach, abstractness, exploitation pattern, required information
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exchanges, and similarity. An exemplary application for a selection of approaches proposed in the research
project C/sells is presented in Section 4.5.

Derivation of approaches for learning ANN-based surrogates of DERs: In order to provide guidance for future
research and applications, the general process and requirements of ANN-based surrogate modeling are
explained in Section 5.2. This includes an outline of how the data for training the models can be acquired.
Furthermore, possible challenges and ways of overcoming them are discussed. Then, throughout Section 5.2,
several approaches for encoding the flexibility of DERs into ANNs are derived and explained, and the most
promising ones are pointed out. The results provide a basis for future research aiming at automating the
generation of DER models with the help of ANNs.

Establishment of a baseline for the quality of approximation: By selecting a modeling approach that is able to
emulate most remaining approaches and evaluating its performance, a baseline for the approximation quality
achievable with ANN-based surrogates is established in Section 5.3. The results comprise multiple different
experiments and performance indicators in order to provide a comprehensive picture. It is concluded that
ANN-based surrogates in principle can be used for modeling DERs when a sufficient amount of data is
available. Furthermore, potential trade-offs, for instance, between a comprehensive description of flexibility
and the rate of errors, are pointed out.

Qualitative analysis of the applicability of ANN-based surrogates: With respect to two exemplary optimization
problems it is outlined in Chapter 6 how each ANN-based surrogate modeling approach could be used to solve
each optimization task. This provides researchers with approaches and guidelines to apply the models in the
future. Furthermore, each approach is assessed in regard to its complexity and scalability, which provides
further guidance in identifying and selecting the best suitable ANN-based surrogate modeling approach for
a given problem.

First implementation and evaluation of a scheduling task: In Section 6.4, one of the two exemplary scheduling
problems discussed in Chapter 6 is solved with the help of an ANN-based surrogate model. The results prove
the general capability of ANNs to provide and predict information sufficiently detailed and accurate to solve
simple scheduling tasks.

Software framework for evaluating ANN-based surrogates: The software framework developed in order to con-
duct the evaluation is published on GitHub at https://github.com/kfoerderer/ANN-based-surrog
ates and, together with this document, in the KITopen repository, alongside the experiments, data and
trained models. It comprises simulation models, optimization models, an implementation of the “state-based
simulation” surrogate (see Chapter 5), functionality for its training, and the algorithms presented in Sec-
tion 6.4. With the framework and data being freely available, researchers can validate the results, and start
their own experiments, for instance, exploring the untested approaches.

1.4 Previous Publications

Table 1.1 summarizes all of my scientific publications prior to this thesis and specifies where in this document
which contents and results are incorporated. The major contributions by me to each paper are additionally pointed
out in each summary. The utilization of insights gained in the past is also detailed in the introductions of each
chapter, and, of course, referenced in the text. Throughout the document, the listed publications are formatted in
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boldface (e.g., [314]), while all other citations are not (e.g., [1]). By making this distinction, it is easily visible
whether an older, own work is referenced or not.

Table 1.1: Publications prior to this thesis.

Reference Summary In this thesis

[314] An abstract outlining the EMS developed for the
research project grid-control. The EMS describes
and communicates flexibility with the help of time-
varying corridors for power and energy.
Contribution: EMS and flexibility model.

The paper appears in the search results returned
by Scopus and is hence discussed in the literature
review in Chapter 4.

[316] In this publication, we propose a definition for the
term “flexibility” in the context of smart buildings
and smart grids, present generalized patterns for
the exploitation of flexibility, and shortly address
the associated communication effort.
Contribution: proposed definition.

The definition of flexibility is cited in Section 2.1.3
and used throughout this thesis.
The exploitation patterns were the starting point
for deriving the refined patterns presented in Sec-
tion 4.2.

[313] We propose the utilization of ANNs as surrogate
models for DERs and suggest different approaches
for the implementation, namely, a classifier, a gen-
erator, a repair mechanism, and a price-based load
schedule forecast.
Contribution: concept and approaches.

As this paper is the first presentation of the idea
of ANN-based surrogates for modeling flexibility,
it is referenced throughout this thesis. The pro-
posed modeling approaches are incorporated into
Section 5.2 and the paper can also be found in
Chapter 4, where it is part of the literature review
and the basis for an illustration.

[312] In this paper, we evaluate the individual ap-
proaches that we proposed in [313] by means of
multiple experiments. We conclude that the results
show a good quality of approximation for the clas-
sification and generation approach. However, this
is only a first proof of concept, and we merely out-
line possible ways of searching for feasible load
schedules, which is a prerequisite to conducting
optimizations.
Contribution: concept and approaches.

The simulation models and parameters presented
in Section 5.3 and used for the evaluation are based
on those presented in [312]. Furthermore, the best
results are cited in order to compare them to those
achieved in this thesis.

[315] We present a process for creating forecasts of
power flows in low voltage grids and evaluate the
quality of the predictions. The process was im-
plemented in the project grid-control and, among
other things, makes use of forecasts provided by
the EMS outlined in [314].
Contribution: EMS specific forecasts.

Not used in this thesis.
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Table 1.1 – continued from previous page
Reference Summary In this thesis
[309] In the project C/sells we further discussed the def-

inition of the term “flexibility” and related con-
cepts. This paper presents the results and provides
a set of flexibility related definitions.
Contribution: discussion and feedback.

Referenced in the section on fundamentals.

[307] The integration of automated EMS into the Ger-
man Smart Meter Gateway architecture is the sub-
ject of this paper. Aside from illustrating the op-
tions for integrating EMS and receiving signals
for implementing DSM measures, we provide an
overview of the architecture and the most impor-
tant configurations related to energy management.
Contribution: equal collaboration.

Not used in this thesis.

[310] The final report of project grid-control. In the re-
port, the project, developed architecture and com-
ponents, as well as the results are summarized.
One of the presented components is the EMS out-
lined in [314] and discussed in [315].
Contribution: EMS and related results.

This publication is referenced when project grid-
control is mentioned. Also, some data and pa-
rameters used in the evaluation originate from this
project.

[311] This abstract points out the lack of standardized
environments for the testing of building energy
management algorithms and motivates the devel-
opment of such environments.
Contribution: discussion and feedback.

Not used in this thesis.

[308] In this paper, we present and evaluate a method for
encoding the flexibility of DERs into ANNs. The
approach is inspired by Markov processes. The
evaluation is based on simulation models derived
from [312] and the model performance is measured
via the share of generated feasible load schedules.
Contribution: concept and experiments.

The state-based approach for encoding flexibility is
also presented and evaluated in this thesis. There-
fore, it is referenced throughout this document.
In comparison to the paper, a few adaptations are
made, more DERs are evaluated, and more criteria
are analyzed. Differences between the implemen-
tation in the paper and the implementation in this
thesis are pointed out in the text.

[306] While [307] provides only a theoretical analysis,
in [306] we present a practical implementation. In
the paper, we describe the functionality provided
by an exemplary EMS, point out challenges that
had to be overcome, and illustrate how the integra-
tion into the Smart Meter Gateway architecture is
achieved. The implementation was tested by influ-
encing the charging process of a BEV.
Contribution: equal collaboration.

Not used in this thesis.
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1.5 Structure

Before jumping into the subsequent chapters, in the following the structure of this thesis is outlined. Chapter 2
gives an overview of fundamental concepts and approaches, used and referenced throughout this thesis. The state
of the technology is presented in Chapter 3. It focuses on the topic of communicating the flexibility of DERs. A
broader overview of the literature and the subject of modeling flexibility is provided subsequently in the form of
a literature review in Chapter 4. Chapter 4, Chapter 5, and Chapter 6 are dedicated to the three major research
questions. Each chapter is devoted to one of the major questions and its associated subquestions. The thesis is
concluded by Chapter 7, which summarizes the findings and provides an outlook for possible future research. Some
further ideas and information are provided in the appendix.

All source code, including the implemented simulation and optimization models, the trained ANNs, and the logs
from the training and evaluation runs have been published on GitHub at https://github.com/kfoerderer/
ANN-based-surrogates and, together with this document, in the KITopen repository.
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2 Fundamentals

This chapter summarizes concepts, methods, and algorithms utilized and mentioned throughout this thesis. It is
not intended as an introduction to the named subjects, as this would easily go beyond the scope of this work.
Instead, it clarifies the terminology, provides a basic understanding, and directs to learning materials. The chapter
starts with a short introduction to smart grid related topics in Section 2.1, followed by a summary of control
architectures in Section 2.2. In Section 2.3, general modeling concepts are introduced, before providing a concise
overview of machine learning fundamentals in Section 2.4, and optimization approaches in Section 2.5. This
chapter incorporates previous publications in Section 2.1.3, where the term “flexibility” is defined.

2.1 Smart Grids

This section summarizes the most important concepts related to smart grids and DSM. The primary source is
Mauser [5], as it provides a comprehensive overview of smart grid related topics. The approaches investigated and
developed in this thesis all belong to the domain of smart grids. Mauser proposes a smart grid definition considering
all energy carriers, instead of focusing solely on electricity. A slightly generalized version of this definition is also
utilized in this thesis:

Definition (Multi-energy smart grid). “A multi-energy smart grid is an integrated energy grid comprising all
energy grids that are used in the (distributed) generation, distribution, and consumption of energy using various
energy carriers. It includes [. . . ] technologies and entities that enable the intelligent interaction of all entities to
provide [. . . ] services, facilitate [. . . ] functionality, and increase energy efficiency. The main characteristic is a
two-way flow of information to and from all entities.” [5, pp. 38-39].

2.1.1 Ancillary Services

Ancillary services help to maintain a secure supply of electricity [6]. According to [5], typically, six services are
distinguished. For a more elaborate description than provided in the following, please see [5].

Frequency control: Frequency control aims at keeping the grid frequency at its target value. There are three
frequency control levels. However, the implementation varies from country to country. Please see [6] for an
overview.

Primary control (frequency containment reserves, FCR [7]): Primary control has the purpose of stabiliz-
ing the frequency. It uses local sensors to detect deviations and reacts immediately and automatically [6].

Secondary control (automatic frequency restoration reserves, aFRR [7]): Once activated, the secondary
reserve replaces the primary reserve in order to bring back the frequency and release the primary re-
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serve [5, 6]. The secondary reserve is controlled automatically and centrally by the transmission system
operator (TSO) [6].

Tertiary control (manual frequency restoration reserves, mFRR [7]): Tertiary reserve is controlled man-
ually and releases the secondary reserve [6].

Voltage control: The voltages at different grid nodes vary depending on the local power flows and the grid
topology. Voltage control has the goal to keep the voltages within an acceptable range [5]. TSOs are obliged
to ensure that the voltage remains within an agreed range for transmission-connected DSOs and transmission-
connected significant grid users [7]. The same applies for DSOs and their connected grid users [8]. Electricity
generators, in turn, must follow given protection schemes in order to prevent the aggravation and limit the
consequences of disturbances [9].

Reactive power control: Reactive power needs to be provided for technical reasons and can also be used for
voltage control [5].

Phase balancing: Phase balancing aims at balancing the load between the different phases of AC grids [5].

Redispatch and congestion management: Congestions in the electrical grid happen when the infrastructure is
overburdened. Redispatch means rescheduling power plants on a global scale, for the purpose of resolving
congestions. Similarly, congestion management solves congestions on a more local scale by influencing the
consumption and generation of electricity [5].

Restoration after power outages: After a power outage, the system has to be restored in an orderly fashion, to
avoid new outages [5].

2.1.2 Demand Side Management

The demand side of the energy grid is typically found at the lowest voltage level and comprises all entities consuming
energy. Influencing them is the goal of DSM. Nonetheless, the literature does not provide a consistent definition
for DSM and the related topic of demand response (DR) [5]. Mauser [5] defines DSM and DR as follows:

Definition (Demand side management). DSM describes “[. . . ] all measures and methods that are applied at or
influence the lowest level of the energy grids — the former demand side — for the benefit of the overall grid and
energy system” [5, p. 40].

Definition (Demand response). “DR refers to all measures that incentivize the demand side to adapt their con-
sumption and generation because of additional costs, benefits, information, and education” [5, p. 40].

DR is therefore a part of DSM. An overview of DSM measures is provided by Figure 2.1, which was taken from [5].
There are different types of DR signals and aside from DR, DSM comprises energy efficiency and conversion
measures. In this thesis, the measures themselves only play a subordinate role, since modeling approaches are
investigated independently of the DSM measure. Per definition of DSM, a demand side manager (DSMgr) makes
use of the listed measures and pursues the goal of influencing the energy consumption of the demand side. DSMgrs
are not limited to a specific role. TSOs, distribution system operators (DSOs), as well as aggregators and other
participants on energy markets, can all act as a DSMgr. How a change in consumption is achieved, that is, whether it
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Figure 2.11: Categories of measures of demand side management and operating reserve,Figure 2.1: “Categories of measures of demand side management and operating reserve [. . . ]” [5, p. 40].

is due to a change in local production, storage, or the actual consumption, does not matter to the DSMgr. Consumers
with the additional capability of producing electricity are often called “prosumers”.

As Figure 2.1 illustrates, there are different possibilities for a DSMgr to influence or control the demand side.
Particularly popular in the literature are time-variable tariffs (time-of-use pricing) and dynamic tariffs (real-time
pricing), as is shown in Chapter 4. In time-of-use pricing, there are periods with different predefined prices,
for instance, peak and off-peak periods. The price only depends on the time period, all other circumstances are
neglected. In dynamic pricing, in contrast, the prices can vary freely, reflecting the current market situation [5].
For more pricing schemes, please see [5].

A DSMgr using monetary incentives, such as a dynamic tariff, in order to influence the demand side may want
to estimate the consequences of adapting energy prices. Price elasticities provide a simple solution for estimating
changes in demand. The price elasticity is “[. . . ] the percent change in quantity divided by the percent change in
price” [10, p. 274], that is,

𝜖 =

Δ𝑞

𝑞

Δ𝑝

𝑝

.

Multiplying the elasticity with a relative price change yields the relative change in consumed energy. Vice versa,
it is possible to estimate the required price change in order to achieve a certain change in consumption. Of course,
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this is only a very rough estimate, since it is assumed that the elasticity is a fixed parameter, which in reality it is
not. In addition to the price elasticity, cross elasticities can be used to estimate the consequences of price changes
in period 𝑗 in regard to the consumption in period 𝑖:

𝜖𝑖, 𝑗 =

Δ𝑞𝑖
𝑞𝑖

Δ𝑝 𝑗

𝑝 𝑗

.

Signals demanding a restriction of the feed-in of decentrally generated power or requesting a reduction of consump-
tion are another possibility to influence the demand side. Exemplary measures using such signals are emergency
curtailment and load shedding. One way to implement reduction signals are quotas. Quotas are percentages of
some defined reference power, such as a nominal power of a DER or an announced load schedule. While load
quotas specify the maximum power allowed to be drawn from the grid, feed-in quotas set the maximum feed-in
power [310]. Examples for their application can be found in the German research project grid-control [310] and
its successor flexQgrid. Another exemplary application is the dynamic reduction of the solar power generation in
Germany during grid congestions, which is mandated by § 9 of the Renewable Energy Sources Act [3] and currently
implemented by restricting the maximum electricity generation to 0%, 30%, 60% or 100% of the installed nominal
power.

2.1.3 A Definition of Flexibility

A term often found in the literature on smart grids and DSM is the word “flexibility”. However, the definitions of
“flexibility” in this context varies heavily. Often the definition has a certain use case in mind [316]. In [316], we
therefore propose a generic definition:

Definition (Flexibility). “The flexibility of an energy system is the collection of valid combinations of system inputs
and their state dependent outputs in terms of all energy carriers, i.e., all combinations that provide all mandatory
energy services in a manner ensuring system stability.” [316]

Here, the term “energy system” refers to any system supplying energy carriers, such as electricity, gas, and heat,
or providing energy services, for instance, lighting and air conditioning. A general depiction of such a system is
provided in Figure 2.2. With this understanding, the definition applies to single DERs, groups of multiple DERs,
buildings, factories, cities, and many more. Systems combining multiple DERs are synonymously referred to as
“aggregates” and “ensembles” throughout this thesis.

The above definition is inspired by the definition of the graph𝐺 ( 𝑓 ) := {(𝑥, 𝑓 (𝑥)) |𝑥 ∈ X} of a function 𝑓 : X → Y.
Analogously, flexibility can be expressed as {(𝑥, 𝑓 (𝑥)) |𝑥 ∈ X} with 𝑥 being the system inputs, X the inputs required
to fulfill the mandated energy services, and 𝑓 specifying the resulting outputs. In contrast to the graph definition,
the set X and function 𝑓 depend on additional variables specifying the system state. Moreover, when there are
𝑁 energy carriers and 𝑇 time steps to be considered, the input 𝑥 and the resulting output 𝑓 (𝑥) are matrices of
dimension 𝑁 × 𝑇 . With this set at hand, someone seeking to exploit flexibility has not only a list of options of
how the associated system may be operated, but also knows the consequences in terms of consumed and supplied
energy carriers.
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Figure 2.2: General depiction of an energy system. Based on [316].

When looking only at electricity, system input and output are both electric load schedules. A load schedule is a
sequence of planned average loads for consecutive time steps of a fixed length. Therefore, system input and output
specify the average consumed (input) and provided (output) electric power. In case of a single coupling point,
instead of considering input and output separately, it is sufficient to look at the total load schedule, that is, the sum
of input and output 𝑥 + 𝑓 (𝑥) = (𝑥1 + 𝑓 (𝑥)1, . . . , 𝑥𝑇 + 𝑓 (𝑥)𝑇 ). The result is a description of the flexibility in the
form of load schedules. Each schedule in the resulting set can be achieved by the associated energy system, that
is, each schedule in the set is feasible. Synonymously, feasible schedules are sometimes called valid or acceptable.
A schedule that is not in the set is therefore infeasible, which means that the energy system is unable to reproduce
the schedule given its current state and operational restrictions. However, in practice, generally only a subset of the
true set of feasible schedules is known. Nevertheless, if provided with a feasible schedule, an energy system can
derive which actions it should take in order to reproduce this target.

Please note that considering only electric power as system input and output does not mean that other types of useful
energy are neglected. For determining the flexibility of an HP, for instance, it is still necessary to consider the
thermal energy demand it has to satisfy. Furthermore, in this thesis, it is distinguished between load schedules
and load profiles. While a load schedule consists of planned loads, the term load profile refers to a sequence of
measured average load values.

We derived more specific definitions of flexibility and related concepts in the research project C/sells, in order to
allow for a more detailed distinction [309]. However, for the topics investigated in this thesis, the general definition
provided in this section is sufficient. Moreover, we also based our previous work on ANN-based surrogate modeling
of DERs on this very definition [313, 312, 308] and other authors share a similar understanding, e.g., [11, 12, 13,
14, 15].

2.2 Communication Relationships

Influencing or controlling the demand side requires some sort of coordination mechanism. A major element in
designing such a mechanism is the definition of communication relationships, that is, specifying who communicates
with whom. Furthermore, it is necessary to look at what information is communicated.

2.2.1 Control Structures

In the field of control theory, it is distinguished between multiple control structures. The IEC 60050 series, that
is, an encyclopedia by the International Electrotechnical Commission (IEC) which is also published online [16],
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defines centralized, decentralized, and hierarchical control structures. It is further possible to define a distributed
control structure [17]. The definition of each is provided in the following:

Definition (Centralized control structure). A centralized control structure is a “control structure with interconnected
subprocesses, in which each partial control equipment takes into account the information of all subprocesses to
form its output information” [16, reference number: 351-55-09]

Definition (Decentralized control structure). A decentralized control structure is a “control structure with inter-
connected subprocesses in which each partial control equipment takes into account only the information from its
associated subprocess to form its output information” [16, reference number: 351-55-10]

Definition (Hierarchical control structure). A hierarchical control structure is a “control structure with several
control levels placed one over the other, in which the control equipment assigned to a higher level coordinates
the work of the control equipment assigned to the next lower level, providing for instance pre-determining control
tasks, command variables, reference variables or final controlled variables” [16, reference number: 351-55-11]

Definition (Distributed control structure). A distributed control structure is a decentralized control structure, but
with controllers exchanging information [17, p. 21].

In summary, in a centralized structure, processes are controlled taking all information into account, including those
of other processes. A decentralized structure, in contrast, has multiple controllers, where each controller only
uses the information provided by the associated processes. If these controllers exchange information instead, a
distributed structure is created. Finally, the hierarchical structure stacks decentralized control structures on top of
each other until a central root is reached.

2.2.2 Stigmergy

Stigmergy is a concept for decentralized control derived from the behavior of social insects, such as ants and wasps.
It explains how they achieve coordination, even though each individual acts autonomously [18].

Definition (Stigmergy). “The concept of stigmergy explains the processes and self-organized behavior which
results from the indirect communication between individuals through anonymous alterations on the environment.
As a consequence of these alterations cooperation and coordination emerge spontaneously which enables the system
to achieve global objectives in a self-organized manner.” [18, p. 30]

This means that individuals base their actions on their perception of the environment and the only way of commu-
nication is the manipulation of said environment. In general, there are two ways of manipulating the environment.
Firstly, leaving signs or markers as a signal for other individuals [18]. Secondly, physical modification of the
environment towards some global objective [18]. The anonymous alteration is a key point in this definition. If
some coordination mechanism allows determining actions of other individuals, it is not stigmergic. This distinction
is relevant later in this thesis.
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2.3 Modeling

According to the Oxford Dictionary, a model is “a simple description of a system, used for explaining how something
works or calculating what might happen, etc.”. A summary of modeling related concepts is given in this section,
including an introduction to surrogate modeling.

2.3.1 Abstractness

Abstraction is an elementary step in the process of creating a model. When comparing different models, it becomes
apparent that some models are more abstract than others. It may even be impossible to directly compare models,
due to different forms of abstraction being employed (see, for instance, this thesis). In order to make distinctions, it
is necessary to specify the concept of abstractness and define an abstractness relation. A series of formal definitions
for comparing the abstractness of computer programs is derived in [19]. They are based on three core requirements
an abstraction relation should satisfy:

1. “Abstract specifications say what a program does without necessarily saying how it does it.” [19, p. 443]

2. “Abstraction is a process of generalization, removing restrictions, eliminating detail, removing inessential
information (such as the algorithmic details).” [19, p. 443]

3. “Abstract specifications have ‘more potential implementations’, moving to a lower level means restricting the
number of potential implementations.” [19, p. 443]

While the formal definitions provided in [19] are not directly applicable to the topic of modeling, the requirements
above are. In regard to modeling this means that a model 𝐴 is considered to be more abstract than model 𝐵 if it
is obtained by removing details, such as constraints, from model 𝐵. As a consequence, simplifying a model and
making it applicable to a broader range of systems is considered abstraction. This understanding conforms to the
definition of “abstraction” as “the process of deciding on the appropriate level of detail for whatever problem is at
hand [. . . ]” [20, p. 33] in the context of mathematical modeling.

2.3.2 White-Box, Black-Box, and Grey-Box Models

The literature utilizes different criteria for classifying models. One such classification is the distinction of white-box,
black-box, and gray-box modeling [21, 22].

White-box model: A white-box provides a clear view of the system inside, that is, all relevant dynamics of the
system can be seen. The associated white-box model is a detailed and complete description of the system
dynamics [21, 22]. It is therefore comparatively easy to interpret results obtained from such a model [22].
However, formulating physical relations requires extensive knowledge [22].

Black-box model: A black-box completely obstructs the view of the system inside. Only the system input and
output are visible. A black-box model is a statistical model fitted to approximate the system dynamics in
terms of the observed outputs [21, 22].

Grey-box model: A grey-box is the combination of a black-box and a white-box in the sense that some parts of
the system inside are visible while others are not. A grey-box model is therefore a hybrid approach, using
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combinations of white-box and black-box models [21, 22]. The three major options to couple white-box
and black-box models are the estimation of physical parameters of a white-box model using a black-box
model, the generation of a black-box model from data produced by a white-box model, and replacing single
components of a white-box model with black-box models [22]. The third option is especially relevant for
components that are difficult to model, like user behavior [22].

2.3.3 Surrogate Modeling

Surrogate models, which are also known as approximation models [23], reduced-order models [24], regression sur-
faces [25], meta models, emulators, or response surface models, are a tool for reducing computational expenses [26]
by approximating input-output relationships [23, 24]. They are applied in different contexts, including optimization,
dynamic processes, feasibility analysis, parameter estimation, sensitivity analysis, and scheduling [25]. Due to the
focus on input and output data, surrogate models are black-box models. It is possible to distinguish local and global
surrogate modeling [26, 25]. A local surrogate is a small and low fidelity model used in optimization [26]. It
provides rough approximations of the optimization surface [26]. A global surrogate, on the other hand, is created
with the goal of constructing an accurate model with high fidelity [26]. Generating surrogates as descriptions of
DERs, like it is investigated in this thesis, falls into the global surrogate modeling category.

Formally, the goal of global surrogate modeling can be defined as follows [26]: Let 𝑓 : Ω → C𝑛 be a multivariate
function, mapping from the domainΩ ⊆ R𝑑 to the set of all n-tuples of complex numbersC𝑛,X = {𝑥1, . . . , 𝑥𝑘 } ⊂ Ω

be a set of sample points of which the function values are known, and S be a given space of functions 𝑠 : R𝑑 → C𝑛.
Then, the goal is to find the best approximation 𝑠∗ ∈ S of 𝑓 according to some given criterion b, that is,
𝑠∗ = arg min𝑠∈S b (𝑠). Additionally, it is assumed that 𝑓 (𝑥) is expensive to compute so that it should only be used
parsimoniously to compute further sample points.

The field of machine learning provides many approaches for generating, selecting, and evaluating surrogate models.
A concise introduction can be found in the subsequent section, including more information on selection criteria b.

2.4 Machine Learning

The capability of an artificial intelligence to extract its own knowledge from raw data is known as machine
learning [27]. In this context, “learning” can be defined more formally:

Definition (Learning). “A computer program is said to learn from experience 𝐸 with respect to some class of
tasks 𝑇 and performance measure 𝑃, if its performance at tasks in 𝑇 , as measured by 𝑃, improves with experience
𝐸 .” [28, p. 2]

Based on [27], a short overview of experiences 𝐸 , tasks 𝑇 and measures 𝑃 is given in the following. For a more
elaborate introduction, please see [27]. Afterwards, ANNs and the support vector data description (SVDD) are
introduced.
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2.4.1 Experience

Typically, experiences are data points, which are given by some dataset [27]. In some cases, like reinforcement
learning (RL), data points are observed dynamically. Each data point, also called example [27] or sample [29], is a
collection of features and usually represented as a vector 𝑥 ∈ R𝑛 [27]. Depending on what should be learned from
the data, it is possible to distinguish different types of learning algorithms:

Supervised Learning: In supervised learning each data point is associated with a response [29], that is, a label or
target value [27]. The goal is to predict the response from the features provided by the data point.

Unsupervised Learning: Unsupervised learning aims at learning useful properties from the data points, such as
the underlying probability distribution [27], and understanding the relationships between individual variables
or observations [29].

Semi-Supervised Learning: In semi-supervised learning, a response is only known for parts of the data points [29].
The goal is to make use of the entire dataset, even though responses are missing [29].

Performing well on previously unseen inputs, that is, being able to generalize, is a central challenge in machine
learning [27]. To evaluate how well an algorithm generalizes, it must be confronted with data points it has not seen
during its training. When the data points originate from a dataset, the data is typically split into smaller subsets, in
order to allow the selection and validation of a model [27, 29]: firstly, the training set, which comprises most of the
data and provides the samples for learning a model. Secondly, if multiple models with different hyperparameters
are generated, a validation set. Hyperparameters are parameters of the model or algorithm which are not learned
from the data [27], e.g., the learning rate of the training algorithm or the depth of an ANN. With the help of a
validation set, it is possible to evaluate hyperparameter choices and select the best performing combination. Finally,
the test set for the actual evaluation of the model.

2.4.2 Tasks

The task defines the purpose of learning. Learning is what enables the algorithm to fulfill the task [27]. Common
machine learning tasks include [27]:

Classification: Learning a function 𝑓 : R𝑛 → {1, . . . , 𝑘}, which assigns data points 𝑥 to one of 𝑘 categories [27].
In case only two classes are distinguished, they are often labelled “positive” and “negative”.

Regression: Predicting a numerical response with a learned function 𝑓 : R𝑛 → R [27].

Structured output: Learning to derive a vector of multiple inter-related outputs, such as a textual description of a
picture, from the given inputs [27]. This includes:

Transcription: Transcribing data, such as images, into text [27].

Machine translation: Translating a sequence of symbols from one language to another language [27].

Anomaly detection: Identifying unusual or atypical events or objects [27].

Synthesis and sampling: Generating new data points that are similar to those faced during training [27].

Imputation of missing values: Predicting features 𝑥𝑖 missing in a data point 𝑥 ∈ R𝑛 [27].
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Denoising: Predicting either a clean example 𝑥 ∈ R𝑛 or the probability distribution 𝑝(𝑥 |𝑥) associated with a
corrupted example 𝑥 ∈ R𝑛 [27].

Density estimation or probability mass function estimation: Learning a function 𝑝𝑚𝑜𝑑𝑒𝑙 : R𝑛 → R approxi-
mating the probability density function or the probability mass function [27].

There exist more tasks than those listed above and also many variations. Take, for instance, the multi-label
classification, in which more than one category can apply to a data point. Another example is tasks in which
different input features are missing [27]. One way to deal with missing input features or multiple output values is to
train a set of models instead of a single one. However, learning different tasks together, which is called multi-task
learning, can help to improve the generalization capability [27].

2.4.3 Performance measures

Performance measures quantify how well a task is fulfilled. There is a multitude of measures, e.g., the accuracy
for classifiers or the mean squared error (MSE) for regression models, but not every measure is suitable for every
task [27]. During the training of a model, the objective is to improve the value of a target function, that is, the
quantified performance given by the measure. If the goal is minimization, the target function is also called a
loss function, cost function, or error function [27]. The loss functions utilized in this thesis are introduced in
Section 2.4.4. Additionally, the following standard measures can be found in the evaluation:

Share of true/false positives/negatives: In a classification task with a “positive” and “negative” class, the model
output is either a true positive (TP), false positive (FP), true negative (TN), or false negative (FN), depending
on the classification result (positive or negative) and whether it is correct (true) or not (false). The individual
share is calculated by dividing the respective number by the total amount of tested samples.

False positive rate: The false positive rate (FPR) is the number of false positives in relation to the actual number
of negative samples [29]:

𝐹𝑃

FP + TN
.

False negative rate: The false negative rate (FNR) is the number of false negatives in relation to the actual number
of positive samples [29]:

𝐹𝑁

FN + TP
.

Mean absolute error: Let vector 𝑦 = (𝑦1, . . . , 𝑦𝑁 ) contain the target values, and 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) comprise the
associated model predictions. Then, the mean absolute error (MAE) is given by

𝑙MAE (𝑥, 𝑦) :=
1
𝑁

𝑁∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |.
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2.4.4 Artificial Neural Networks

ANNs are collections of so-called neurons, which are typically arranged in interconnected layers. Each neuron
receives an input vector 𝑥, computes a function 𝑓 (𝑥, \) of which some parameters \ are learned, and passes on
the scalar output. In most ANNs, neurons perform affine transformations 𝑤ᵀ𝑥 + 𝑏 with learned parameters 𝑤
and 𝑏, followed by a fixed, non-linear activation function 𝑔 [27]. Such a neuron is shown in Figure 2.3. There
are many activation functions, including the rectified linear unit 𝑔(𝑧) = max{0, 𝑧}, sigmoid activation function
𝑔(𝑧) = 𝜎(𝑧) = 1

1+𝑒−𝑧 , and the hyperbolic tangent activation function 𝑔(𝑧) = tanh(𝑧) [27]. The ANNs trained in the
context of this thesis make use of the following activation functions:

Swish activation function: The swish activation function is given by 𝑔(𝑧) = 𝑧 · 𝜎(𝛽𝑧) [30]. It is utilized in
this thesis since it proved to work well across a variety of different tasks and datasets [30]. The additional
parameter 𝛽 is treated as a fixed hyperparameter.

Softmax activation function: The softmax function relates the elements 𝑧𝑖 from the vector 𝑧 = (𝑧1, . . . , 𝑧𝑁 ) to
the vector itself:

𝑔(𝑧, 𝑖) = softmax(𝑧)𝑖 :=
𝑒𝑧𝑖∑𝑁
𝑗=1 𝑒

𝑧 𝑗
.

One application of this function is the modeling of probability distributions over discrete values [27]: Let
there be 𝑛 different discrete elements, each assigned with an index 1 to 𝑛, and an ANN providing 𝑛 outputs,
that is, one output for each index. The task of the ANN is to predict the index 𝑖 based on the input 𝑥. When
the ANN output is interpreted as a vector of unnormalized log-likelihoods, the softmax function yields a
vector �̂� of predictions �̂�𝑖 = 𝑃(𝑦 = 𝑖 | 𝑥) [27], specifying the probability of each discrete element.

In order to simplify the presentation of neural networks, neurons are typically bundled to layers and calculation
steps are expressed in matrix notation. A layer of neurons is, for instance, given by 𝑔(𝑊ᵀ𝑥 + 𝑏), where the matrix
𝑊 and vector 𝑏 comprise the weights of each individual neuron and activation function 𝑔 is applied to each element
of the resulting vector. Aside from vectors and matrices, tensors find their application in ANNs. Like a matrix,
but without being limited to two dimensions, a tensor is an array of numbers arranged on a regular grid with a
variable number of axes [27]. Illustrations of ANNs are often simplified in a similar way, which means that instead
of showing individual neurons, they depict tensor calculations, network layers, or entire ANN modules, i.e., sets
of layers and calculation steps (see for example [27, 31, 32, 33]). Such a simplified illustration of network layers
𝑔(𝑊ᵀ𝑥 + 𝑏) is also depicted in Figure 2.3. The input layer holds the data passed to the ANN and the output layer
the computed result. All layers in between are so-called hidden layers.

Neurons and layers can be arranged and connected in various manners. Depending on their topology and char-
acteristics, it is possible to distinguish different types of ANNs. The most basic ones are the feedforward neural
network, recurrent neural network, and convolutional neural network (see [27]). In feedforward neural networks,
which are also called multilayer perceptrons, information flows only in forward direction [27]. The ANN depicted
in Figure 2.3 is an example for a feedforward neural network. Recurrent neural networks (RNNs) are used for
processing sequential data. They are characterized by some information flowing backwards and thereby forming
a cycle in which the present value of a variable influences its future value [27]. The cycled information is called
the “state” of the system [27]. Convolutional neural networks process data in grid-like topologies, like time-series
or images [27]. They are neural networks that make use of convolution instead of general matrix multiplication in
one or more layers [27]. For a comprehensive explanation of these types of ANNs, please see [27]. The ANNs
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Figure 2.3: Illustration of an artificial neural network. A neuron receives inputs from its predecessors, performs computations and provides
the result to its successors. For large ANNs, layers of neurons are depicted instead of showing thousands of neurons and their
connections.

generated in the context of this thesis are all feedforward neural networks. However, some are used in a recurrent
fashion.

ANNs are a very powerful tool for modeling. The universal approximation theorem states that “[. . . ] standard
multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of
approximating any Borel measurable function from one finite dimensional space to another to any desired degree of
accuracy, provided sufficiently many hidden units are available” [34], where the term “squashing function” means
a non-decreasing function 𝑓 : R → [0, 1] with lim𝑥→−∞ 𝑓 (𝑥) = 0 and lim𝑥→∞ 𝑓 (𝑥) = 1. In simpler terms, any
continuous function on a closed and bounded subset of R𝑛 can be approximated to any desired degree of accuracy
by a neural network [27, 34, 35].

In order to determine the weights of a neuron the ANN needs to be trained. The goal during training is typically the
minimization of a loss function. There are plenty of loss functions to choose from. Those relevant for this thesis
are presented in the following:

Mean squared error: Let vector 𝑦 = (𝑦1, . . . , 𝑦𝑁 ) contain the target values, and 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) comprise the
associated ANN outputs, then the MSE is[27]

𝑙MSE (𝑥, 𝑦) :=
1
𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2.
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Taking the root yields the root mean squared error (RMSE).

Cross-entropy loss: The cross-entropy between the empirical distribution 𝑝data and the model 𝑝model is [27]

−E𝑥∼ �̂�data [log 𝑝model (𝑥)],

where −E𝑥∼ �̂�data is the expectation under distribution 𝑝data. The minimum is attained if and only if both
distributions are identical (discrete variables) or equal “almost everywhere” (continuous variables) [27].
Depending on the distributions, the negative log-likelihood can be resolved to different functions.

Take a classification task with 𝐶 mutually exclusive classes, for instance. For a single data point, let
𝑥 = (𝑥1, . . . , 𝑥𝐶 ) be a vector of normalized log-likelihoods and let 𝑦 be the index of the true class. Then,
the negative log-likelihood is given by 𝑙NLL (𝑥, 𝑦) := −𝑥𝑦 . Normalized log-likelihoods 𝑥 can be obtained by
applying the softmax activation function to the ANN output 𝑥, followed by a logarithm. Alternatively, it is
possible to incorporate both into the loss function, which yields

𝑙CE (𝑥, 𝑦) := − log(softmax(𝑥)𝑦) = − log

(
𝑒𝑥𝑦∑𝐶
𝑖=1 𝑒

𝑥𝑖

)
.

This loss is named “cross-entropy loss” in the machine learning framework PyTorch (see [36] for the official
documentation) and used in this thesis to predict discrete variables. The losses of individual data points are
combined by computing the average.

In case of 𝐶 = 2, that is, a binary classification task, the negative log-likelihood of a single sample is given
by

𝑙BCE (𝑥, 𝑦) :=

{
− log(𝑥) , 𝑦 = 1
− log(1 − 𝑥) , 𝑦 = 0

= −[𝑦 · log(𝑥) + (1 − 𝑦) · log(1 − 𝑥)],

where 𝑥 is the predicted probability of 𝑦 = 1, and 𝑦 ∈ {0, 1} is the actual observed class. Here again, losses
of individual data points are averaged. PyTorch calls this loss function “binary cross-entropy” [36]. In this
thesis, it is used for solving multi-label classification tasks.

With a loss function in place, which may be a weighted combination of multiple different loss functions, the ANN
can be trained, i.e., the weights of the ANN can be updated in order to minimize the loss. Typically, a gradient-
based optimization algorithm is used for this purpose. Gradient-based optimization is outlined in Section 2.5.3. In
summary, the gradient of a function depends on the point it is evaluated at and points in the direction of the steepest
ascent. Moving the point suitably far in the opposite direction decreases the function value. How far the algorithm
is allowed to step is usually controlled with a learning rate hyperparameter. The smaller this hyperparameter, the
smaller are the updates. For updating the weights of an ANN with a gradient-based algorithm, it is hence necessary
to compute the derivative of the loss function with respect to each weight. This can be done with the so-called
backpropagation algorithm, which involves two steps. Firstly, the forward propagation, in which the ANN output
is computed and the objective evaluated. Then, in the second step, the derivatives are calculated layer by layer,
moving backwards and using the chain rule of calculus [27]. Instead of determining the gradient for each individual
data point, it is usually computed for a (random) set of data points at once. Such a set of data points is called a
batch. For an elaborate explanation of the backpropagation algorithm, please see [27].

The ability to generalize is a desired feature in a learned model. Regularization provides strategies for training
models with better generalization capabilities [27]. According to [27], regularization plays an important role
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as “[. . . ] we might find—and indeed in practical deep learning scenarios, we almost always do find—that the
best fitting model (in the sense of minimizing generalization error) is a large model that has been regularized
appropriately” [27, p. 229]. Moreover, in our past experiments on ANN-based surrogate modeling (e.g., [308]), the
ANNs often failed to generate meaningful output when no regularization was applied. The following regularization
strategies are considered in this thesis:

Parameter regularization: The models created in the context of this thesis are trained with an 𝐿1 parameter
regularization. This means that the term 𝛼 ‖𝑤‖1 is added to the loss function. The hyperparameter 𝛼 ∈ [0,∞]
controls the impact on the total loss [27]. With this added regularization term, bigger (absolute) weights 𝑤
lead to a higher loss. Hence, the optimization algorithm keeps the absolute weights smaller than without the
term. In comparison to the 𝐿2 regularization, the 𝐿1 regularization generally leads to more parameters with
a value of zero [27]. Please note that parameter regularization is usually not applied to the bias 𝑏 and does
require training experiments with different values of the hyperparameter 𝛼 [27].

Early stopping: Typically, during the training of an ANN, the training set error and validation set error are
evaluated periodically. While the training set error generally decreases over time, given the ANN is learning
successfully, the validation set error can begin to rise again. Such a behavior is due to overfitting and can
oftentimes be observed [27]. One strategy to battle overfitting is early stopping. With early stopping, a copy
of the best known model measured by its validation set error is stored and the training is stopped if no better
model is found within a given time frame [27].

Dropout: Dropout is an inexpensive approximation of bagging, i.e., training multiple models separately and
combining their output [27]. In order to apply dropout, so-called dropout layers are integrated into the
ANN, which determine whether the output values of neurons are passed on or not. For ANNs using affine
transformations and non-linear activation functions, like those used in the context of this thesis, this is
achieved by applying binary masks [27]. A simple example is illustrated in Figure 2.4. A binary mask is
sampled for each data point, based on a hyperparameter specifying the fixed and independent probability
for a neuron to pass on its output [27]. There can be multiple dropout layers in an ANN. Aside from
introducing dropout layers, the ANN is trained like before. Given a trained ANN with dropout, there are
different options for making predictions [27]: Firstly, computing the ANN output for different random binary
masks and aggregating the result, for instance, by computing the average. Secondly, having each dropout
layer pass on its expected output by replacing each value of the mask with its expected value. If, for instance,
the probability of sampling a one, i.e., the probability of passing the value to the subsequent layer, is 75%,
the expected value of the mask is 0.75.

Batch normalization: Batch normalization is applied to input or hidden layers by computing

𝑥 (𝑘) − 𝐸 [𝑥 (𝑘) ]√︁
𝑉𝑎𝑟 [𝑥 (𝑘) ]

,

where 𝑥 (𝑘) holds the neuron outputs associated with the 𝑘-th sample in the batch, 𝐸 [𝑥 (𝑘) ] is the expected
output, and

√︁
𝑉𝑎𝑟 [𝑥 (𝑘) ] is the associated standard deviation [37]. During training 𝐸 [𝑥 (𝑘) ] and 𝑉𝑎𝑟 [𝑥 (𝑘) ]

are either running estimates or calculated per batch [27, 36]. Afterwards, both are fixed. Adding batch
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Figure 2.4: Illustration of a dropout layer. Neuron outputs are only passed on with a predefined probability. Which values are filtered changes
randomly every new input. On the right-hand side, three exemplary results are depicted.

normalization prevents the gradient descent algorithm from unnecessary changes to the mean and standard
deviation, since, with such a layer, it has no effect [27]. In PyTorch, the “batch norm” layer computes

𝑥 (𝑘) − 𝐸 [𝑥 (𝑘) ]√︁
𝑉𝑎𝑟 [𝑥 (𝑘) ] + 𝜖

· 𝛾 + 𝛽,

where 𝜖 is a small number added to avoid
√

0, as it has no derivative, and 𝛾, as well as 𝛽 are learnable
parameters [36]. These two parameters are introduced to restore the expressive power of the ANN, which
would otherwise be limited by the normalization [37, 27]. Even though it seems like multiplying 𝛾 and
adding 𝛽 cancels out the normalization, it changes the underlying learning dynamics: while prior to the
normalization 𝐸 [𝑥 (𝑘) ] is determined by the ANN layers, the mean of the batch norm output is 𝛽 [27]. This
makes learning the mean easier, since it eliminates the need to consider the interrelations of all previous
layers [27]. Aside from that, batch normalization sometimes makes dropout unnecessary [27].

2.4.5 Support Vector Data Description

Although the focus lies on ANN-based surrogate modeling, the SVDD plays a prominent role in this thesis. SVDD
is inspired by support vector classification and closely related to support vector machines (SVMs). It was introduced
in [38], building on an idea presented in [39], and is explained in great detail in [40]. The following summary is
based entirely on [40].

The idea of SVDD is to describe a set of data points {𝑥 (𝑘) } by enclosing them in the smallest possible sphere with
radius 𝑅 around the center point 𝑎. Every point within the resulting sphere is considered to belong to the same
class. It can be determined by solving
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min
𝑅,𝑎

𝑅2

s.t.
𝑥 (𝑘) − 𝑎2

≤ 𝑅2, 𝑘 = 1, 2, . . . .

This minimization problem can be adapted to consider outliers by adding a variable b𝑘 for every data point 𝑥 (𝑘) ,
resulting in

min
𝑅,𝑎

𝑅2 + 𝐶
∑︁
𝑘

b𝑘

s.t.
𝑥 (𝑘) − 𝑎2

≤ 𝑅2 + b𝑘 , 𝑘 = 1, 2, . . .

b𝑘 ≥ 0 , 𝑘 = 1, 2, . . . .

In order to penalize outliers, the b𝑘 are added to the target function. Their impact can be controlled with the
parameter 𝐶. With an increasing 𝐶, fewer data points are considered to be outliers, as the radius grows. Using the
method of Lagrange multipliers (see Section 2.5.2), this problem can be reformulated to

max
𝛼

∑︁
𝑘

𝛼𝑘 (𝑥 (𝑘) · 𝑥 (𝑘) ) −
∑︁
𝑘,𝑙

𝛼𝑘𝛼𝑙 (𝑥 (𝑘) · 𝑥 (𝑙) )

s.t. 0 ≤ 𝛼𝑘 ≤ 𝐶 , 𝑘 = 1, 2, . . . .

The center point 𝑎 is then given by

𝑎 =
∑︁
𝑘

𝛼𝑘𝑥
(𝑘) .

Depending on the position of the point 𝑥 (𝑘) , 𝛼𝑘 varies. A value of 0 means that 𝑥 (𝑘) lies within the sphere. If
0 < 𝛼𝑘 < 𝐶, it lies on the surface, and for 𝛼𝑘 = 𝐶 it is outside. The radius is determined by computing

𝑥 (𝑘) − 𝑎
for any point on the surface, i.e., any point 𝑥 (𝑘) with 0 < 𝛼𝑘 < 𝐶. In order to test some point 𝑧, it is sufficient to
compute its distance to 𝑎 and check whether it is greater than 𝑅 or not. Since only those points with 𝛼𝑘 > 0 have
an impact on 𝑎 and 𝑅, they are called support vectors.

By replacing the inner product (𝑥 (𝑘) · 𝑥 (𝑙) ) with a kernel function 𝐾 (𝑥 (𝑘) , 𝑥 (𝑙) ) = (Φ(𝑥 (𝑘) ) ·Φ(𝑥 (𝑙) )), more flexible
descriptions can be generated. The function Φ maps the data points into some other space, which is called feature
space. Ideally it would map to a space where the data points are all within a sphere and all outliers are outside.
There are different options to choose from, like the polynomial kernel, but in this thesis only the Gaussian kernel
is relevant. The Gaussian kernel is given by
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Figure 2.5: Illustration of the support vector decoder approach. Given an SVDD, data points can be mapped into the feature space, where the
decision boundary is a sphere. If a point lies outside the sphere, it can be moved closer to the center point in order to change the
classification result. Based on [11].

𝐾 (𝑥 (𝑘) , 𝑥 (𝑙) ) = 𝑒
−‖𝑥 (𝑘) −𝑥 (𝑙) ‖2

𝑠2 .

The variable 𝑠 is, like 𝐶, a hyperparameter. It determines how tight the decision boundary envelopes the support
vectors. With an increasing 𝑠, the decision boundary expands and the description contains a growing portion of the
vector space.

Support Vector Decoder Approach

Whether a data point lies within the decision boundary or not is determined by its distance from the center point 𝑎
of the sphere in the feature space. Given the data points’ feature space location, the center of the sphere, and the
radius, it is possible to move the point towards and across the decision boundary. This concept is the core of the
SVDD-based surrogate modeling of DERs and called “support vector decoder approach” in [11]. Throughout this
thesis this approach is referenced multiple times. Figure 2.5 illustrates the general process. For the sake of brevity,
the required calculations are omitted. Understanding the basic concept outlined here is sufficient for comprehending
all SVDD related statements throughout this thesis. A detailed explanation, including the associated mathematical
formulas, can be found in [11].

In the first step, an outlier is mapped to the feature space, where its distance from the center is larger than the radius
of the sphere. Then, inside the feature space, the data point is moved in the direction of 𝑎. By setting the step size
appropriately, the data point can be projected onto the surface or pulled inside the sphere. In the final step, the
preimage is calculated. However, depending on the kernel, the preimage may not exist. In case of the Gaussian
kernel, there are only approximate preimages, which can be calculated iteratively [11].
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2.5 Optimization

This section provides a short overview of optimization related concepts mentioned in this thesis. It is meant as a
concise recapitulation of the basic concepts in order to clarify the terminology rather than a proper introduction.
For an actual introduction, please see the respective literature.

In mathematical programming an optimization problem has the general form [41]

min
𝑥

𝑓 (𝑥)

s.t. 𝑔𝑖 (𝑥) ≤ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑚
𝑥 ∈ X ⊂ R𝑛.

The function 𝑓 (𝑥) is called the objective, and the constraints are determined by the real-valued functions 𝑔𝑖 (𝑥), 𝑖 =
1, . . . , 𝑚 [41]. These constraints define the “feasible set” {𝑥 ∈ X|𝑔𝑖 (𝑥) ≤ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑚} by further restricting
the design vector 𝑥 within its domain X [41]. If 𝑥 is restricted to integer values, the optimization problem is
called an integer programming problem [42]. In case some elements must be integers and others not, it is a
mixed integer programming problem [42]. Depending on the objective function and constraints, it is possible to
distinguish different classes of optimization problems. In the following, linear, quadratic, and nonlinear forms are
outlined. There exist many further classes and characterizations, which are not relevant for this thesis, for instance,
convex [42], conic, and semidefinite programming [41].

In linear programming, an optimization problem has the form [41, 42]

min
𝑥

𝑐ᵀ𝑥

s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0,

where vector 𝑐 ∈ R𝑛 holds the coefficients of the objective function 𝑐ᵀ𝑥, and the (𝑚 × 𝑛)-matrix 𝐴 the coefficients
of all constraints [41]. The vector 𝑏 ∈ R𝑚 is the so-called right-hand side of the constraints [41]. A quadratic
program, in contrast, has a quadratic objective function 𝑐ᵀ𝑥 + 1

2𝑥
ᵀ𝑄𝑥, where 𝑄 is an (𝑛 × 𝑛)-matrix, and linear

constraints [43, 42]. Finally, the nonlinear program is the most general class and may be written as [44]

min
𝑥

𝑓 (𝑥)

s.t. 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑝
ℎ 𝑗 (𝑥) = 0 , 𝑗 = 1, . . . , 𝑞.

(2.1)

2.5.1 Computational Complexity

The difficulty of solving an optimization problem, that is, its computational complexity, varies from problem to
problem. There are different factors influencing the computational complexity [45]:
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Figure 2.6: Computational complexity classes in case P ≠ NP and P = NP. Based on [45, 46].

Problem size: The number of variables and different values the variables can attain.

Running time: The hardness of a problem is linked to the running time of an algorithm solving it, that is, the
number of elementary steps required until its termination. It is expressed as a function of the problem size
and specifies an upper bound for the worst-case running time.

Problem reduction: It may be possible to transform the problem into another one.

It is generally distinguished between the problem classes P, NP, NP-complete, and NP-hard [45, 46]. For problems
of class P, there exists an algorithm that, in the worst case, needs polynomial time [45]. In other words, the running
time of the algorithm is a polynomial of the problem size [45]. Problems of the class NP can be solved and any
given solution can be verified within polynomial time by some other algorithm [45]. This is also true for P, which
makes P a subset of NP [45]. The class NP-complete contains problems of the class NP for which there is any
other problem in NP-complete that can be reduced to this problem in polynomial time [45]. Lastly, a problem that
is at least as hard as any problem in NP-complete, that is, a problem from NP-complete can be reduced to said
problem, belongs to the class NP-hard. These relationships are illustrated in Figure 2.6.

2.5.2 Lagrange Multipliers

An optimization problem written in closed form may be solved with the help of the Karush-Kuhn-Tucker condi-
tions [44]. Given a problem in the form 2.1, these conditions are [44]

𝛿

𝛿𝑥𝑘
𝐿 (𝑥, _, `) = 0 , 𝑘 = 1, . . . , 𝑛

_𝑖 ≥ 0 , 𝑖 = 1, . . . , 𝑝
_𝑖𝑔𝑖 (𝑥) = 0 , 𝑖 = 1, . . . , 𝑝
𝑔𝑖 (𝑥) ≤ 0 , 𝑖 = 1, . . . , 𝑝
ℎ 𝑗 (𝑥) = 0 , 𝑗 = 1, . . . , 𝑞.

(2.2)

The function 𝐿 (𝑥, _, `) is the so-called Lagrange function. It is given by [44, 47, 48]
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𝐿 (𝑥, _, `) = 𝑓 (𝑥) +
𝑝∑︁
𝑖=1

_𝑖𝑔𝑖 (𝑥) +
𝑞∑︁
𝑗=1

` 𝑗ℎ 𝑗 (𝑥)

and contains the Karush-Kuhn-Tucker multipliers _ and `, which are often also called Lagrange multipliers [48].
By solving the equations 2.2, optimal solutions of the associated optimization problem can be identified [44]. For
an explanation of the underlying assumptions and as to why these conditions define optimal points, please see [47]
or [48], for instance.

2.5.3 Gradient-Based Optimization

The gradient ∇𝑥 𝑓 (𝑥) of a function 𝑓 is a vector containing all partial derivatives of 𝑓 with respect to 𝑥𝑘 [27]. It
points in the direction of the steepest ascent [44]. Gradient-based optimization leverages this information and may
also make use of higher order derivatives.

The method of the steepest descent, makes steps in the opposite direction of the gradient, i.e., the direction of the
steepest descent, using the update rule [27]

𝑥 ′ = 𝑥 − 𝜖∇𝑥 𝑓 (𝑥).

How far subsequent points lie apart is controlled with the step size 𝜖 . In the context of machine learning, 𝜖 is
the learning rate [27]. The step size can be a given parameter or determined dynamically, e.g., by analyzing
𝑓 (𝑥 − 𝜖∇𝑥 𝑓 (𝑥)) or using some form of momentum [27].

In machine learning applications, usually the goal is to minimize the loss, which depends on the individual training
samples. Often it is too expensive to compute the loss for each sample in the dataset and for each single gradient
step. Stochastic gradient descent provides a solution, by treating the gradient as an expectation [27]. The gradient
is not computed for the entire dataset, but instead for a batch of samples drawn uniformly from the training set [27].

2.5.4 Meta-Heuristics

Meta-heuristics are search algorithms which gather information in some sort of memory and use this information
to decide where to search next in the feasible set [49]. New solutions are generated on the basis of the collected
data and evaluated, yielding new information [49]. There are various meta-heuristics, which are often inspired by
nature, including, evolutionary algorithms, simulated annealing, taboo search, ant colony optimization [49], and
particle swarm optimization. Out of these, evolutionary algorithms are the only ones relevant for this thesis.

Evolutionary Algorithms

Evolutionary algorithms (EAs) belong to the field of evolutionary computing, which emerged from evolutionary
programming, genetic algorithms, and evolution strategies [45]. Evolutionary computing, like the name suggests,
is inspired by the natural evolution of species[45]. The following summary is entirely based on [45].
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Figure 2.7: Outline of an evolutionary algorithm. Based on [45].

In the evolution analogy, the optimization problem constitutes the environment in which individuals (solution
candidates) must demonstrate their fitness (value of the objective function). The idea is that the individuals
compete for resources and by natural selection, the fitness of the population rises. Starting from some arbitrary
initial population, new individuals are created by combining (cross-over) and altering (mutation) existing individuals
randomly based on their fitness. In the next step, the new individuals compete with the existing ones for a place in
the population. Figure 2.7 illustrates this process. It is repeated until a stopping criterion is met, e.g., the objective
function value exceeding a specified bound or reaching a given computational limit.

Often, evolution in an EA takes place in a simplified and abstracted problem-solving space in which solution
candidates are encoded. How they are represented varies between the different dialects of evolutionary computing.
Nonetheless, no matter if it is strings over some finite alphabet (genetic algorithm), real-valued vectors (evolutionary
strategies), or some other encoding, the encoded individual is called a genotype, whereas the solution candidate in
the original problem context is a phenotype. The fitness of an individual is typically assessed in phenotype space
rather than genotype space, as they can be very different from each other. Hence, in order to evaluate an individual,
it is mapped from genotype to phenotype.

There are various options to design a genotype space, as well as the parent selection, recombination, mutation, and
survivor selection steps. However, the basic understanding provided with this short summary is sufficient for the
purposes of this thesis. A thorough introduction to evolutionary computing can be found in [45].

2.5.5 Black-Box Optimization

In a black-box optimization problem it is assumed that the objective and/or constraint functions are black-boxes [50].
The overall goal, like before, is to search for the 𝑥 within the feasible set minimizing (or maximizing) 𝑓 (𝑥). Black-
box optimization is applied in different situations, for instance, when the optimization problem requires extensive
simulations or laboratory experiments, or when the objective function is noisy [50]. The following summary is
based entirely on [50].

Black-box optimization problems can be solved with either heuristic or non-heuristic algorithms. EAs, particle
swarm optimization, and simulated annealing are only some available options. The non-heuristic approaches

29



2 Fundamentals

include direct search methods and model-based methods. An exemplary direct search method is the generalized
pattern search, which makes use of a mesh of points and a set of directions. It repeatedly checks points of the
mesh, as well as points around the current location determined with the set of directions. If a better point is found,
the location is updated. The algorithm is proven to converge under some weak conditions. Model-based methods,
in contrast, construct models of the unknown functions and derive information to guide the optimization. Please
see [50], for an introduction to black-box optimization.

2.5.6 Online Optimization

In many situations there is a need to optimize some process without yet knowing all relevant information. Opti-
mization problems with incomplete or no knowledge of the future belong to the field of online optimization. In
an offline optimization problem, in contrast, the future is completely known in advance [46]. The performance of
online algorithms is typically measured by means of competitive analysis [46]. An online algorithm ALG is called
𝑐-competitive if for any input sequence 𝜎 ∈ Σ the resulting target function value satisfies

ALG(𝜎) ≤ 𝑐 · OPT(𝜎) + 𝑎,

where OPT is an optimal offline algorithm and 𝑎 a constant value [46]. The competitive ration 𝑐𝜏 is defined as [46]

𝑐𝜏 = inf{𝑐 ≥ 1 | ALG is c-competitive}.

2.5.7 Model Predictive Control

Model predictive control (MPC) provides a general framework for solving optimization problems [51]. It makes
use of a feedback mechanism in order to handle uncertainty and disturbances [51], which may for instance be
caused by incomplete knowledge. The basic steps of MPC are [51]: firstly, the utilization of a model to predict
the future. Secondly, determining a sequence of decisions, that is, a control sequence, optimizing the objective
function. Lastly, implementing only the first decision of the control sequence. Each of these three steps is repeated
every single time step. There are no limitations to the implementation of the optimization step, that is, any type of
optimization algorithm may be used [51].

2.5.8 Sequential Decision-Making

Sometimes optimization tasks involve sequential decision-making or can be modelled as a sequence of decisions.
In a sequential decision-making problem, an intelligent agent is interacting with its environment with the goal to
maximize its long-term reward [52]. The agent is the entity making decisions based on the observed state of the
environment and implementing them through its actions. These actions influence how the state of the environment
evolves. The state of the environment, in turn, determines the reward received by the agent. Figure 2.8 illustrates
this process. Although only one agent is depicted, there may be other, external agents within the environment [52].
As an example, consider a robot moving blocks on a plane surface and sorting them by their size. In this example,
the agent is the robot. It interacts with the environment by moving on the plane and manipulating the blocks.
Hence, moving around, picking up blocks, and placing them down are actions performed by the robot. Not every
action is possible at any time. For instance, there needs to be a block, in order to pick it up. Which action to
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Figure 2.8: An agent interacting with its environment. Based on [52].

perform is decided by the robot, based on its perception of the environment provided by its sensors. The reward in
this scenario would be determined by some measure reflecting how well the robot performs in its ordering task.

How an agent behaves is determined by its policy. There are multiple types of policies, ranging from fixed
sequences of actions to stochastic action choices [52]. A policy can be generated in different ways, depending
on the available information about the environment. It is possible to distinguish the planning scenario and the
reinforcement learning (RL) scenario. In the planning scenario, the policy is derived by a planner from a known
and complete model of the environment [52]. The planner is not necessarily the agent [52]. In RL, the agent itself
is the planner, deriving the policy based on the experience gathered from interacting with the environment [52].
The involved learning process can be augmented, for instance, adding simulation models (simulated RL) or learned
models of the environment (model-based RL) [52].

Dynamic Programming for Solving Markov Decision Processes

In dynamic programming, problems are solved by determining the solutions of subproblems and combining them
into a solution for the original problem [53]. In contrast to divide-and-conquer algorithms, where all subproblems
are independent, dynamic programming subproblems may share subsubproblems. Dynamic programming can be
used for deriving optimal policies from a perfect environment model given in the form of a Markov decision process
(MDP) [54]. The summary provided in this section is entirely based on [54].

An MDP is defined by the sets 𝑆, 𝑆+, 𝐴, 𝑅, and the probabilities 𝑝(𝑠′, 𝑟 |𝑠, 𝑎). The state of the environment is 𝑠 ∈ 𝑆,
followed by 𝑠′ ∈ 𝑆+ ⊇ 𝑆, after taking action 𝑎 ∈ 𝐴(𝑠). In case of an episodic problem, 𝑆+ ⊃ 𝑆 contains all states
in 𝑆 plus a terminal state. Which actions are valid is generally depending on the state 𝑠, hence 𝑎 ∈ 𝐴(𝑠). The joint
probability of reward 𝑟 ∈ 𝑅 and the subsequent state 𝑠′ is 𝑝(𝑠′, 𝑟 |𝑠, 𝑎). Usually, a finite environment, i.e., finite sets
𝑆, 𝑆+, 𝐴, and 𝑅, are assumed.

In an MDP, the subsequent state 𝑠′ is only influenced by the current state 𝑠 and the action 𝑎. The state 𝑠 must
hence contain all information relevant for the future, including details of past interactions. This requirement is
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called Markov property. There are methods to construct states having the Markov property from non-Markov
observations.

The goal of dynamic programming is to maximize the expected total reward collected throughout each time step.
This can be achieved by determining either 𝑣∗ (𝑠) or 𝑞∗ (𝑠, 𝑎) satisfying the Bellman optimality equations

𝑣∗ (𝑠) = max
𝑎
E[𝑅𝑡+1 + 𝛾𝑣∗ (𝑆𝑡+1) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣∗ (𝑠′)]

𝑞∗ (𝑠, 𝑎) = E[𝑅𝑡+1 + 𝛾max
𝑎′

𝑞∗ (𝑆𝑡+1, 𝑎
′) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

=
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾max
𝑎′

𝑞∗ (𝑠′, 𝑎′)]

for all 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆+, and 𝑎 ∈ 𝐴(𝑠). The parameter 𝛾 ∈ [0, 1] is a fixed discount factor. The index 𝑡 determines the
time step. Both functions provide the maximum expected total reward achievable when starting from state 𝑠 in time
step 𝑡 and, in case of 𝑞∗ (𝑠, 𝑎), taking action 𝑎. Fortunately, approximations of 𝑣∗ (𝑠) and 𝑞∗ (𝑠, 𝑎) can be calculated
and improved with the help of these particular equations. With either 𝑣∗ (𝑠) or 𝑞∗ (𝑠, 𝑎) at hand, it is possible to
determine the action 𝑎 yielding the maximum expected total reward.

A policy 𝜋(𝑎 |𝑠) maps the state 𝑠 to probabilities of selecting each action. The expected total reward achieved with
policy 𝜋, starting from state 𝑠 in time step 𝑡, is given by the so-called state-value function for policy 𝜋:

𝑣𝜋 (𝑠) =
∑︁
𝑎

𝜋(𝑎 |𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)] .

The action-value function for policy 𝜋, i.e., 𝑞𝜋 (𝑠, 𝑎), is defined analogously. Policies can be ranked according
to the expected total reward. An optimal policy 𝜋∗ yields the maximum expected total reward. There may be
more than one such policy. The optimal state-value function is 𝑣∗ (𝑠) = max𝜋 𝑣𝜋 (𝑠). For further explanations and
concrete algorithms, it is referred to [54].

Reinforcement Learning

RL also has the objective of determining an optimal policy. However, the policy is derived from experience rather
than a complete model of the environment. There are various approaches to RL, each with its own benefits and
challenges [55]. While some approaches explicitly learn a policy function 𝜋(𝑎 |𝑠), for instance in the form of an
ANN, others do not. If no explicit policy function is learned, the actions are selected on the basis of other models,
e.g., a learned approximation of 𝑞𝜋 (𝑠, 𝑎) or a learned model of the environment’s dynamics [55]. Some approaches
even combine a learned policy with additional models (see [55, 54]).

Learning a model of the environment’s dynamics and using it in order to derive or improve a policy is called
model-based RL. A model of the dynamics provides either 𝑠′ [55] or (𝑠′, 𝑟) [54], given the state 𝑠 and action 𝑎.
Only the subsequent state 𝑠𝑡+1 = 𝑠′ is relevant in the following. In the deterministic case, the transition function
𝑓 (𝑠𝑡 , 𝑎𝑡 ) = 𝑠𝑡+1 provides this state. In a stochastic environment the dynamics are given by 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). Therefore,
trained with the data collected from the environment [55, 54], a learned model of the dynamics approximates either
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𝑓 (𝑠𝑡 , 𝑎𝑡 ) or 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). There are again various options for implementing model-based RL. The dynamics
model may, for instance, be utilized in an MPC approach, or provide gradients via backpropagation to compute
policy updates [55]. For an introduction into RL, including model-based RL, please see [55] and [54].

Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a planning algorithm which simulates how a sequence of decisions unfolds,
makes estimates of the value function, and uses this information to direct the search towards better trajectories.
Simulation in this context means the repeated selection of actions according to some policy until a terminal state is
reached. With the help of these simulation results, a decision tree is built, step by step. Starting from the initial state
at the root, each state equates to a node and each action to an edge. An iteration of MCTS involves the following
steps [54]:

1. Selection: Starting from the root, the tree is traversed following a tree policy until a leaf is reached. Which
edges, i.e., actions, are selected is influenced by the estimates of the value function.

2. Expansion: In this step, an arbitrary number of child nodes can be added to the selected leaf.

3. Simulation: Using a rollout policy and starting at either the selected leaf or the newly added child nodes, a
simulation run is conducted.

4. Backup: The simulation result is used to update the estimates of the value functions in the generated tree.

These steps are repeated until a given time or computational budget is exhausted [54]. Then, one action leaving
the root node is selected and the entire process is repeated once the environment reaches its subsequent state [54],
solving the optimization problem in an MPC fashion. MCTS is a component of some artificially intelligent system,
such as AlphaGo, which was able to win against the 18-time world champion in the game Go [54].
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In order to control DERs, their flexibility needs to be modeled and communicated. Plenty of models are presented in
the literature, usually in the context of some specific use case. The proposed models are mostly byproducts, created
in process of investigating some other topic. Such modeling approaches are listed and compared in Chapter 4, where
an extensive literature review is presented. This chapter focuses on related publications that explicitly investigate
the exploitation, communication, and modeling of flexibility.

3.1 Exploitation of Flexibility

Exploitation of flexibility means making use of DERs by controlling their operation. Control can be achieved
in different ways. Mauser [5] distinguishes three different types of exploitation: the direct physical DR, indirect
market DR, and other DR signals. As the name already indicates, in direct physical DR, DERs are controlled
directly, for instance, by means of load reduction signals. The indirect market DR, in contrast, provides market
related incentives, such as real-time prices, to adapt DER schedules. Exemplary other DR signals that do not
fall under the previous two categories are warning notices and visualizations of the grid-state [5]. These three
categories are the basis for the exploitation patterns proposed in [316] and which are explained in Section 4.2.

Another, similar classification is proposed in [56]. It is distinguished between autonomous control, indirect control,
transactional (marked-based) control, and direct control. In this classification, direct control is equated to central
decision-making and makes use of either one-way communication or two-way communication [56]. The other three
types are attributed to local decision-making, where autonomous control means no communication at all, indirect
control means one-way communication, and transactional control makes use of two-way communication [56]. This
distinction in terms of decision-making and communication provides simple criteria for classifying exploitation
schemes. However, the literature provides many coordination approaches for which this framework fails, especially
for multi-agent systems, where agents act autonomously but often exchange information (see Section 4.3.5 for some
examples).

3.2 Modeling Flexibility

While the literature makes use of a wide variety of models for DERs and their flexibility, the topic of modeling itself
is only discussed occasionally, typically in the form of a review, a newly proposed generic model, or a combination
of both (like in this thesis). For an extensive review of modeling approaches, please see Chapter 4. A selection of
reviews presented in the literature is showcased in the following.

Applications of different white-box, grey-box, and black-box approaches for the modeling of buildings are discussed
in [22]. The presented black-box approaches include ANNs and SVMs, but only for the purpose of generating
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forecasts. Furthermore, white-box, grey-box, and black-box modeling is discussed in general. In [57], a short
review of building energy models in the context of DR is presented. The discussion of the modeling techniques
mainly focuses on the distinction of white-box, grey-box, black-box models. The authors conclude that building
characteristics need to be taken into account in DR applications and propose the investigation of clustering
techniques [57].

A review of techniques for the modeling of heating, ventilation, and air conditioning systems is presented in [58].
It discusses several white-box, grey-box, and black-box approaches, and many associated data-driven models. One
of the presented techniques is the “subspace state space identification (4SID)” [59], which makes use of a discrete
time, linear state space model. It predicts the state and an output vector, given the previous state and an input
vector. At a first glance, this is similar to the state-based simulation approach, which is presented and evaluated in
this thesis. However, both approaches are very different from each other, since the state vector holds different kinds
of information. In [59] the state vector reflects an internal process state and is only estimated from the observed
system inputs and outputs, like the state of a hidden Markov model. Furthermore, the method for estimating this
internal state vector depends on the fixed and specific model structure.

The flexibility of the heat demand in buildings and district heating systems is investigated in [60] by means of
a literature review. It discusses a variety of definitions for the term “flexibility”, presents several metrics and
quantification methods, and names different sources of flexibility in such systems.

Agent-based modeling and simulation in smart grids is reviewed in [61]. Aside from a discussion of key concepts,
like the definition of an agent, it presents a variety of publications that make use of multi agent systems. Almost all
the presented literature considers DR, some kind of energy market, or a combination of both. Furthermore, some
of these DR mechanisms and markets are briefly summarized and explained.

The literature provides more such reviews. From a modeling perspective, they mainly describe different approaches
for modeling the flexibility of DERs. Sometimes these descriptions are more technical (e.g., [22] and [58]),
discussing equations and concrete models, and sometimes more general (e.g., [57]), merely naming a few abstract
categories.

3.3 Surrogate Modeling

Surrogate modeling for the purpose of describing the flexibility of DERs is not a novel idea. In [62], the authors
propose the utilization of SVDDs in order to encode the space of feasible load schedules. With the help of an
SVDD, feasible schedules could be identified by classifying randomly created schedules and filtering valid ones.
This idea was later refined by considering the preimage of the SVDD sphere [63] instead of making random guesses.
Then, in the next step, the concept was augmented by a mechanism able to project an infeasible schedule onto
the set of feasible schedules [64]. A description of this mechanism can be found in Section 2.4.5. This mapping
from infeasible schedules to feasible ones has been integrated into different optimization algorithms (see [11]) and
coordination approaches (e.g., [65]).

Potential alternatives to the SVDD that have been proposed are classifiers [12, 66, 67, 68], and Chi-shapes [69],
i.e., concave hulls around a set of points described in the form of a polygon.

In Section 5.2, surrogate modeling in the context of EAs is addressed. Using surrogates in an EA is not a novel idea
either. An illustration of an EA and the steps in which surrogates may be used are presented in [70]. Applications
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for the initialization, recombination, mutation, local search, and fitness evaluation are pointed out. However, in
the named examples, the surrogates mostly provide estimates of the fitness values of individuals. In this thesis, in
contrast, the idea of substituting an entire step of the EA by surrogates is considered.

3.4 Learning About Flexibility

One motivation for the investigation of ANN-based surrogate models for the flexibility of DERs is the potential of
learning them from recorded data. The utilization of energy time series to assess a flexibility potential is subject
of [71] and [72]. In the presented procedure, so-called motifs, that is, similar sequences within a time series, are
detected and used to compute flexibility measures. However, as the authors point out, the derived ratings are merely
indicators for a potential flexibility, as the underlying processes that generated the energy time series are unknown.
It is elaborated more on this limitation in Section 5.2.

Applications of RL in energy management may also be seen as a related concept. Depending on the RL algorithm,
the models have to learn about the dynamics of the controlled DERs. An extensive review of the utilization of RL
in DR applications is presented in [73]. Model-free RL in the form of Q-learning is the most popular RL approach
in this context [73]. It involves learning the action-value function 𝑞(𝑠, 𝑎) (see Section 2.5.8). As the name suggests,
model-free RL does not learn an environment model. Model-based RL, on the other hand, involves learning a
model of the environment and therefore learning a model of the controlled DERs.

3.5 Flexibility of Chemical Processes

The concept of operational flexibility is by no means exclusive to the field of electrical engineering. In 1985,
Swaney and Grossmann [74] proposed a flexibility index which measures the size of the parameter space over
which chemical plants can operate in a feasible steady-state. This index is the root of the feasibility analysis
for chemical processes [25]. However, even though the identical terminology is used, the notion of flexibility is
slightly different. The operational flexibility of a process relates to a set of uncertain parameters. These parameters
influence the process, but do not control it. In contrast, in the context of smart grids and with the definition of
flexibility used in this thesis, flexibility relates to the consumed and provided power, that is, the control variables
themselves. While it is possible to exploit flexibility in smart grids indirectly, for instance using price signals, the
underlying flexibility is still understood in terms of energy and not money or some other quantity. Nevertheless,
the basic concepts are still related and, thus, the field of chemical engineering may provide ideas which may be
transferred to smart grid applications.

Surrogate models also find their application in the field of chemical process engineering. An overview of their
different uses is presented by [25]. Several applications, including optimization, dynamic process modeling, and
the already outlined feasibility analysis, are named. In case of dynamic process modeling, the surrogates are used
to forecast the state of a process, based on prior states and the control variable inputs [25]. One example for this is
presented in [75], where a kriging model provides forecasts of the state in the discrete time step 𝑡 +1, given the state
in time step 𝑡 and the control input. Other types of surrogates named in [25] are polynomial regression models,
and ANNs. This utilization of surrogates is closely related to the state-based simulation approach presented in this
thesis.

37





4 Communicating the Flexibility of Distributed Energy
Resources

Many different concepts of how the flexibility of DERs could be utilized are proposed in the literature. The
corresponding architectures and exploitation mechanisms vary vastly from approach to approach. By addressing
the first principal research question and its subquestions, this chapter aims to organize the approaches found in the
literature in order to build a foundation for more precise evaluations and comparisons of the different concepts.
The primary question RQ1 “Which models can be used for communicating flexibility?” is answered by means of
investigating the three more specific questions RQ1.1 to RQ1.3, and then putting them into context. In regard to
the individual questions, the chapter is structured as follows.

RQ1.1 What are the motivations for communicating flexibility?
This is the primary question of Section 4.1, and is answered based on current literature. The question is
investigated in order to make sure no relevant aspects for the subsequent analyses are missed.

RQ1.2 How can flexibility be communicated and exploited?
Building upon the classification scheme we proposed in [316], more elaborate patterns for the exploitation
of flexibility have been developed. The patterns are presented and discussed in Section 4.2, incorporating
concepts we previously published in [313], [312] and [308]. The refinement has been conducted alongside
the literature review for question RQ1.3.

RQ1.3 Which modeling approaches do exist and how can they be categorized?
A literature review has been conducted for answering this question. Its results are structured with the help
of the newly defined patterns. The methodology of the review, the retrieved and classified literature, and
generalizations are presented in Section 4.3. Then, using the findings of the literature review, Section 4.4
discusses general approaches for modeling flexibility and structures them in the context of communication.
Thereby RQ1 itself is answered. Two of our previous publications [314, 313] are included in the review.
Additionally, concepts proposed in [312] and [308] are referenced.

After answering these research questions, Section 4.5 applies the developed systematics for classifying approaches
to the different concepts for exploiting flexibility proposed in the German research project C/sells.

Before discussing the motivation for communicating flexibility and therefore the need to model it, it should be
pointed out that the discovery of flexibility is not subject of this thesis. Discovering flexibility, i.e., detecting the
potential for altering the schedules of DERs, is a fundamental and essential step prior to the exploitation itself. It
is assumed that at some point flexibility has been discovered and shall now be made available to some external
party. Nonetheless, Chapter 5 can provide starting points to automate the discovery of flexibility, as it introduces
modeling approaches where the descriptions can be automatically generated and encode the flexibility learned
from the provided data. The major prerequisite is that the available data itself must reflect the actually available
flexibility.
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4.1 Motivations for Communicating Flexibility

This section is based on [5] and [76], as both present elaborate discussions and reviews on the usage of flexibility in
the energy system. Since providing flexibility to some external entity often involves communicating a quantification
of it, there is an overlap of the respective motivations. Hence, it is first necessary to look into motivations for the
general provision, before deducing incentives for the communication itself.

Fundamentally, flexibility is required to deal with fluctuations of the net load caused by uncertainty and variability,
and to resolve contingencies in the electrical grid [76]. Therefore, the (qualitative) security of supply is one possible
incentive. Regarding the demand side, looking into DSM and DR can provide more possible motivations. Goals of
DR include the integration of RESs, faster load balancing by adjustment of consumption, reduction of cost due to
lower capacity requirements, balancing of fluctuations in the production of electricity, avoiding costly units in the
merit order, reduction of GHG emissions, and reduced market prices when there are DR market participants [76].
Multiple of these points are related to costs, i.e., monetary incentives. In each previously named motivation the
exploitation of flexibility is assumed. This means that the potential to influence the operation of DERs is utilized
by deriving suitable control signals. However, it is also possible that a flexibility provider receives a compensation
solely for delivering a description of their DERs’ abilities. This could be the case when data is required for
a planning process, for example, in the computation of dynamic prices. All indirect measures summarized as
“market demand response” (see also [5]) in Figure 2.1 could make use of the DER descriptions in order to derive
more impactful price signals. When considering the individual descriptions, it is possible to assess whether a price
change is likely to have an influence on the behavior or not. Depending on the model, it may even be possible to
make precise estimations of the resulting load. The resulting tariff itself may already act as a form of compensation.
Another example could be a service that reads and processes the descriptions and derives suggestions, for instance
in regard to future investments in complementary DERs. The compensation in this case is non-monetary, in the
form of advice, or the owner of the DERs may even pay for such a service.

Emissions of GHG may be summarized under the more general category of environmental incentives. Measures of
DSM listed in [5] are warning notices, visualization, priority signals, as well as energy efficiency and conservation.
Aside from taxes, standards, and building codes, efficiency and conservation measures include the provision of
information and energy audits. Based on these, possible motivations could also include the derivation and provision
of information, for example in form of a label, comparable to energy labels for household appliances.

Although these motives have been derived from the goals of DSM and DR, they are not limited to the demand
side. System operators may want to exploit flexibility to reduce grid investments [76], which is again a monetary
incentive. Suppliers generally aim to be profitable and hence have monetary motivations, too. The goal to
participate in various energy markets can be derived from this motivation. Furthermore, these companies may
also have environmental targets or aim to operate transparently. A method for visualizing operational flexibility in
power systems is proposed in [77]. Such visualizations can help in assessing available operational options and thus
help in planning processes. This may constitute a desire to be able to request data from decentralized DERs.

A closer look at energy sharing communities provides another perspective on the subject. Different incentives for
shared ownership of DERs are discussed by [78]. Those applicable to the topic in question are mainly monetary
compensations, acceptance, as well as ethical and environmental motivations. Acceptance is closely related to
transparency, as transparency may be used to generate acceptance. Other motivations related to communities
and collaboration may be the usage of “locally generated” energy (in a spatial sense), or simply altruism. Local
balancing, which is basically the result from covering demand by consuming locally generated energy, is for
example an important aspect considered in cellular energy systems. Such cellular energy systems are, for instance,
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investigated in the project C/sells and in the context of the project GOFLEX [79]. Altruism in the community
mainly means supporting neighbors and other members of the community.

Finally, there could always be a law requiring announcing and offering flexibility. An example is the remotely
controlled reduction of solar power feed-in in Germany as governed by § 9 of the Renewable Energy Sources Act [3].
For small installations affected by the law, there is no feedback, i.e., the flexibility is not communicated in this case,
and hence only estimated. For large installations of more than 100 kWp, on the other hand, communication is bi-
directional. In this case, by requesting the current feed-in power, the system operator knows the exact consequences
for each possible control signal.

Potential barriers for DSM and DR are discussed in [76]. Two concerns closely related to the exploitation of
flexibility are privacy and data security. The subsequent sections in this chapter introduce a set of patterns and
present the results of a literature review. From these it is apparent that whether and to what extent these concerns
may be an issue depends on how the exploitation is achieved. Nevertheless, these concerns may constitute the
motivation to voluntarily offer highly abstracted descriptions instead of, for example, allowing direct access to a
DER.

A summary of identified motivations for quantifying and communicating available options for influencing local
DERs’ operation to some external entity is given in the following:

Monetary incentives: Most of the identified incentives are related to money. They include receiving compensa-
tions for allowing DERs to be influenced, favorable tariffs, reduced market prices, reduced cost for balancing
load and supply, and reduced infrastructure costs. Additionally, in communities, cost may be avoided by
balancing load and supply within the community.

Security of supply: The contribution to the security of supply comes primarily from participating in a scheme for
flexibility exploitation. Those cases generally require communication in order to participate. Nevertheless,
security of supply may still increase even if only information is provided and DERs cannot be influenced.
Given the additional information other agents in the power grid are able to incorporate these data in their
planning.

Environmental incentives: Reduction of environmental damage, e.g., by averting the usage of peak load
plants [76]. Also, in the context of local balancing of supply and demand, potentially reduced need for
transmission infrastructure.

Altruism: Especially in communities, DER operation may be coordinated so that DERs work collaboratively even
though it involves personal cost or discomfort.

Legal compulsion: The legal obligation to participate in any affair requiring the communication of DER infor-
mation.

Visualization: Visualization of flexibility may be used for multiple purposes, like assessing options to react on
fluctuations. Furthermore, it can help with the subsequently named motives.

Awareness: Given a suitable presentation, the data may be used to raise awareness on energy related topics like
distributed generation, the impact of installing heat pumps, or scheduling decisions. While this, of course,
may be done with any public data set, the topics are presumably more comprehensible when actual personal
data is used and personal implications are shown. When it comes to scheduling, a visualization of alternative
schedules can illustrate the consequences of certain decisions.
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Planning of investments: General knowledge on available flexibility may be considered in grid planning, but also
when it comes to investments in other DERs. The latter could be supported by online services which receive
the description and derive suitable investment offers.

Transparency: Quantifying and publishing the range of operational alternatives could be employed as a measure
for increasing transparency. This data can then be used to reenact and analyze past situations and would be
especially interesting for scientific applications.

A mail-back survey conducted in New Zealand investigated the motivation of residents to participate in peak demand
response. The results have been published in the year 2011 in [80]. Participants could value the importance of
price, environmental aspects and security of supply on scale from 1 to 5. Out of these options, price was valued
most important, closely followed by security of supply. The valuation of environmental benefits was significantly
lower than the other two. These findings indicate that monetary incentives and security of supply may also be the
main motivation for communicating flexibility. However, it is important to note that in the context of the recent
global climate protests, repeating the study today could result in different findings.

4.2 General Patterns for the Exploitation of Flexibility

The literature makes use of various approaches for the coordination of DERs, which require the exchange of all
kinds of information. Often multiple approaches for the exploitation of flexibility are used in a single publication.
For the purpose of structuring the findings of the literature review presented in Section 4.3 and enable further
analysis, a detailed classification is necessary. Focusing on demand response, in [316] we presented four general
patterns for communicating and exploiting flexibility. The four patterns can be described as follows:

Physical demand response: The DSMgr receives states and further information from DERs, and uses these to
send control signals, such as on/off commands and set points, directly to each DER.

Direct market demand response of abstracted flexibility: The flexibility of DERs, either individually or com-
bined, is explicitly described in a model. This model is sent to the DSMgr, who chooses how to use the offered
flexibility, employing model specific algorithms. The resulting choice is sent back to the EMS managing the
DERs.

Indirect market demand response of implicit flexibility: In this pattern flexibility is exploited by providing in-
centives, e.g., dynamic electricity prices. The pattern can be implemented without explicitly modeling the
flexibility. Following the incentive is generally not mandatory, but deviation generally results in higher cost.

Decentralized market demand response: Coordination is achieved in a distributed manner, for example by auc-
tions or distributed heuristics.

In order to allow a more detailed analysis with regard to the modeling, communication, and coordination, these four
patterns have been refined for this thesis. Figure 4.1 depicts the five patterns that have been derived. The sources
of flexibility are the DERs owned by the flexibility provider. Flexibility is provided to one or multiple external
entities, for example, but not limited to, an aggregator, a system operator, or some other kind of DSMgr. Since the
individual DERs are usually not equipped to communicate with any external parties themselves, in general, some
kind of gateway is required. In simple scenarios, this gateway forwards messages between the DERs and the external
party. More advanced coordination schemes require intelligent systems that handle the communication, evaluate
the results, and manage the DERs accordingly. EMSs are able to provide both functionalities. For this reason,
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Figure 4.1 depicts EMSs as communication interfaces on the side of the flexibility providers. The external parties
also provide an interface for exchanging the pattern specific data. In the case of stigmergy (see Section 2.2.2 for
a short introduction), the shared medium is considered to be the external entity and the device used for observing
its state embodies the interface. There are two prominent changes in comparison to [316]. Firstly, the direct
market demand response of abstracted flexibility pattern has been split into two separate patterns. Secondly, the
decentralized market demand response pattern is replaced with a more generalized pattern for the exploitation based
on state information. Even though this new pattern matches the general implementation of distributed coordination,
this distinction avoids unifying all distributed and decentralized control structures in one single communication
pattern. Take a model that describes feasible schedules, for example. Such a model may be used in centralized,
as well as distributed coordination approaches. To facilitate this distinction, whether an approach is centralized or
not is seen as an additional attribute, but not as a criterion for the classification itself. The patterns and therefore
the classification primarily distinguishes the type of information that is communicated. In Figure 4.1 only basic
information that is exchanged is depicted. Communication is of course not limited to exactly this data and the two
depicted steps of data exchange. Generally, the communication from the flexibility provider to the external entity
may be preceded by other messages, for instance, the external entity announcing that they are in need for offers
from the flexibility providers. Additionally, after the depicted information exchange, the flexibility provider may
respond and provide feedback. Such feedback messages can be used for implementing iterative approaches, e.g.,
for updating electricity prices as found in [81] and [82].

Direct exploitation: The first pattern shown in Figure 4.1 shows the direct exploitation of flexibility. In this
pattern the external entity has detailed information on the current states and is provided with measured load profiles
and forecasts. Control signals directly target the individual DERs. The signals are usually derived using explicit
models of the controlled DERs. Hence, the local usage of DERs is fully transparent for the external party during the
provision of flexibility. Depending on the type of DER it may be possible to infer private information concerning
the flexibility provider. A closer look on the types of models is provided in Section 4.3.1.

Exploitation of abstracted flexibility: In the exploitation of abstracted flexibility more abstract models are used
to describe the DERs. This raises the question of how this pattern is different from the direct exploitation pattern.
Generally speaking, models are simplified representations of systems, i.e., involve some level of abstraction.
Hence, the direct exploitation pattern also uses abstract descriptions of flexibility. The difference is that for the
direct exploitation the DERs are represented by individual DER specific models. Models for the exploitation of
abstracted flexibility are more general and can usually be applied for different kinds of DERs. Nevertheless, this
criterion alone does not suffice for a clear distinction between the two patterns. Take the ability to start and stop a
DER, as an example for a very general representation of any device. While many different DERs may be described
in such a way, especially generators and loads, this exact model may still be used exclusively for one specific device
and thus in a DER specific way. Hence, the context in which the model is utilized plays a crucial role. There
is undoubtedly a grey area between the first two patterns. However, there are approaches using highly abstracted
representations, such as an SVDD (e.g., [62]). For these, the whole process from generating the model to deriving
and communicating suitable flexibility choices is different from the direct exploitation. Hence, the introduction of
a pattern for the exploitation of abstracted flexibility is required to allow a more differentiated analysis. In order to
clearly distinguish and classify approaches from the literature two simple criteria have been developed and used.
Since abstraction is a process of generalization, it involves eliminating details [19]. Hence, a more abstract model
is suitable to represent a wider range of DERs classes. Therefore, an approach is deemed to exploit abstracted
flexibility, if it makes use of a specific model for more than only one type of DER. The basic types of DERs are
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considered to be generators, storage systems, and loads. If in a publication a model is used for only a single type,
even though it could also describe others, it is not considered to be exploitation of abstracted flexibility. In other
words, the utilization of a model able to represent multiple types of DERs is a necessary property, but not sufficient
on its own. Whether the model is used in this way or not, is considered the determining factor in this thesis. The
second criterion is the aggregation of multiple DERs. If in a publication a model is used for communicating the
aggregated flexibility of DERs, it is regarded as exploitation of abstracted flexibility. It is important to note that
patterns are often combined. For instance, there are approaches in the literature that optimize or place market offers
based on aggregated models, but nevertheless use the direct exploitation pattern for controlling the DERs (e.g., [15]
and [83]). Hence, if existent, the different levels in the coordination mechanism have to be distinguished.

Market-based exploitation: Closely related to the exploitation of abstracted flexibility is the pattern for market-
based exploitation. As markets generally utilize standardized products, which can be interpreted as a shared model
for all types and aggregates of DERs, the major difference from the exploitation of abstracted flexibility lies in
the existence of a market. Models used in such markets are often highly abstracted and may not suit every DER.
After collecting offers, the market is cleared using a clearing algorithm. The result, in its simplest form a note
that the offer has been accepted, is then communicated to the flexibility provider who submitted the offer. The
clearing process may also generate more complex output, such as a target power selected from an offered interval
(e.g., [84]). Reserve markets are a special case in the market-based exploitation pattern. Depending on the type of
reserve, the actual provision of flexibility is achieved with the help of direct signals or observed information like
the power line frequency. This secondary exploitation pattern has been omitted in the classification in Section 4.3,
as it is tied to the respective market and product. It is important to note that since it is possible to mix multiple
exploitation mechanism into a singe approach, classification can sometimes be difficult and influenced by personal
views, especially in regard to whether a market exists or not. In this thesis, requests and offers are only considered
market bids, if prices are transmitted alongside. A fixed price is simply seen as a compensation and does, on its
own, not constitute market-based exploitation. The same applies for requests and offers without prices.

Indirect exploitation: The indirect exploitation pattern covers all cases where some kind of incentive is offered
to a flexibility provider in order to influence their behavior. It is up to each flexibility provider if they react or not.
Figure 4.1 depicts tariffs as a response to the optionally provided states, load profiles, and forecasts. These optional
data may be used to make targeted adaptations of the individual tariffs. It is important to note that this pattern is
by no means restricted to electricity tariffs. Aside from the manifold existing pricing schemes it also includes any
other approach that is based on monetary incentives. Please note that demand bidding programs, in contrast to [5],
are interpreted as market-based exploitation, since they involve submitting a bid and acting when requested to.
When there is no information sent to the external party, the communication can be considered one-way, in contrast
to the two-way communication generally used (compare [85]) in the direct, abstracted flexibility and market-based
patterns.

State information based exploitation: Finally, the state information based exploitation is closely associated
with decentralized and distributed coordination, as the flexibility providers do not receive explicit requests for
changing their behavior and, consequently, the DERs’ schedules. In the case of decentralized coordination (as
defined in Section 2.2), no data is exchanged between flexibility providers [86]. Hence, the only source for external
information is a shared medium which reflects the global state. An example for such a medium is the electrical
grid which is observable by metering devices. In distributed coordination architectures, data is shared with one or
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multiple external entities which may be flexibility providers themselves. However, distributed approaches are not
restricted to this exact pattern. The pattern involves the exchange of the local information with external entities,
the observation and manipulation of a shared medium, or both. Local information refers to the current states,
measured load profiles and forecasts. After retrieving this information from the respective source, it is utilized by
the flexibility provider to update the DER schedules. When using a liberal interpretation of the term “state”, any
data connected to the DERs’ operation can be exchanged in this pattern.

Table 4.1 helps to gain a better understanding of the individual patterns. The type of the data received from the
external entity plays a crucial role in the distinction. In the first three patterns the external entity more or less
directly instructs the DERs (direct exploitation) or the EMS (exploitation of abstracted flexibility and market-based
exploitation) on what to do. For the remaining two patterns, a reaction is generally voluntary, but not adhering
may cause disadvantages. Incentives are offered for the indirect exploitation. For the exploitation based on state
information, it is possible to distinguish even further. If the received data is associated with individuals, consider
load schedules of flexibility providers, for instance, agents can observe their surrounding and coordinate their
actions directly. This does not necessarily mean a peer-to-peer communication. Such information may easily be
shared via some form of shared memory, like a virtual blackboard. In this thesis, this is called “exchange of state
information”. If, on the other hand, the received information is an aggregated signal, i.e., it is not possible to know
individual contributions to this signal, the approach is considered to be stigmergic. There is sometimes only a
fine line between approaches based on stigmergy and others based on exchanging state information. This point is
illustrated in the argumentation outlining why the presented mechanism in [18] is stigmergic [18, pp. 68-70].

Table 4.1: Distinction of patterns based on communication endpoint.

External entity. . .
. . . demands action . . . sends incentives . . . provides state information

Direct,
Abstracted flexibility,

Market-based
Indirect

State information is associated with . . .
. . . individuals Exchange of state information
. . . aggregate Stigmergy

4.2.1 Communicating Models for the Flexibility of Distributed Energy Resources

The actual exchange of flexibility models is only indicated in Figure 4.1. While the exploitation based on exchanging
and observing state information, as well as the indirect exploitation do not necessarily require exchanging models for
the DERs’ flexibility, the remaining patterns do need them. In the market-based exploitation the offers are generally
standardized. Therefore, every market participant knows the common data structure. The direct exploitation, on the
other hand, requires the external party to have sufficient knowledge of the DERs to interpret the received data and
derive control signals, e.g., by using a standardized interface. The interface provided by the control boxes offered
for the smart metering architecture in Germany is such an example. In-between lies the exploitation of abstracted
flexibility, where models are versatile and standardized to some extent, but not DER specific. In some cases
the models for the exploitation of abstracted flexibility are individually generated, for example, in an automated
process, which allows an even more detailed differentiation of approaches. Figure 4.2 shows the general process of
communicating models that are created by the individual flexibility providers. The model with its parameters, after
being generated, is sent to the external entity. The external entity stores this information for later use. In order to

46



4.3 Literature Review

EMS

External entity

Interface
Flexibility model and parameters

Flexibility provider

Time

EMS

External entity

Interface
State variables

Flexibility choice

Flexibility provider
Time-triggered

Event-triggered

Step 1: Model generation Step 2: Communication Step 3: Storing model

𝒜DER

DER

DER
𝒜

𝒜DER

DER

DER
𝒜

Step 4: Exploitation

Figure 4.2: Communicating individually generated models, based on [313].

determine the currently available flexibility, the current state is required in addition. Once triggered by a schedule
or another defined event, the current state is sent to the external entity, who is then able to derive a flexibility choice
if required. Whether generation and actual exploitation can be separated, depends on how long the generated
model remains a valid representation. Approaches like the cascade classification [12, 67] and SVDD [62, 63, 87]
encode the current state within the model and, thus, need to be generated whenever the state has changed. For such
models, all the steps depicted in Figure 4.2 have to be repeated every time. Other approaches that allow to pass the
current state as an input argument, e.g., when using ANNs [312, 308], can omit the repeated model generation and
communication steps as long as the system parameters don’t change.

4.3 Literature Review

The refinement of the exploitation patterns presented in the previous section has been conducted in conjunction with
a literature review. This section presents the results of the review using the revised patterns as basis for structuring
the findings. In order to select a literature database, different popular databases have been tested with search queries,
resulting in the choice of Scopus. Scopus is advertised as being “[. . . ] the largest abstract and citation database
of peer-reviewed literature: scientific journals, books and conference proceedings”. Results include matches from
IEEE Xplore, Springer, and, of course, Elsevier. The search query the review is based on is
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Table 4.2: Terms used in the search query.

Word A Word B Word C Word D
communicat* model* flex* “smart grid”
coordinat* encod* “search space” “micro grid”
exchang* quantif* feasib* “demand side”
exploit* characteri* operab* “demand response”
framework “distributed energy resource”
taxonomy “load management”
categor* “load balancing”

“load shifting”

(
{Word A} W/16 {Word B} W/16 {Word C}

)
AND {Word D},

with Word A to Word D being either of the terms found in the respective column of Table 4.2. In other words, all
terms in a single column are combined using the OR conjunction. The proximity operator W/16 results in a match
when two terms are within a distance of 16 words. The number 16 was an arbitrary choice with the intention to be
able to find matches in rather long sentences. Please note that W/16 is used twice in conjunction, meaning two of
the three words may be separated up to 32 words. While Word D is supposed to restrict the findings to publications
of the relevant scientific field, Word A to Word C are intended to filter for the topic. The terms within each single
column are related in their meaning or implication, and have been chosen by testing different queries. Word A
expresses the need to structure and/or communicate. The different alternatives for Word A are not strictly restricted
to communication, since communication itself is rarely discussed. Word B requires that there is a model, and Word
C stands for the various terms for the concept of flexible DERs. The asterisk (*) is a wildcard character, which
stands for any sequence of letters. It was used heavily to catch the various phrasings and terminology found in the
literature. Possible matches for “flex*”, for example, are “flexible”, “flexibility”, “flexibilities”, and “flex-offer”.

The search with Scopus using the presented query has been conducted on December 12, 2019, resulting in
791 matches. Out of these, 100 could not be taken into consideration, as they were either not accessible or only
accessible in a language other than English or German. The papers falling in either category were almost exclusively
in Chinese language. Some results are entire conference proceedings. For these, the table of contents and abstracts
were screened, and relevant papers included in the analysis. The accessible 691 results were then filtered in a
three-step process. Firstly, if it was apparent from the title that the publication has no relevance for this thesis, it was
dismissed. Secondly, the same was done based on the abstract. Lastly, the content was reviewed as is outlined in
the next paragraph. Even though every possible Word D is a term relevant for this thesis, many search results stem
from other fields. Results related to the field of computing are particularly prominent in the filtered publications,
presumably caused by including the terms “load management”, “load balancing”, and “load shifting” as options for
Word D.

The search query has been formulated to return results from different research fields dealing with flexibility in
electrical grids. Focus is the exploitation of flexibility provided by DERs, rather than the flexibility of the electrical
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grid itself as is for example discussed in [88]. The presented publications are, however, not limited to this particular
use case. For this reason, there are many papers that are somewhat relevant, but do not provide additional insights
when presented in this review. To keep the results manageable and exclude most irrelevant findings, the content
based filtering has been conducted using a variety of criteria outlined in the following: For a paper to be considered
relevant, it is sufficient that it either meets at least one criterion for relevancy, or does not meet any criterion for
irrelevancy. Firstly, if the reviewed work makes use of highly abstracted models for flexibility, like discussed for the
exploitation of abstracted flexibility in the previous section, it is immediately considered relevant. Please note that
“highly abstracted” refers to utilizing a single model to represent either different types of DERs or aggregates of
multiple DERs. Secondly, papers that focus solely on the processes within a given system, for example a building
or micro grid, have been deemed irrelevant if they neither mention the purpose of demand side management nor
the need for some sort of communication. Simply using terms like “control signal”, “price signal” or “request”, or
depicting data exchanges between different agents is already sufficient for a paper to be considered relevant. Thirdly,
not considered are grid operation centered works, if they only use very simplified models for DERs. Fourthly,
publications focusing on the planning of investments or targeted installation of hardware have been filtered, as they
analyze long term or predominantly local effects. Lastly, papers are only considered if they at least conclusively
outline how flexibility is modeled. Several works only present highly conceptual architectures and are therefore
not included in this review. As all papers were screened to test for these criteria, no paper from the results that is
highly relevant for the topic of this thesis could have been missed. Based on these rules, in total 173 results have
been identified as being relevant.

In the next step, all relevant papers have been classified according to the patterns presented in the previous section.
Often a mixture of different approaches is combined, e.g., an aggregator directly exploiting the flexibility of the
DERs under their control to trade on the energy market. In these cases multiple patterns are listed for a single entry
in the tables showing the results. Although examples of other patterns are mixed into the tables, papers are listed
in the table associated with the predominantly utilized pattern. Alternative options would have been separating the
entries or adding them multiple times in the different tables. The former comes at the cost of comprehensibility,
as for each paper all lists would be needed to gain a full understanding of the respective approach. The latter
option would inflate the presentation of the results, with almost no added benefit. Please note that the analysis is
considering all examples for a given pattern, no matter in which table it is listed. In publications, markets or tariffs,
and the resulting signals are sometimes simply assumed to exist. In such cases, they are often only mentioned
and not further specified. Consequently, the pattern associated was not listed here, as no insight could be gained.
For the direct exploitation pattern, entries without added benefit have also been omitted. Generally speaking, a
form of direct exploitation can always be found at some level of the grid hierarchy, as usually DERs do not control
themselves. To see this, consider a smart building with an automated building EMS optimizing the energy cost.
While the predominant pattern is either the indirect or the market-based exploitation (assuming a suitable market
exists and is accessible), the local control within the building can be interpreted as a direct exploitation from the
DERs’ point of view. From this perspective, the DERs are the flexibility providers and the EMS is the external
party. However, since typically EMS and DERs are in possession of the same entity, this is a liberal interpretation
of the direct exploitation pattern. For this exact reason, these cases are not listed in the results, except if they involve
some noteworthy modeling approaches. The aforementioned direct exploitation by an aggregator and comparable
instances, on the contrary, are included in the lists, since for these the external party is truly external. From these
examples it is apparent that not only may there be different exploitation patterns used at the same time, they may
also vary throughout the hierarchical levels of the electrical grid.

The tables presenting the results are all structured identically. In the first column, the pattern is given. Keep in mind
that multiple patterns may be associated with a single publication. In these cases there are multiple consecutive
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rows, providing more details for each pattern. Patterns are indicated with a single letter. Those are derived from
(D)irect, (A)bstracted, (M)arket, (I)ndirect, and, to further characterize the state information based exploitation,
either (E)xchange or (S)tigmergy. The next four columns provide more information on the DERs that have been
controlled or influenced in the paper. Having these data helps in analyzing the modeling approaches more closely.
It is distinguished between generation units, storages, loads, and a generic DER type, which unifies all the others.
Ticks indicate whether the respective types of DERs are considered. Although many different DERs can be found
in the relevant search results, some more specific classes than just the general type appear repeatedly. In the review
process the additional distinction of aggregates (Agg), renewable energy sources (RES), EVs, and thermostatically
controlled load (TCLs) emerged. If, in a paper, the operation of one of these is influenced, the respective column
explicitly states Agg, RES, EV, or TCL. In these cases an additional tick means that there are further DERs
considered. The reasons for adding these three additional distinctions lies in their characteristics. For RES and
EVs it is the restricted availability and for TCLs their storage like properties. Furthermore, the EVs may be either
storages or loads, depending on whether they may be discharged to the grid or not. If a DER simply exists but is
not controlled with the specified patterns, it is not listed in the tables. Common examples are RES like solar power,
when there is no curtailment. The order of the results does not reflect any kind of rating, it rather mimics counting
with binary numbers based on the DER type columns. Exceptions are made when beneficial for the understanding
of consecutive entries. Next is a column that provides more specific information on how the pattern is implemented.
If there are any noteworthy approaches in the sense that they are outstanding compared to the most basic ones found
in the literature, they are listed in the table. Whenever an aspect was not clearly outlined in a paper, it was resorted
to classify according to the provided mathematical formulations.

In regard to the abstraction of the DERs, there are several concepts for modeling that repeatedly appear, but
sometimes use different terminology. Examples are “compressible” [89], “reducible”, and “curtailable” load
meaning the same, and different types of shiftable loads sometimes being distinguished and sometimes not. In
an effort to provide a more intelligible review, the terminology has been unified. Therefore, reducible loads are
simply listed as curtailable loads and shiftable loads are classified as either shiftable or time shiftable. Some papers
consider shiftable loads as proportionately shiftable, i.e., some controllable part of the load may be shifted in time.
Others use a more restrictive definition, only allowing the load to be shifted as a whole. Since such a time shift
may be expressed by simply specifying the amount of time the load is shifted, this property is called time shiftable
in this thesis. The distinction emphasizes that these two types of shiftable loads are modeled differently throughout
the literature. While a shiftable load reacts to a continuous signal determining changes in the schedule, a time
shiftable load generally receives a discrete signal defining the time period a DER runs. With continuous time, the
signal would be continuous as well, but the literature usually makes use of time discrete models.

4.3.1 Direct Exploitation

The direct exploitation is the by far most commonly used pattern in the relevant literature returned for the search
query. Even though the majority of publications at least acknowledges that there is a need to communicate, they
mostly do not state any technical details. All those that do elaborate on technical details are listed in Table 4.3.
These papers all discuss how the standards IEC 61850 or IEC 61970 may be extended in order to include the types
of DERs specified in the table. The most generic concepts are given by [90] and [91]. In [90] the combination of
CIM, which is defined in IEC 61970, and ISO 15926, a standard for power plant operation, is proposed to enable
multi-domain studies. Extending IEC 61850 with the ability to provide detailed specifications of functions and
related data, as described in IEC 61499, is discussed in [91]. A more specific concept is outlined in [92], where an
adapter integrating CIM with OpenADR is presented. All entries in Table 4.3 are considered direct exploitation,
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since the external entity receives detailed data from the DERs and is able to send control signals. Since OpenADR
is able to provide price signals, it is at the same time an example for the indirect exploitation of flexibility.

Table 4.3: Direct exploitation of flexibility in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

D EV IEC 61850 [93]
D X IEC 61850 [94]
D X IEC 61970 [95]
D X IEC 61970 ISO 15926 [90]
D X IEC 61850 IEC 61499 [91]

D&I X IEC 62746 OpenADR-CIM adapter [92]

Table 4.4 and Table 4.5 list papers utilizing direct exploitation that are not associated with any existing standard.
Parentheses are used in the “Noteworthy Abstractions” column in order to indicate tuples and to eliminate ambiguity,
if multiple options are listed. Take the entry “Requests (energy, duration, and time preferences)”, for example. The
word “requests” indicates that control signals are derived and sent by the external entity in the form of requests
and “(energy, duration, and time preferences)” shows the structure of the requests. Additionally, it is distinguished
between discrete and continuous signals, referring to the set of possible values sent to the EMS and not time.
Discrete values usually include, but are not limited to, the options of turning a device on and off. Continuous
signals are typically chosen from an interval of admissible values.

Overall, the most considered DERs in the direct exploitation pattern presented here are flexible loads. This picture
is, however, to some extent skewed by the design of the filtering process. Also, as can be seen in the tables, the most
variation concerning the employed models is found in loads. Therefore, papers only including generation units and
storages, e.g., in a unit commitment problem, have a lower chance of being considered relevant for this thesis as the
models are all very similar and often simple.

The results show that for the direct exploitation, DERs are often clustered according to common characteristics.
Flexible loads are frequently modeled as being shiftable, time shiftable, and curtailable. Also, load shifting is
often restricted to an average (reduction at time 𝑡0 and increase at time 𝑡1) shift of zero, i.e., the total amount of
energy consumed cannot be influenced. More uncommon classes are exchangeable loads and interruptible loads.
Exchangeable loads are loads that can be replaced, usually by using another energy carrier like gas instead of
electricity.

A more abstract approach is to model the flexibility of DERs based on at least one interval from the options power,
energy, time, and power ramping. This allows the application of the model to DERs of all types, e.g., generation
units [96], EVs capable of discharging [97], and EVs incapable of discharging [98]. In those papers using such
intervals for representing the space of feasible schedules, most commonly an interval for power is found. When
assuming time dependent intervals, the model becomes even more versatile. Please keep in mind that, due to using
this kind of model in a DER specific way, the three listed examples are considered direct exploitation. Nevertheless,
there are examples using such models in a generic way, for instance [99] and [314], which are listed below as
examples for the exploitation of abstracted flexibility.
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Table 4.4: Direct exploitation of flexibility in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

D EV Discrete [100]
D EV Continuous Max power to either be consumed or shifted [101]
D EV Continuous Time and energy interval [98]
D TCL Continuous Bucket [102]
D TCL Discrete Turning off considering a set of rules [103]
D TCL Discrete Minimum on- and off times [104]
D TCL Discrete Forecasting load from shifting signal using an ANN [105]
D TCL Discrete Optimization using a virtual battery model [106, 15]
D TCL Discrete For climbing, stable and recovery period regressions of response on time and outside

temperature
[107]

D TCL Continuous [108]
D TCL Continuous Parameterization of a common model [85]
D TCL Continuous Up-/downward flexibility with hourly capacities [109]
D TCL Continuous Up-/downward flexibility [110]
D TCL Disc. & Cont. [111]
D TCL Discrete Virtual battery model [112]
D TCL Disc. & Cont. Virtual battery model encoded in an ANN [113]
D X Discrete [114]
D X Discrete Time shiftable [115, 116]
D X Discrete Requests (energy, duration, and time preferences) [117]
D X Continuous Up-/downward flexibility [118]
D X Continuous Shiftable loads, interruptible loads [119]

D X
Discrete Time shiftable loads

[120]
Continuous Curtailable loads, shiftable loads with average zero

D X, TCL Discrete Time shiftable [121]
D X, TCL Continuous Shiftable loads, curtailable loads [122]

D X, TCL
Discrete

[123]
Continuous

D X, EV, TCL Continuous [124]
D X, EV, TCL Continuous Loads provide a power interval and availability for each time step and optionally either

(minimum total power) or (comfort requirement, allowing zero consumption when met)
[125]

D X, EV, TCL Continuous Time shiftable loads and curtailable loads send requests [89]
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Table 4.5: Direct exploitation of flexibility in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

D EV Continuous [126]
D EV Continuous Time dependent power and energy intervals,

energy usage
[97]

D X Discrete [127]
D X, EV Continuous [128]
D X EV Continuous [129]
D X TCL Continuous [130, 131, 132]
D X X, EV, TCL Continuous EV with availability and discharge, loads as (power, duration, time interval) or (load

profile, timer interval)
[133]

D X TCL Continuous [134, 135]
D X X Continuous [136]
D X X Continuous Shiftable loads with additional restrictions [137]
D X X Continuous Aggregated load response function 𝑓 (𝑡 , 𝑡𝑟 ) giving power for time 𝑡

and response duration 𝑡𝑟

[138]

D X, RES X Continuous [139]
D X, RES X Continuous Power interval for loads [140]
D X, RES EV Continuous [141]
D X X X Continuous Load curtailment [142]
D X X X Continuous Up-/downward flexibility (loads) [143]
D X X X Continuous Shiftable loads, curtailable loads, loads within ramping bounds [144]

D X X X
Discrete

[145]
Continuous Shiftable loads with average deviation of zero

D X X X
Discrete Loads are time shiftable

[146]
Continuous

D X X, EV X Continuous Load curtailment [147]
D X, RES X X Continuous Load curtailment [148]
D Agg Continuous Power interval [149]
D Agg X, RES X X Continuous Aggregated load with ramping and power limit [150]
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Closely related approaches found in the review are the communication of upward and downward flexibility, the
concept of the bucket, battery, and bakery [151], as well as the virtual battery model [112, 113]. Upward and
downward flexibility of power, which is not to be confused with ramping flexibility, may be expressed in terms of
intervals, which is essentially equivalent to providing a power interval. If, for example, the power interval allows
control of the DER from 0 kW to 10 kW and a power of 3 kW is scheduled, then the up-/downward flexibility is given
by the interval [−3, 7]. In other words, the intervals sent to the external entity are simply shifted by the scheduled
power. The bucket, battery, and bakery are fixed intervals for power and energy width added constraints [151].
Lastly, virtual battery models are used for DERs witch characteristics similar to batteries, which includes TCLs,
EVs, and, of course, batteries [152]. The virtual battery model is, again, the combination of an interval for power
and one for energy with an added constraint. In contrast to the bucket/battery/bakery taxonomy, the virtual battery
model considers dissipation [152, 106].

Aside from these results, the search query yielded some more particular approaches. For example, schedules may
be generated from requests for consuming power, as seen in [117] and [89]. A request in [117] is defined as a tuple
of consumed energy, the duration over which the energy is consumed and an array specifying preference levels
for each time period. The already discussed distinction of curtailable and time shiftable loads is the foundation
for scheduling in [89]. Another approach is letting the flexibility providers determine parameters of an advanced
standardized model known by the external party, think of a MILP, for example. In [85] this is done with TCLs. The
distinctive feature is that the flexibility providers themselves are obliged to send the required parameters and also
update them if necessary. Interval based models like virtual batteries may also be used as standardized models,
but are listed separately to point out their distinctiveness, as an advanced standardized model can be formulated to
capture more complex relations. In [138] a function 𝑓 (𝑡, 𝑡𝑟 ) called “response characteristic” describes the change
in load for a request at time 𝑡 with duration 𝑡𝑟 . This load response function is known for each load. For the
optimization, an aggregate of several response characteristics is computed. Since, here, the aggregate is computed
by the external entity for the purpose of optimization rather than communication, this is an example for the direct
exploitation instead of exploitation of abstracted flexibility. A related approach is the three-stage regression model
proposed in [107], which predicts the response of TCLs to a DR signal. The duration of the DR event is split into a
climbing, a stable response, and a recovery period, each covered by its own regression function. Given the current
time and temperature, the individual regression models predict the response as a percentage. Using these models, it
is possible for an external entity to estimate the impact of sending a (discrete) DR signal and therefore plan out the
operation. In [113], a virtual battery model is encoded in an ANN. The ANN, which uses a long short-term memory
architecture, forecasts the state of the virtual battery based on the previous state and the control signal. This can
be used for estimating the consequences for a given series of control inputs. As this ANN model is created by the
external entity, following the same logic as before, [113] is another example for the direct exploitation. Please note
that this is closely related to [308], in which, however, the ANNs are trained for the sole purpose of transmitting
them to the external entity. The latter is therefore an example for the exploitation of abstracted flexibility.

To summarize the findings, direct exploitation is commonly achieved by one of the following options:

Precise model: Detailed DER specific models, closely replicating the real dynamics.

Classification of characteristics: Utilization of common models for DERs, especially loads, with shared char-
acteristics as a compromise between detailed modeling and abstractness. Common classifications consider
the ability to shift (proportionately or as a whole) and curtail loads. Less common classes differentiate
exchangeability and the ability of being interrupted.

Intervals: Intervals for power, often combined with intervals for energy, time, or ramping capabilities, are often
found in the literature. Together they define the feasible region for the respective variables. Using multiple
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intervals requires keeping track of the individual variables as they are all connect, e.g., energy as the integral
of power. A higher abstraction is possible by making the intervals time dependent. For more specific use
cases, additional constraints may be added. Both, the bucket/battery/bakery taxonomy, and the virtual battery
approach are based on a combination of energy and power intervals with added constraints.

From this discussion, it is apparent that many of the approaches listed above could be used to describe multiple
types of DERs. Then again, the listed papers do not utilize these models in a generic way in the sense of applying
them for heterogeneous DERs.

4.3.2 Exploitation of Abstracted Flexibility

Papers investigating the exploitation of abstracted flexibility are listed in Table 4.6. It is further distinguished
between two cases, the employment of a shared model for multiple types of DERs and the utilization of an
aggregated model for multiple DERs. As several approaches for the direct exploitation are also suitable for this
pattern, it is not surprising to find them again in Table 4.6.

Most common are models based on intervals. The bucket/battery/bakery taxonomy is used in several works. New,
in comparison to the direct exploitation, is the power node model, which combines generators, storages, and loads in
a single formulation. It uses intervals for energy, produced and consumed power, and the ramping of both. Virtual
battery models can also be found. The parameterization of a given, well-known model plays a more prominent
role in the exploitation of abstracted flexibility than in the direct exploitation. While multiple identified papers
propose the use of generic model formulations [96, 153, 154, 155], the use of such a model for the purpose of
communication is only discussed in [96]. Nevertheless, the remaining papers make use of generalized models and
are thus relevant for this pattern. Of all examples, the authors of [154] propose the most sophisticated model. Their
approach allows the description of DERs by selecting and combining features from a set of 14 different properties.
The options include, but are not limited to, time restrictions, interruptibility, losses, multiple operation modes, and
ramping. Therefore, all types of DERs can be described with this model. Scheduling on the basis of requests is
found more often in this pattern, too. As explained before, in this thesis, the existence of requests and offers is not
considered as constituting a market unless their prices may vary. In [156] and [157] the utilization and aggregation
of so called flex-offers is discussed. A flex-offer is a tuple comprising a start time interval and a series of slices,
which consist of a time and an energy interval [156]. The possibility of establishing a market for flex-offers is
outlined in [157], hence the additional classification as market-based exploitation. Packetized energy management,
with DERs sending requests for consuming or injecting energy, is addressed in [158]. Services, offered as tuples
determining the amount of energy, maximum power, and the time of availability, are a subject of [159].

The remaining publications discovered with the search query are based on learning abstract representations, de-
termining cost, demanding schedules within given intervals, and building highly descriptive models. Abstract
surrogate models are learned in [62] and [313]. The descriptions are explicitly created for the purpose of commu-
nication and are therefore prime examples for the exploitation of abstracted flexibility. In [62] the feasible region
of a DER is encoded by learning an SVDD from a set of feasible load schedules. The SVDD may either be used as
a classifier, or to compute approximate projections of infeasible load schedules onto the set of feasible schedules.
Please see Section 2.4.5 for more details on SVDD.
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Table 4.6: Exploitation of abstracted flexibility in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

A
TCL

Aggregated Bucket
[160]

D Discrete
A X TCL Shared Packetized energy management (requests for consuming or injecting energy) as long

as complying with QoS bounds, default control else
[158]

A
X EV, TCL

Sh. & Agg. Power interval
[99]

D Continuous Power interval
A

X X, EV, TCL
Aggregated Virtual battery model

[152]
D Disc. & Cont.
A X, EV X, TCL Aggregated Time dependent power and energy intervals [161]
A X TCL Aggregated Power node [162]
A X X Shared Parameterization of a standardized virtual battery model with ramping and time

dependent energy interval
[96]

A X X X Aggregated Power node [77, 163, 164]
A X X X Aggregated Modified power node [165]
A X X X, TCL Shared Parameterization of a common model, shiftable loads [153]
A Agg Shared Parameterization of a common model [155]
A Agg Aggregated Microgrid optimizes within target power interval [166]
A X Shared SVDD encoding feasible regions [62]
A X Shared Time dependent power and energy intervals with time constraint, and proposed

additional constraints
[314]

A
X

Shared Approaches for exploiting flexibility using ANNs:
(Classification), (Generation), (Repair), (Classification using deviations) [313]

A&I Sh. & Prices (Forecasting load for a given price)
A X Shared Bucket/battery/bakery [151, 167]
A X Sh. & Agg. Flex-offer [156]
A

X
Sh. & Agg. Assignment (Flex-offer, interval for total energy)

[157]
M Sh. & Agg. Flex-offer market
A X Shared Cost curve giving cost for deviation in energy [168]
A X Shared Services as tuple (energy, max power, time horizon) [159]
A X Shared Loads (+/-), storages, and dependencies [169]
A X Shared Parameterization of a common model [154]
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ANNs are another option for learning and encoding flexibility, which we proposed in [313]. In [313] we present five
approaches for the ANN-based exploitation of flexibility. While we also call them “patterns” in [313], they are not
to be confused with the five general exploitation patterns discussed in this chapter and thesis. All five ANN-based
modeling approaches allow the external entity to generate a set of feasible load schedules, which can then be used
to select the most beneficial option. A more elaborate discussion is part of Chapter 5.

Cost curves which specify the cost for deviating from the schedule by a given amount of energy are investigated
by [168]. An alternative to fixed target schedules is the consideration of target intervals. In [166] microgrids
optimize their own operation to achieve an aggregated schedule within the provided target intervals. Finally, a
noteworthy approach for the description of DERs and their flexibility is presented by [169]. The paper proposes
a data model which was built with the aim of being generic, but at the same time allowing a detailed description
of DERs and their interdependencies. In its conclusion, the need for deriving a suitable optimization model is
acknowledged. Apart from that optimization isn’t addressed.

In summary, similar to the direct exploitation, the exploitation of abstracted flexibility is often achieved on the basis
of only a few different approaches.

Intervals: Most common is the utilization of intervals to describe multiple types of DERs. Aside from the
bucket/battery/bakery taxonomy, the power node model makes a frequent appearance in the results.

Requests and offers: As requests and offers are often highly abstracted, they can be used to achieve exploitation
of abstracted flexibility. The flex-offer is most prominent in the results. As noted before, the examples listed
in Table 4.6 are not considered market-based exploitation, as they are submitted without prices.

Parameterization of a common model: When a model needs to capture more complex relations than possible
with the two previous options, sophisticated standardized models come into play. In such a case, the
flexibility provider and the external party have knowledge of a standardized, i.e., common, model. The
flexibility provider determines the parameters and sends them to the external party. If required, updated
parameters are computed and transmitted.

Examples of data-driven methods are scarce in the list of papers returned by the search query. When it comes to
models that are trained from data for the purpose of communication, of all results, only [62] and [313] remain.
Some more examples of such models uncovered during further research are presented throughout this thesis.
Nevertheless, purely data-driven approaches are currently rather uncommon.
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4.3.3 Market-based Exploitation

The second most common pattern found in the results is the market-based exploitation. It is not surprising that
often real existing markets are considered. As upward and downward reserve can be seen as intervals, interval
based models also appear frequently in the results. When it comes to custom requests and offers, the results are
more diverse. Usually offerings include a combination of either power or energy, and a point in time. Sometimes
the power or energy is expressed as an interval. A noteworthy abstraction is given in [170], where offers comprising
a series of load levels and durations are considered. In few cases like [171], [172], [173], and [174] different
offer and request types are distinguished. Aside from the one instance already listed in the section on abstracted
flexibility [157], the search yielded another example of a flex-offer market [79].

Only few identified papers stand out in the sense of taking unique approaches. The most different approaches are
presented in [175], [176], [171], and [177]. With a focus on markets, a derivative financial instrument that allows
to interrupt or fully decline the feed-in of electricity at delivery time is investigated in [175]. In [176] an inversion
of the indirect exploitation pattern is developed. The authors propose a price signal, sent from the flexibility
provider to the external entity, in order to create a dynamic regulation mechanism which is interpreted as a market
mechanism. Prices are computed from the marginal cost and the gradients of Lagrange multipliers evaluated at the
current set point. Then, on the basis of the individual price, the subsequent set point is determined which in turn
leads to another price feedback. Lastly, [177] and [171] describe multi agent architectures. In [177] consumers
request energy from prosumers and “generator companies”, and in [171] single agents are authorized to establish
temporary markets and select which bids are accepted.

To sum up these findings, the following common approaches to markets have been identified:

Existing Markets: Selling and buying energy on markets existing in reality.

Intervals: Especially upward and downward flexibility, which can be expressed as intervals, are frequently con-
sidered. This category overlaps with real reserve markets.

Requests and offers: Usually a combination of power or energy, and a time span is requested or offered.

Overall, the market-based exploitation shows many similarities to the exploitation of abstracted flexibility. On a
second thought, this is not surprising, as markets generally use highly abstracted models for placing requests and
offers. The major differences are the existence of the market itself, as well as the level of abstraction. For the
exploitation of abstracted flexibility, much more advanced models have been proposed in the identified literature.
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Table 4.7: Market-based exploitation in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

M TCL Shared Flex-offer market derives target schedule [79]
M

TCL
Shared Day-ahead market

[178]
D Continuous Control by aggregator
M

TCL
Shared Offer (power reduction, duration, time)

[179]
I Price
M

TCL
Aggregated Tertiary control power

[180]
D Continuous Control by aggregator
M

X, TCL
Shared Offer (energy within specified limits based on forecasts)

[181]
D Continuous Shiftable loads, curtailable loads
M X Shared Offer (load series >= 0, duration series, price) [170]
M X TCL Aggregated Generalized battery model [83]
M X X Specific Consumers request energy from prosumers

Loads have priorities
[177]

M
X X

Shared Multi-energy market
[182]

D Continuous Shiftable loads, curtailable loads, exchangeable loads
M X EV, TCL Aggregated Up-/downward reserve [183]
M X X, TCL Shared Offer (price, quantity, quality, time) [184]
M X Shared Option to interrupt or decline energy at delivery time [175]
M X Shared Reserve markets [185]
M X, RES Shared Up-/downward reserve [186]
M X, RES Shared Power interval (active and reactive) [84]
M X X, EV, TCL Shared Set point with price feedback [176]
M X EV Aggregated Up-/downward flexibility [187]
M X, RES X Shared Up-/downward reserve [188]
M

RES X X
Aggregated Up-/downward flexibility

[189]I Price Tariffs (ToU), (CPP) or (reduced tariff with use restrictions)
M X X X Sh. & Agg. Offers (energy, price) or (energy interval, price) [174]
M X X X Shared Buying energy from markets and aggregators [190]
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Table 4.8: Market-based exploitation in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

M X, RES X X Sh. & Agg. Requests and DER specific bids for fulfilling requests [171]
M

X, RES X X
Shared Up-/downward reserve

[191]
I Price
M

X, RES X X
Shared Up-/downward reserve for generators and loads, demand bidding

[192]
D Disc. & Cont.
M X X EV, TCL Shared Offer (price, quantity, time) [193]
M

X X X, EV, TCL
Shared EVs and TCLs offer reserve capacity

[194]I Price Prices for loads
D Continuous
M

RES EV X, TCL
Shared Offers (energy) or (up-/downward reserve)

[173]
D Continuous Control by aggregator
M Agg Aggregated Upward flexibility (production) [195]
M Agg Shared Reserve markets [196]
M

Agg
Shared Offer (load curtailment, price, time)

[197]
I Price
M X Shared Offer (time interval for consuming or producing one unit of energy) and bonuses if

given bundles of offers are allocated
[198]

M X Shared Offers (provision of energy in time interval), (provision of power in time interval) or
(provision of shifting energy within time interval)

[172]

M X Shared Offers (single period power interval) or (multi period power interval, average modulation
of zero)

[199]

M X Shared
Offers as in [199] within dynamic ranges specified by DSO

[200]
M X Shared [201]
M

X
Shared Trading on energy markets

[202]
A Sh. & Agg. Bucket/battery/bakery
M Agg X Shared Ramping capacity [203]
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4.3.4 Indirect Exploitation

Some sort of dynamic electricity pricing scheme is commonly assumed in the literature. For the sake of brevity,
it is not further distinguished between different implementations like, for example, time-of-use tariffs, critical
peak pricing, or real-time pricing. Instead, they are all subsumed under the term “dynamic prices”. Table 4.9 and
Table 4.10 show those examples of indirect exploitation obtained in the search process. Often, there are no particular
mechanisms associated with the dynamic prices, merely their existence is assumed and modeled. Although they
are using tariffs that are not further specified, two papers [204, 205] stand out from the other search results by their
utilization of learning algorithms for the purpose of optimizing schedules. While [204] uses Q-Learning, policy
function approximation based on ANNs is investigated in [205]. In those instances that do discuss the formation
of prices, iterative approaches and price elasticity-based approaches are popular. Iterative approaches repeatedly
compute price updates, until some criterion for stopping is fulfilled. For example, a DSO may set nodal prices
for load serving entities (LSE) [206]. On this basis, the LSE compute their optimal power as an aggregate of
the controlled DERs’ powers. This aggregated power is combined with a description of the feasible region for
reactive power and then sent back to the DSO, who in turn may update the nodal prices. This procedure is repeated
until the prices converge. More examples for iterative price updates can be found in the results. A noteworthy
implementation of the indirect exploitation pattern is presented in [207]. It replaces the energy market with a
continuous and strictly monotonically increasing price function, which computes the price for a given total demand.
Such an approach may be implemented in a centralized or a distributed manner. As mentioned before, price
elasticities are also a popular choice for determining prices. Although the pattern for indirect exploitation would
allow the flexibility providers to determine their price elasticities on their own and share them, in the literature,
elasticities are usually assumed to be either known or estimated by the external entity. Price elasticities can be
used for estimating the change in load, based on a given change in price. When additionally using cross price
elasticities, e.g., [208], [209], and [210], even intertemporal effects can be estimated. Albeit the approach shines
through its simplicity, precision is, however, limited. This is especially the case when modifying prices for multiple
time periods at once.

More specialized approaches are DER specific controllers incorporating cost in their optimization [211, 212], and
promised schedules [213]. Such a promised schedule is defined day-ahead and deviation is penalized. Flexibility
provision entirely without automated control of DERs is presented in [214], where the DR signal targets humans
and requires their interaction for generating a response.

The general approaches identified in the review process can be summarized as follows.

Unspecified tariffs: The existence of dynamic tariffs is often assumed and modeled without discussing price
formation or the origin of the tariffs.

Iteration: In iterative approaches prices are updated until a given stop criterion is reached. The loop typically
involves updating prices based on schedules and computing schedules based on prices.

Price elasticity: Given a price elasticity the impact of price changes can be predicted. If additionally cross price-
elasticities are available, intertemporal consequences, i.e., changes in load in one period in reaction to price
changes in another period, can be estimated.

The approaches discussed here feature the great advantage of usually relying on few data, as simply some prices and
sometimes schedules need to be communicated. Furthermore, the data is simple to interpret, and it is not possible
to coerce a flexibility provider into acting, as long as prices are not allowed to skyrocket.
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Table 4.9: Indirect exploitation in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

I TCL Price [215, 216]
I X Price Q-Learning [204]
I X Price Price elasticity [217]
I X Price Promised schedules with penalties for deviating [213]
I X Price No automation, needs human interaction [214]
I X, EV Price Price and schedule updates [207]
I X, TCL Price [14]
I

X, EV, TCL
Price Iterative update of load schedule and price

[218]
D Discrete Shiftable loads with given consumption, time shiftable loads, interruptible loads, ex-

changeable loads
I EV Price Feedback loop updates prices [81]
I

EV
Price

[219]
D Continuous Time dependent energy constraints
I

X
Price

[220]
D Continuous
I

X
Price Policy function approximation using ANN

[205]
D Continuous
I X TCL Price [221]
I X X, TCL Price Feedback loop updates prices [82]
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Table 4.10: Indirect exploitation in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

I
RES TCL

Price
[222]D Discrete

I
X X

Price Contracts with time variable prices and energy consumption dependent penalties
[223]

D Continuous
I

X X

Price Cross elasticities for load

[209]
M Shared Up-/downward reserve
D Disc. & Cont. Generator schedule
D Continuous Load curtailment
I

X, RES X
Price Price updates until convergence

[224]
M Shared Up-/downward reserve
I X, RES X X Price DER specific controllers [211]
I

X, RES X X, EV, TCL
Price Cross elasticities and reduction potential for load

[210]
D Disc. & Cont.
I

X, RES X, EV X
Price Price elasticity for loads

[225]
D Disc. & Cont.
I Agg Price [226]
I X Price (Cross) elasticities [208]
I X Price [227]
I

Agg X
Price (Aggregated) EVs (storages)

[228]
D Continuous
I

Agg X, RES X
Price Until convergence

1. DSO generates nodal prices
2. LSEs optimize and return schedule and feasible set

[206]

D Continuous DERs send constraints to LSE and receive dispatch signal
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4.3.5 State Information Based Exploitation

Results classified as exploitation based on state information are further divided into two subclasses. Instances of the
first class are presented in Table 4.11, showing results that rely on exchanging agent specific information. Stigmergy
based exploitation can be found in Table 4.12. As a controller is generally not able to observe the world by itself,
it is depending on the input of sensors. Therefore, on a technological level, there can still be communication
involved in the case of stigmergy. A more detailed description how these two cases can be distinguished is given in
Section 4.2. Some papers compare centralized and decentralized coordination mechanisms, and therefore discuss
both. For these, the centralized versions are omitted, since they usually fall into the direct exploitation pattern and
are very similar to the already presented examples.

Beginning with the exchange of information, it is further differentiated whether there is a coordinator present in the
approach or not. The first case is labeled “coordinator”, the second “local update”. A coordinator is a centralized
entity facilitating the data exchange and sometimes performing additional computations required in the exploitation
process. In its simplest form, the coordinator is a shared database which holds and provides information, like
a blackboard. It is important to analyze which information is provided by the coordinator, as stigmergy based
coordination can also be built around a coordinator (see [18, p. 53]). Roughly speaking, when changes of the
provided information can be attributed to individual agents, it is not stigmergy [18, p. 45].

Often, updates are calculated successively by one flexibility provider at a time. The coordinator then receives the
result, performs own calculations, and passes the results to the next flexibility provider. This is repeated until a
given stopping criterion is met. In the papers collected in the review process, most commonly states or schedules
are exchanged. Potential objectives include achieving a given aggregated schedule, e.g., [229] and [230], and
minimizing cost, e.g., [231]. Depending on the design of the information flow, aggregated power can either be
estimated or precisely computed. In regard to the flow of data, the approaches presented in [232] and [229] are
especially interesting. Both involve the stepwise propagation of knowledge. While in [232] constraints are shared
until every agent knows all individual constraints, in [229] estimates are shared and improved. Some distributed
methods, such as the “alternating direction method of multipliers”, are derived by splitting the optimization
problem into subproblems and updating the Lagrange multipliers. Examples identified in the review are [233],
[234], and [235]. Blackboards are used in [236] and [237]. In both instances the load schedules of all agents
are visible on the blackboard. Therefore, they are not considered to be stigmergic. If, instead, the blackboard
computed and provided only the aggregated schedule, the two examples would be based on stigmergy. A rather
unconventional two-step optimization of grid areas is presented in [238]. Firstly, each grid-area optimizes on
its own, and the results are exchanged. Then, each grid-area optimizes again, this time considering the external
cost while manipulating the generation of the other areas. The best result computed by one of the grid-areas is
implemented. The entries in Table 4.11 suggest that the consideration of aggregated flexibility is popular in this
pattern.

For the observation based approaches, the “Via” column specifies which quantity is being observed. Combinations
of multiple quantities are possible. The majority of entries in Table 4.12 relies on measurements of either voltage
or frequency. Signals derived from the aggregated load are used in [239] and [240].

In summary, approaches using this pattern are often exchanging states or schedules. A minority of the identi-
fied papers rely on a central coordinator or a blackboard for making information available. When it comes to
measurements, usually voltage or frequency is considered.
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Table 4.11: Exploitation based on the exchange of state information in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

E X Local update Reaching aggregated target schedule by
1. Neighbors exchange their states
2. Agents estimate the total load
3. Agents adapt their schedule by a formula after waiting for a random time

[229]

E EV, TCL Coordinator Alternating direction method of multipliers [233]
E EV, TCL Coordinator Until total power is acceptable, DERs read schedules, update their schedule and

publish the result
[236]

E X TCL Local update Aggregated schedule for buildings and BESS, buildings follow slowly, BESS covers
deviations fast

[230]

E
X TCL

Local update Battery controller receives predicted load from building controller
[212]

I Price Both know the electricity tariff
E X X, TCL Coordinator Alternating direction method of multipliers [234]
E X, EV TCL Coordinator Until total power is acceptable, DERs read schedules, update their schedule and

publish the result
[237]

E X Coordinator Iterative local updates by derived formula
Coordinator can ask a generator for update

[241]

E
X

Local update States and output voltages of neighbors
[242]

S Voltage & Frequency
E X X X Coordinator Sequential optimization [243]
E Agg Local update Constraints repeatedly exchanged with neighboring TSOs, distributing knowledge [232]
E Agg Coordinator 1. Grids optimize locally

2. Global optimization based on results
3. If necessary, grids update local results and step 2 is repeated

[244]

E Agg Local update 1. Grid areas optimize locally
2. Grid areas optimize considering external costs and manipulating external gener-
ation
3. The best result is implemented

[238]

E
Agg

Local update Microgrids optimize, exchange schedules, and then repeat the optimization
[245]

D Continuous Control by microgrid
E

Agg EV
Coordinator Aggregators send schedules to DSO. Lagrange multiplier based updates of aggre-

gator schedules on violation of network constraints [235]

M Aggregated Up-/downward reserve offered by aggregator
E Agg X X, TCL Local update Repeated optimization based on forecasts and aggregated schedule until equilibrium

is reached
[231]
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Table 4.12: Stigmergy based exploitation in the literature.

Pattern Generic Generation Storage Load Via Noteworthy Abstraction References

S TCL Frequency [246]
S

TCL
Voltage & Feeder load

Controller prioritizing voltage � feeder load � tariff [239]
I Price
S

EV, TCL
Voltage & Delta power HP

[240]
D Continuous EV
S X, TCL Frequency Loads with discrete and continuous control signals [247]
S RES Voltage [248]
S RES X Voltage [249]

66



4.4 Modeling Flexibility with Regard to Communication

4.4 Modeling Flexibility with Regard to Communication

On the basis of general modeling considerations, the specified exploitation patterns, and the literature review
presented previously, this section aims to identify and categorize general approaches to the modeling of DERs
and their flexibility. By relating these approaches to the individual exploitation patterns, a systematic overview is
created.

4.4.1 General Modeling Considerations

When developing a model, some fundamental questions should be answered in the process. A list of such questions
is given by [20], with the first two asking why the model is needed and which information is sought-after. For the
topic of controlling DERs, the “Why?” question can be answered with the motivations identified in Section 4.1.
Given the motivation, the required information is a description of how a DER may be influenced. However, there
is no general rule stating which data is needed for this purpose. Even solutions employing identical exploitation
patterns can be very dissimilar and there is a strong dependence between the pattern and the required information,
as the literature review shows. In the discussion of how DERs are abstracted for the individual exploitation patterns,
general approaches have been identified and outlined. These form the basis for the following discussion.

Typically, three methodologies for modeling are distinguished in the literature: white-box, black-box, and grey-box
modeling. An explanation of each is provided in Section 2.3.2. With respect to the description of DERs and
buildings, this classification has been used for reviewing thermal modeling [22], HVAC modeling [58], and the
modeling of buildings [57]. White-box models are the most commonly found type in the presented literature review,
where equations are often linear or quadratic. In general, equations are by no means limited to these two types.
Black-box models are data-driven [58, 22]. Examples from the literature review are [62], [313], and [113]

It is also possible to distinguish top-down and bottom-up approaches, which can be further differentiated into a
macro-economic and engineering-economic perspective [57]. Interdependencies between the TSO and DSO level
and their implications for objectives and constraints are discussed in [250]. In the top-down view, the objective
is governed by the TSO who seeks to activate DERs and the constraints are posed by the DSO, in the bottom-up
view this relation is inverted, the DSO specifies the objective and the TSO the constraints. This understanding can
easily be generalized to flexibility providers and external entities. From this perspective the direct exploitation is
closely associated with a top-down view, while the market-based exploitation and especially the indirect exploitation
generally follow the bottom-up view. For the remaining two patterns, both views are commonly found.

4.4.2 Condensed Results of the Literature Review

The findings of the literature review regarding how flexibility is modeled are summarized in Figure 4.3. It shows
the individual general approaches to modeling (white colored boxes) used in each pattern (blue colored boxes)
ordered by their abstractness. The ordinate is split in three lanes representing the number of DER types that
is generally targeted with identical model formulations, i.e., whether a model describes one type of DER or
multiple types. Essentially, the ordinate can also be interpreted as degree of abstractness. Green colored boxes
are specific to the implementation of certain exploitation patterns and highlight special schemes of communicating
information, indirectly related to modeling. However, the patterns and approaches are by no means limited to these
communication schemes. How much area is covered by each box does not convey any meaning. Overall, the figure
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aims to depict a generalized perspective on modeling, outlining universal capabilities. It is easy to create situations
not depicted: Imagine, for instance, a DSMgr who controls a portfolio of DERs consisting only of CHPPs and
does so by directly switching them on and off. While the employed model is highly abstract and listed under the
exploitation of abstracted flexibility, the scheme itself falls under the direct exploitation pattern.

Direct Exploitation

As established before, white-box models describe physical relations. However, the detailedness may vary vastly.
While linear equations are quite popular, they are usually greatly simplified representations. With the help of
quadratic, nonlinear, or even differential equations, much more detailed descriptions can be achieved. Highly
detailed and precise models, independent of the types of equations, are one possibility to model flexibility identified
in the review of the direct exploitation pattern. Since such a model captures very much information and is very
specific, this approach also exhibits the least level of abstraction.

In the context of modeling buildings, the selection of representative instances is a method to reduce complexity
caused by diversity [57]. By grouping together buildings with similar characteristics, a single model may suffice
to describe each instance of the group. Such a grouping can be achieved by classification or clustering [57] and
is essentially the classification of characteristics approach identified for the direct exploitation pattern. Since
the process of defining such a common representation requires the harmonization of DER specific constraints,
individual details are lost. Therefore, common models are more abstract than precise models. As, in this thesis,
the line between direct exploitation and exploitation of abstracted flexibility is drawn based on the types of DERs
that are modeled identically, per definition, a generic generator, a generic storage, and a generic load are the most
abstract models used in the direct exploitation. Once a model is shared for multiple types, for example, a virtual
battery that describes BESSs and TCLs, it is considered exploitation of abstracted flexibility. There are various
proposals for such common models in the literature. Classifications like curtailable, shiftable, and interruptible
have already been pointed out in the review. The majority of these classifications focuses on loads and are therefore
associated with the direct exploitation pattern. However, there are more comprehensive taxonomies. An example
not identified by the search query is the so-called “energy flexibility interface” [251]. It distinguishes uncontrollable
and time shiftable devices, buffers, and unconstrained DERs. As the buffer class is not only meant to be used for
storages, but also thermal systems, this is an example for abstracted flexibility.

The review suggests that representing flexibility with the help of intervals is also a popular approach. Like the
already mentioned virtual battery (e.g., [112, 106, 15]), interval-based models also fall into the shared characteristics
category. Nevertheless, an extra category is introduced in this thesis in order to draw a distinction, especially since
intervals on their own are more abstract. Models based on intervals make use of one or multiple intervals, e.g.,
power and energy, and may add some additional constraints, e.g., a given minimum amount of energy consumed.
The virtual battery model, and also the bucket/battery/bakery taxonomy are regarded as such interval based models.
In summary, for the direct exploitation, the three identified general approaches to modeling are precise models,
classification of characteristics, and intervals. However, as the discussion shows, the last two options may also be
used for the exploitation of abstracted flexibility.

Exploitation of Abstracted Flexibility and Market-based Exploitation

In regard to abstracted flexibility, the classification of characteristics, as well as intervals have already been named.
In the review, the parameterization of a common model has been identified as another possibility for implementing
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this pattern. On a closer look, the parameterization of a common model is essentially an implementation of
the classification of characteristics. The major difference is that the parameters for multiple DERs are bundled
in a single description. Consider, for example, a given, well-known MILP with constraints 𝐴𝑥 ≤ 𝑏. For the
parameterization of a common model, the EMS of the flexibility provider determines and transmits the matrix
A and vector 𝑏 to the external entity. By using a formulation with adaptable constraints, e.g., with an option to
deactivate unnecessary ones, the model itself can be applied more flexibly.

Another popular approach is the coordination based on requests and offers. This is again a specific implementation
of the pattern and not directly limiting modeling options. Nevertheless, it is an important mechanism, as it is
also the core of the market-based exploitation. Remember that the market-based exploitation requires bids to be
priced. If bids are submitted without prices or any other measure of utility, the approach is considered to be an
exploitation of abstracted flexibility. Therefore, the market-based exploitation is a special case of the abstracted
flexibility pattern, and hence, requests and offers are very relevant to both patterns. In contrast to offers, which are,
by the meaning of the word itself, bids or proposals, requests may either be compulsory orders or not. Offers are
usually involved in market processes and submitted by flexibility providers. Since they are offers, the acceptance
and implementation is not mandatory. For requests, on the other hand, it is important to consider the origin. Since
for the exploitation, the flexibility providers must be influenced, requests submitted by the provider to the external
entity are generally proposals asking for permission to perform certain actions. Requests sent from the external
entity to the flexibility provider, e.g., asking to turn a device off, are usually compulsory.

Obligations resulting from requests or offers being accepted are not reflected in Figure 4.3. When offering control
reserve, for instance, the acceptance of a bid does not necessarily mean that it will be called. Also, the mechanisms
for actually providing flexibility may greatly vary and even follow other exploitation patterns. Take, for instance,
primary control reserve, which observes the grid frequency and activates proportionally to the measured deviation.
This kind of provision is an example for stigmergy. Hence, for a detailed analysis, it is also necessary to identify
such combinations of patterns. Similar to the abstracted flexibility pattern, the review revealed many examples for
interval based modeling of flexibility. For instance, offers for upward and downward flexibility, e.g., in the form
of spinning reserve, are often found. Since these offers allow the market, that is, the external entity, to choose any
power level within the minimum and maximum power, it is considered an interval based model. In comparison to
the interval based models for the abstracted flexibility pattern, the market-based patterns tend to be more abstract,
i.e., they use fewer intervals and fewer additional constraints.

Regarding abstractness, one of the most abstract ways of actively quantifying flexibility is to provide a set of load
schedules. Assuming there is at least one valid load schedule, which must always be the case for an error-free
operation, a set of load schedules can describe any constraints. However, this comes at tremendous costs, as there
are several questions which need to be answered for making this approach truly feasible. Firstly, there is no best
practice to the generation of alternative load schedules. One possible way could be switching on and off additional
constraints that manipulate the aggregated load during the optimization. Nevertheless, this requires additional
optimization runs for each added alternative. It also immediately poses the question of how these constraints
should be formulated and varied. Next are the questions of how many profiles must be generated and how it can be
measured from a set of load schedules, in case there is a need to measure the flexibility. Although these questions
are not answered, there are some papers using this approach. For instance [252], which assigns disutility to the
individual alternatives, which may be interpreted as a price and therefore market-based exploitation.

By reducing the length of the schedules the set of load schedules becomes more and more abstract, until at some
point there is only one time period, i.e., one single power value, left. Hence, the most abstract option, in terms of
lost details, is to describe the possible operations for a single time step. While this could again be an interval, the
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interval based models are often not as simple. Therefore, Figure 4.3 lists the ability to switch a DER on or off as
the most abstract offer on a market. This is also equivalent to submitting a bid for a specified amount of energy.
The acceptance of the bid can essentially be interpreted as an on/off signal.

Another option which has been identified for the exploitation of abstracted flexibility is the utilization of data-driven
models. Since these black-box or grey-box models can be used to approximate any data more or less exactly, they
are considered to be the most abstract approach. It is, for instance, possible to train an ANN to provide information
on whether and when DERs can be switched on or off, as [308] shows, for example. Given the various options for
implementing a data-driven model [58] and the realization that there is often more than one way of representing
flexibility with such a model [312, 308], the total number of implementation options is enormous.

Imposing constraints is a method for controlling flexibility providers that bridges the gap between the (market-based)
exploitation of abstracted flexibility and the state information based exploitation. In this approach, the external
entity defines and communicates constraints, which the flexibility providers must meet. Thereby the allowed
options to control DERs are restricted. Quota based restrictions of the power drawn from or fed into the grid are
a popular implementation of this approach. The quota itself is a percentage of a nominal power. This means, a
quota of 100% poses no restrictions, while a quota of 0% forces the DERs to shut down their operation. Since
either feed-in or consumption need to be reduced, and never both at the same time, they are restricted by individual
quotas. However, there are no implemented examples for this in the literature review. Nonetheless, even though
quotas are not discussed in [314], it is related to a quota based approach. In project grid-control1, which [314]
belongs to, quotas were imposed upon a market (see [253]) and therefore indirectly upon the smart buildings, which
offered flexibility to a market participant. Quotas play an even more prominent role in grid-control’s successor
flexQgrid2, which directly targets smart buildings with all their DERs. In flexQgrid, the building itself is a market
participant and thereby able to perform quota based trades in order to mitigate the imposed restrictions or profit
from selling unused capacity. Overall, imposing constraints is not restricted to quotas. On the one hand, as the
project flexQgrid shows, it is possible to build a market around this approach, hence, imposing constraints can
be part of a market-based exploitation. On the other hand, since the flexibility provider is still able to act more
or less freely as long as they adhere to the additional constraints, this approach is also considered to be state
information based exploitation. Whether it is classified as stigmergic or not depends on the exact implementation.
A non-discriminating quota, i.e., a quota that is identical for all flexibility providers, can be considered stigmergic,
as it provides aggregated information for all agents and it is not possible to trace the actions of individual agents.

Indirect Exploitation

With the direct, abstracted, and market-based exploitation, all three approaches building on the communication
of models, parameters and states have been discussed. The remaining two patterns, the indirect and the state
information based exploitation, usually do not involve the communication of models or parameters. It is, however,
easy to incorporate the transmission of models into such approaches, e.g., an EMS estimating its price elasticity
and informing an external entity. Regarding the abstractness of elasticities, switching between discrete operation
modes, like turning a DER on and off, is ranked equally abstract as allowing to control a continuous set point.
Here, the term continuous is again referring to the available control options and not time. The reasoning is that
these two alternatives are complementary. While a single (non-degenerate) interval cannot model discrete options
without adding discrete variables, discrete options for control can only approximate a continuous interval. Since

1 http://projekt-grid-control.de/
2 https://flexqgrid.de/
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elasticities are used to estimate a continuous response, the approach has been ranked to be equally abstract as an
approach allowing discrete control. However, elasticities on their own do not cause any response of the flexibility
provider. They must be accompanied by a signal, most commonly tariffs, able to incentivize a change in behavior.
Typically, elasticities are assumed to be known or determined by the external entity, in which case flexibility is
not communicated. In contrast, the previously mentioned EMS estimating and transmitting its current elasticity
is indeed communicating flexibility. When tariffs are not tailored to single individuals, that is, when they are not
discriminating, they generally reflect the current state of the electrical grid and energy system as a whole. Therefore,
they can be interpreted as a type of state information, and hence the overlap of the indirect pattern with the state
information based pattern. Nevertheless, if tariffs are directly targeting single flexibility providers they cannot be
considered state information based exploitation.

State Information Based Exploitation

Finally, the state information based pattern is regarded as the most abstract way of coordinating flexibility providers,
since it does not need incentives to control behavior and may even involve no communication at all. The two central
schemes in this pattern directly relate to the exchanged information. The exchange of individual state information
allows sharing data from which information on single individuals can be deduced. A popular example would
be the individual load schedules. Given this information, each agent is able to see how its neighbors react and
how everyone contributes to the solution. The complementary scheme, using aggregated information, is stigmergy.
While stigmergy can be implemented without any active communication, there may still be a central entity providing
signals (see also Section 2.2.2).

A tool to achieve coordination that has not yet been mentioned in this discussion is iteration. Iteration until a certain
criterion is reached is commonly used in the state information based exploitation, but also found in the indirect
pattern. However, other patterns may also profit from iteration, especially when using highly abstracted models.
While the direct exploitation, for example, directly offers all required data to assess all available options, this is
often not the case for highly abstracted models. In cases where it is unclear if a good solution or even a feasible
option is found in a single run, iteration can help to narrow down the search space and improve the solution.

4.4.3 Modeling Flexibility from a Data-Driven Perspective

As only few data-driven flexibility models were included in the literature review, this section presents more
such models and attributes them to the basic tasks arising in the context of statistical and machine learning (see
also Section 2.4.2), with the goal of contributing to a better understanding of the relevant concepts. A more
elaborate discussion of such surrogates and a systematic derivation of ANN-based approaches follows in Chapter 5.
Generally speaking, any model capable of generating feasible load schedules can be used to represent flexibility,
when understanding the flexibility of DERs as a set of feasible load schedules (see Section 2.1.3 and [312, 308]).
The term “load schedule” can be used without loss of generality, since, in the case of single period flexibility,
individual power levels are simply represented by schedules consisting of only one element.

Classification: Classification can be used in multiple ways to model flexibility. For example, a classifier may be
used to distinguish feasible from infeasible load schedules. With the help of such a classifier model, it is possible
to identify valid options for controlling DERs. This can be achieved by classifying whole schedules [312], or by
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using multiple classifiers covering smaller parts of the schedule [12]. The latter approach has the advantage to
significantly simplify the generation of load schedules, as the individual parts of a schedule are generally easier to
guess than a whole schedule at once. Another application of classifiers could be the detection of certain predefined
properties or events which indicate how DERs may be influenced, e.g., by identifying valid control options for the
following time period [308].

Regression: In general, regression means the estimation of a one dimensional output given some input [27,
p. 101]. It is hence especially useful for myopic flexibility calls, as only a single time period needs to be considered.
One option could be to estimate a (one period) load response for a given signal. Alternatively, a price elasticity
could be estimated from the current state provided by the flexibility provider.

Structured output: Structured output produces vectors in which the single elements are related [27, p. 101].
In the context of modeling flexibility, structured output can be seen as a generalization of regression, returning a
vector instead of a scalar. Examples for structured output are the patterns for generation, load profile forecasting,
and repair presented in [313] and [312]. Other approaches that can be named are the SVDD based repair of load
schedules [87], the step-wise creation of load schedules using multiple classifiers outlined above, and state-based
models like state machines.

Synthesis and sampling: Synthesis and sampling is closely related to structured output. Its goal is to generate
samples similar to the training data [27, p. 101]. Models like generative adversarial networks could be trained to
synthesize load schedules, as we already proposed in [312]. In [254], general adversarial networks have already
been used to synthesize load profiles in non-intrusive load monitoring tasks.

Probability density/mass function estimation: Tools which can be used for modeling uncertainty are probability
density and probability mass functions. Generally speaking, approaches from the regression and structured output
categories can be transformed to use probability density/mass functions.

Clustering: Clustering itself does not produce a model with inputs and outputs, but a set of clusters. Clustering
of load profiles, for example, can help in evaluating DSM decisions [255]. In the case of [255], clustering is
proposed as a tool for analysis, not communication. Nevertheless, a flexibility provider could perform a clustering
and communicate the resulting clusters. Previously it was stated that there is no known best practice for selecting
representative load schedules, i.e., generating a set of feasible schedules, to bundle them in an offer. Depending on
the particular use case, clustering could be one approach for generating such a set.

In summary, regression, structured output, as well as synthesis and sampling comprise models with the potential
to directly generate load schedules. Some schedules created with these approaches can be interpreted as forecasts,
others are more closely related to random samples. If suitable algorithms are used, classification approaches like the
SVDD or the cascade classifiers can also be used as generative models. As already stated, the utilization of such a
model on its own does not constitute a certain exploitation pattern. It is important to distinguish whether the model
is communicated or not. One example is [87]. While the authors propose SVDD as a way to communicate sets
of feasible schedules, their proposed coordination scheme is an example for state information based exploitation,
since the model is never communicated.
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4.5 Exploitation of Flexibility in the Research Project C/sells

In this section, approaches developed and discussed in the German research project C/sells3 [4], funded by the
German Federal Ministry for Economic Affairs and Energy (BMWi) as part of the SINTEG (Smart Energy
Showcases – Digital Agenda for the Energy Transition) program, are classified and discussed on the basis of the
previously presented patterns and findings. This does not only contribute to a better understanding of the approaches
developed in C/sells, but also show how the framework of patterns and approaches derived in this chapter can be
applied. While the project is focusing on a cellular energy system, none of the concepts discussed here is limited
to a cellular system. Overall, with trying to pool as many DERs as possible, there is a strong tendency to highly
abstracted models.

Exploitation of abstracted flexibility: Abstracting DERs is one of the central approaches in C/sells. A quantifi-
cation for the flexibility of heat generating units, such as CHPPs and HPs, is proposed by [256]. It uses metrics
derived from predicted thermal energy corridors. Such a corridor basically describes the set of feasible thermal
load schedules of a DER.
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Figure 4.4: Abstracted flexibility of a single CHPP, based on [256].

An example is depicted in Figure 4.4. It shows a corridor for a CHPP and a heat storage. The CHPP is able to
provide a thermal output of up to 12.5 kW and around 6 kWh of thermal energy can be stored in the heat storage.
The lower and upper bounds are derived by forecasting the local heat demand and determining the points in time
the storage is empty or full. The operational zone of the DER lies between the upper and lower energy bounds.
Essentially, the corridor is a series of time-dependent intervals for the allowable total production of thermal energy.

3 https://csells.net/
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The first proposed metric measures the ability to delay the operation of DERs. It is determined by calculating the
amount of time until the lower boundary of the corridor is reached, when no further thermal energy is produced.
Starting from the blue diamond on the left, the horizontal line shows the CHPP being shut down and idling as long
as possible. The second metric measures the opposite, activating the DER with maximum power. In this case, the
time until the upper bound is reached is computed. This is depicted by the orange line starting from the orange
diamond.

The approach is not limited to describing single DERs, an aggregation of multiple DERs is also presented. In
the aggregated case, different units may be unavailable during some time steps. This is dealt with by determining
the actually enforceable power in addition [256]. Since generators and TCLs are considered, the resulting sign of
the changes in electrical power may be positive or negative. Additionally, as not only multiple types of DERs are
considered, but also the aggregation of DERs, the proposed quantification is a perfect example for the exploitation
of abstracted flexibility.

In [313] we propose the utilization of ANN-based surrogate models for modeling flexibility and thereby enabling its
exploitation, which is also a central topic of this thesis. As already mentioned in Section 4.3.2, the paper presents
multiple patterns for identifying or generating feasible load schedules. These patterns are further investigated
in [312], coming to the conclusion that it is indeed possible to identify or generate feasible load schedules with the
help of ANNs. Combining the two best performing patterns of [312], we suggest an iterative approach to generate
feasible load profiles step by step in [308]. An in-depth presentation and discussion of this ANN-based modeling
is provided in Chapters 5 and 6.

Market-based exploitation: Markets are a prominent coordination mechanism in the project. A total of three
local market platforms has been proposed and implemented. Each platform has its own unique characteristics. The
individual markets are named ALF, Comax, as well as ReFlex, and are outlined by [257].

ALF, the “Altdorfer Flexmarkt”, is a day-ahead market described more closely in [258] and [259]. It has no
limitations regarding potential sellers, but considers the DSO as the sole buyer. The platform provides a registry
for enlisting offers and the grid operator’s requests. Market clearing is executed once daily. Sellers may offer two
different products, a “schedule product” and a “long-term contract” [258]. The latter is a contract for participating
in a direct exploitation scheme for integrating small DERs from residential buildings. Even though this particular
contract is no market-based approach, it is listed here, since it is integrated in the market clearing process [259].
The schedule product is outlined as a “time-series in 15 min steps including available power, price and potential
constraints” [258]. Unfortunately, a thorough and conclusive presentation of technical details or models is provided
by neither of these sources.

The descriptions of Comax and ReFlex are based on [257]. Comax does not only target DSOs, but also TSOs.
Hence, market participants require enough capacity to have an impact on the ultra-high voltage level. Offers define
a load schedule and possible deviations for the considered time slots. Resulting requests are allowed to call the
offered power partially, i.e., to select arbitrary values from the offered interval.

Finally, ReFlex is again designed to cater to the needs of DSOs. On ReFlex two products can be traded, one
resulting in an exact request and one imposing constraints in the form of a quota. Remember that a quota in the
context of DSM is a constraint on the maximum consumption or feed-in, generally expressed as a percentage. In
contrast to the exact request, quotas are more suitable for DERs highly affected by stochastics. On ReFlex, as [257]
states, the quotas are intended to control the behavior of EVs and the variable production from RES. Influencing
devices by setting additional restrictions and thereby narrowing the set of feasible schedules is rarely considered,
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as the review presented in this thesis indicates. A special feature of employing this method is that the flexibility
providers largely remain in control of their DERs. More conceptual information on all three markets can be found
in [257]. However, it is not sufficient for a more detailed analysis of the respective models.

Aside from the three market platforms, there are more concepts for markets and their associated products. A home
energy management system managing DERs and participating in a flexibility market is investigated in [260]. In
particular, generation units, storages, as well as the two types of loads, EVs and TCLs, are controlled by the EMS.
The EMS places offers to deviate from its planned schedule in positive or negative direction. Offers for a given time
step comprise power, energy, and a price. While the power is fixed, a call does not require to exhaust all the offered
energy [260], it can be understood as an interval instead. Using this model, once flexibility has been requested,
new offers reflecting the resulting situation need to be generated.

Indirect exploitation: Incentives are the basis for the “Cell cluster Karlsruhe East”. The cell cluster demonstrates
how smart buildings can collaborate to solve congestions. It builds upon the regional EMS presented in [261] and
comprises the FZI House of Living Labs, the Energy Smart Home Lab at the Karlsruhe Institute for Technology,
and additional 54 simulated smart buildings. Figure 4.5 depicts the cluster and the simulated grid. The cluster itself
constitutes another cell on higher hierarchical level. It is managed by a cluster EMS that observes the electrical
grid and operating resources, and controls the smart building if necessary.

Requests are sent according to the smart grid traffic light concept. There are different ways of implementing this
concept. Here, the traffic light phase is determined by the observed and estimated states, including transformer
temperature, voltages, and currents of the lines. Forecasts are not considered in the process. Instead, there are upper
and lower boundaries, for each traffic light phase, respectively. The boundaries for the yellow phase are narrower
than those of the red phase, meaning a red phase is always preceded by a yellow phase. Once a boundary is violated,
the associated traffic light phase is proclaimed. If a yellow phase is detected, the cluster EMS begins to request
reactive power from smart buildings with inverters, and determines suitable candidates for sending incentives.
These candidates receive a set of multiple alternative tariffs. Each of the candidates computes the load schedules
resulting from each individual tariff and sends the resulting set to the cluster EMS. Then, the cluster EMS chooses
the most beneficial load schedule and grants the respective tariff to the building. The building, in turn, must now
follow the reported schedule. Should these measures not suffice and a red traffic light phase occur, buildings can
be forced to react.

The central mechanism in the cell cluster is the indirect exploitation pattern, because incentives are the central
mechanism. Nevertheless, the concept involves elements of direct exploitation in regard to the requests for reactive
power and the red traffic light signal. The implementation of the indirect pattern is rather unusual, but adds some
predictability found in the abstracted flexibility pattern. By generating a bundle of different tariff options and asking
the building’s EMSs for their aggregated responses to each tariff, a limited form of control based on abstracted
flexibility is established, as the external entity, that is, the cluster EMS, can choose from a small set of feasible
schedules. A more detailed discussion of this concept and how tariff options can be derived is presented in [261].
In contrast to the original mechanism, in the cell cluster Karlsruhe East, there are no further price incentives during
the red traffic light phase.
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Figure 4.5: Cell cluster Karlsruhe east, including the Energy Smart Home Lab, the FZI House of Living Labs, and 54 simulated smart buildings.
The 62 depicted nodes comprise all buildings, power grid nodes, and the transformer.

Overview: Finally, an overview of the modeling approaches discussed in this section is presented in Figure 4.6.
The illustration makes use of the classifications developed in this chapter.
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Figure 4.6: Exploitation of flexibility in C/sells. Overview of the approaches presented in this section.
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4.6 Summary

The literature proposes and makes use of many different exploitation and coordination mechanisms. With the
help of the exploitation patterns and identified general modeling approaches, it is possible to make comparisons of
different solutions and point out their distinct features, as has been demonstrated for selected approaches from the
research project C/sells. However, the presented framework is not only suitable for the analysis of existing solutions,
but may also be used to plan and select mechanisms in future DSM applications, since it provides guidance which
modeling approaches are especially suited for which exploitation pattern. In the following, the framework is used
to derive approaches for the utilization of ANN-based surrogates.
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From a general perspective, surrogate models are very flexible in their application. This is not only shown by the
manifold of examples named in Section 4.4.3, but also our previous publications, were we presented and evaluated
multiple ANN-based approaches for modeling flexibility using quite diverse data as inputs and outputs [312,
308]. As surrogates are generated from data samples, that is, pairs of input and output data of the function to be
approximated, surrogate modeling primarily falls under the data-driven category in the classification of modeling
approaches presented in Section 4.4. Furthermore, surrogate modeling offers the possibility to train models in
an automated process, therefore, given a suitable modeling approach and the availability of the required data,
eliminating the need to formulate and implement models manually. A trained model can not only be used in
the local operation of DERs, but also communicated. Nevertheless, the exploitation of flexibility based on the
communication of surrogate models is a very uncommon concept, as the literature review showed. ANNs being
a very powerful and versatile tool is the main motivation for investigating ANN-based surrogate modeling in
this thesis. But even though the focus lies on ANNs, the presented concepts are not limited to the utilization of
ANNs. The systematic for classifying modeling approaches introduced in the previous chapter is the basis for
identifying, developing, and testing approaches to use surrogate models for the flexibility of single or multiple
DERs. This chapter presents the core of this thesis and aims to answer the research question RQ2 “What is
the quality of approximation ANN-based surrogate models can achieve?”, which is again subdivided into more
particular questions.

RQ2.1 What are the advantages and disadvantages of using surrogate models?
In the context of this first question the utilization of surrogates as models for flexibility is motivated. To
do so, Section 5.1 presents a literature based overview of benefits and challenges associated with surrogate
modeling, and draws conclusions regarding the modeling and communication of flexibility.

RQ2.2 How can ANNs serve as surrogates for the flexibility of DERs?
Section 5.2 outlines how the communication of flexibility with ANN-based surrogates could be implemented
in a real-world application and, for this purpose, identifies several approaches to encode the flexibility of
DERs into ANNs. The general concepts presented by us in [313], [312] and [308] are all incorporated in this
section. A selection of the most promising approaches is presented in Section 5.2.5.

RQ2.3 What is the quality of the trained ANN-based surrogate models?
Finally, Section 5.3 presents a detailed evaluation of the most versatile approach, establishing a baseline for
the quality of approximation achieved by ANN-based surrogates.

A summary of this chapter is given in Section 5.4.
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5.1 Benefits and Challenges of Surrogate Modeling

This section provides a concise overview of arguments for and against the utilization of surrogate models for
modeling flexibility. Firstly, a literature based overview of benefits and challenges is presented. Secondly, possible
ways to overcome some of these challenges are illustrated. Lastly, everything is put into the context of modeling
flexibility. The insights gained in this section are the basis for the subsequent considerations and, therefore, the
results of this thesis.

General benefits: Benefits mainly arise from the replacement of costly computations or real world experiments
with much simpler surrogate models. Even more so, when there is no known algebraic model of the system [24],
or a black-box needs to be modeled [25]. Solving optimization problems and simulation are examples for com-
putationally expensive tasks that can benefit from using surrogates [262, p. 409]. This is especially true, when
derivatives of the involved functions are complicated or absent [24] and, therefore, gradient based methods are
unsuitable. Overall, surrogate models can help to reduce the computational burden by simplifying the object of
study [25]. To which extent a simplification is achieved is, however, depending on the exact problem and also the
employed type of surrogate. A deep neural network with many hidden layers, for instance, is obviously much more
resource demanding than a simple linear regression model. Given there is a reduction of complexity, surrogates can
help by improving the efficiency of algorithms, such as evolutionary algorithms [70], and by speeding up processes
like parameter fitting, parameter analysis, and sensitivity analysis [25]. Aside from the potential reduction in
complexity and the accompanied speedup, a major benefit of surrogate modeling is its versatility, i.e., the ability to
be used in various different tasks, while being accurate [24].

General challenges: Challenges are also strongly depending on the problem that is to be solved, and the model
to be utilized as a surrogate. On the one hand, the different types of models offer dissimilar complexity, such as a
varying number of parameters that have to be estimated, nonlinear and nonconvex terms, or a lack of suitability for
global optimization [24]. Hence, there are model specific drawbacks, like the huge amounts of data needed to train
ANNs [25]. Overall, the resulting surrogate should be cheap, smooth, and easy to optimize, while, at the same
time, being sufficiently accurate for the individual use case [262, p. 409]. Aside from the type of model, there are
many factors to consider in this regard. The accuracy and, therefore, the quality of the model, for instance, strongly
depends on the sample data used to generate the surrogate [25]. On the other hand, model choice is influenced by
the nature of the problem [263]. Selecting a model can be difficult and may be influenced by common practices and
the experience of the designer [263]. From a general perspective, a selection criterion is required [26], specifying
what the surrogate needs to achieve in order to be considered suitable. In order to define such a criterion, again,
further implications need to be considered. Different criterions can vary in their interpretability, accuracy, bias, or
computational efficiency [26]. Therefore, a middle ground needs to be found.

Overcoming these challenges: Solutions to these challenges are actively researched, and there are many ap-
proaches, as these issues are often not limited to the field of surrogate modeling. Take subset selection for regression,
for instance. As the name indicates, it is a methodology tailored for regression models. It is used to select the
input variables of the model from a larger feature set, with the goal of achieving better predictions. Since it is
a general methodology for regression models, it is also one option to improve the accuracy of surrogates [24], if
applicable in the specific case. Likewise, any approach to improve a model of a certain type can be considered in
order to generate more precise or more compact descriptions in the form of surrogates. As there is a multitude
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of possible model types, the remainder of this discussion focuses on general approaches. A major requisite for
many applications of surrogate models is, as mentioned before, efficiency. One way to improve the efficiency
can be the combination of surrogate models of varying fidelity [264]. In an optimization problem, for example, a
low-fidelity surrogate can be employed to search on a global scale, followed by a local search with a high-fidelity
model. Since, in this case, it is not necessary for a single model to capture all relations between inputs and outputs,
simpler and thus more efficient models may be used. Another key factor for all surrogates is the sample data, since
a surrogate can only pick up relationships that are present in the data used to generate the model. Employing a
suitable sampling strategy is hence important. Given the use case allows the generation of more than the initial
samples, adaptive methods can help to improve the model accuracy [25, 24]. In contrast to a one-shot design, which
involves the generation of just one model, the adaptive design evaluates the resulting model, and, if needed, repeats
the model generation with additionally and newly created samples [25]. Using this adaptive method, it is possible
to identify points of interests, e.g., the locations of extreme values predicted by the surrogate model, and generate
the actual response to the input to obtain a new sample. This methodology is especially relevant for surrogate based
optimization, to build a more precise representation step by step (compare [24]). The definition of a criterion for
the model generation is another issue named above. There are usually multiple options, not only for measuring the
performance of the resulting model, but also for model selection itself. For example, there are plentiful measures
for assessing prediction errors, including the Mean Squared Error, Average Euclidean Error, Harmonic Average
Error, and many more (e.g., [26]). Likewise, there exist multiple criteria for model selection, including metrics like
the Akaike Information Criterion, hold-out error, and cross validation error [26]. One possibility to deal with the
trade-offs between individual objectives is to make use of a multi-objective surrogate generation approach. In [26],
three ways of implementing such an approach are listed. Firstly, the combination of multiple objectives into a single
one. Secondly, the sequential enforcement of objectives, and lastly the simultaneous enforcement. All of these,
however, come with new challenges, including an exponentially growing solution space with an increasing number
of criteria [26].

Modeling flexibility: Modeling flexibility with the help of surrogate models offers even more benefits, but also
poses new, additional challenges. As surrogates approximate outputs from given input data, any data could be used
for trying to generate surrogates, i.e., train them. Therefore, in theory, surrogates open up many possible ways of
modeling flexibility. Furthermore, due to this versatility, they can be utilized as generic models for any DERs to
be represented, potentially reducing the need to build hand-tailored models. Whether a surrogate is suitable for the
intended task or not, and if there is really no need to build models from hand, is, however, use case specific. For
a surrogate model to pose as a model of flexibility, the central requirement is the ability to derive how DERs are
operated from the given input and output data. In Section 2.1.3 it is established that this can be achieved with the
help of feasible load schedules. Hence, if the surrogate allows the deduction of feasible load schedules, it can be
seen as a model for flexibility. There is, of course, no limitation to load schedules. Any other control signal which
can be used to deduce distinct instructions is feasible, too. However, there are many parameters to consider and
which determine whether approaches are practical or not. These include the intended input and output data, as well
as the choice of model, for instance, regression models, SVMs, or ANNs.

One of the core features of surrogates named above is their efficiency. The need for small, efficient models
is mainly motivated by the intention to use the much faster surrogate instead of the computationally expensive
original. Efficiency is, furthermore, a desired quality for speeding up processes like optimization. If the objective
is, however, to approximate the behavior of the original as closely as possible, more complex models may be
required. There is again a problem specific trade-off, that is, whether the algorithms for solving the problem benefit
more from efficiency or accuracy. A more efficient surrogate allows the computation of more iterations in the
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same time span, but comes at the cost of a decreased precision. If the actual feasibility of a load schedule is the
main criterion, such a surrogate may be too imprecise. In this case, more sophisticated surrogate models should be
employed, even at the cost of a decreased efficiency. Two possible ways of alleviating this issue have already been
named in this section. Both involve generating and using multiple surrogates for describing an identical flexibility.
Firstly, a low-fidelity model could be used for all computations requiring efficiency, followed by corrections made
with the help of a high-fidelity surrogate. Secondly, the solution space, i.e., the flexibility itself, may be split into
smaller parts represented by smaller and more efficient surrogates.

Another relevant challenge is the availability of samples for generating the surrogate. When only observed data
is to be used, i.e., the model should be learned from a physical system, there may be too little data, or the data
may not reflect the true flexibility, as the surrogate can only learn about alternative operational choices if the data
presents them. Take a building with an EVSE, for example. If connected BEVs are always charged at the highest
power, the surrogate can only learn to charge BEVs as fast as possible, even though the EVSE may support slower
charging rates. This issue can be tackled by willfully deviating from the planned operation in order to explore new
states and collect novel samples. Additional information, such as admissible set points, may also be provided by
DERs. One method to accelerate the training of ANNs, and thereby getting by with fewer data, is to start with
an ANN trained on a similar task rather than a completely new one. This approach is called transfer learning
(see [27]). Additionally, given the modeling approach is compatible, dataset augmentation could be used to obtain
more training data (see [27]).

When few data is available, updating or newly generating models gains importance, since more data can be collected
as time passes. Updates need not necessarily be provided by the flexibility provider. Given the external entities can
record the required data, they can compute updates themselves.

5.2 Encoding the Flexibility of Distributed Energy Resources in
Surrogate Models

In order to answer how surrogate models can be automatically generated, it is first necessary to specify what
exactly they should replace. It has already been established that surrogate models approximate functions 𝑓 (𝑥)
and are generated from input and output samples (𝑥, 𝑓 (𝑥)). Therefore, it is necessary to define what these inputs
and outputs are. Several possible combinations have already been named in the previous chapter, and also been
proposed in previously mentioned work, including [63, 65, 12, 312, 308]. They are not simply reproduced in this
section, but instead considered in the systematic deduction of possible surrogate modeling approaches. Please note
that even with this structured procedure, it is not possible to identify every sensible approach. Depending on the
use case and how the problem to be solved is tackled, completely different possibilities for creating such models
may emerge. Therefore, it is not the goal to provide a complete list of all possible surrogate models for flexibility.
Building on top of the classification introduced in Section 4.4, which can be seen as a general framework for
the analysis and development of communication related flexibility modeling approaches, this section derives and
discusses opportunities for ANN-based surrogate modeling. But first, the general circumstances and requirements
are considered in more detail, illustrating how a practical application based on such flexibility surrogates would
look like.

The exploitation pattern: When utilizing surrogates, the exploitation of abstracted flexibility introduced in
Section 4.2 is used. Here, the abstracted flexibility transmitted to the external entity is the surrogate combined with

84



5.2 Encoding the Flexibility of Distributed Energy Resources in Surrogate Models

the knowledge of how to derive choices. Using this information, the external entity is able to derive the expected
consequences of different choices, select fitting options, and send them back to the flexibility providers for their
implementation. With the utilization of ANNs, all presented modeling approaches fall under the data-driven model
category identified in the previous chapter and depicted in Figure 4.3. The exploitation of abstracted flexibility, as
depicted in Figure 4.2 in Section 4.2, comprises multiple steps, namely, the generation, transmission, and storage
of the model, as well as the exploitation itself.

External entities: An external entity may belong to any role existing in the energy system. In other words, any
external entity, no matter their role, could make use of this process to exploit flexibility. Exemplary roles include,
but are not limited to, aggregators who manage large collections of DERs and participate on energy markets,
distribution system operators, transport system operators, and regional EMSs as found in the research projects
grid-control [310] or the C/sells cluster Karlsruhe presented in Section 4.5.

Flexibility providers: From a technical perspective, flexibility providers range from single DERs to large ensem-
bles of interconnected DERs. Generally, an EMS manages the devices. In case of a single DER, the necessary
functionality for generating the model and communicating with an external entity can be built directly into the
device. If multiple DERs are aggregated, they are operated collectively, or all available information is simply
merged together, a dedicated EMS is required. Owners of DERs are either obliged to participate with their devices
or are incentivized, for instance by receiving monetary compensations.

Surrogates: Surrogates are not restricted to ANNs, even though ANN-based surrogates are the focus of this
thesis. Other learnable models that are able to provide the same information, may perform equally well or bad.
Whether the proposed surrogate modeling approaches allow a sufficiently good approximation, is depending on the
specific use case. Some proposed combinations may not be suitable for all types of applications.

Generation of a model: Generating a model means learning the model, in case of ANN-based surrogates. For
learning any type of model, it is of course a necessity that there is a relation between the intended input and output,
that is, a sensible output can only be produced if the necessary information is present in the input.

In regard to the flexibility of DERs, there is usually a strong dependence on the current state of the individual
DERs. Charging and discharging a BESS, for instance, is limited by its SOC. A surrogate, if technically able
to do so, can take the state as an input in order to solve this dependence. If the surrogate is not able to handle
such an input, it needs to be replaced with a newly generated surrogate every time the state changes. The process
is exactly as depicted in Figure 4.2. The state of one or multiple DERs is essentially a vector of selected values
which need to be monitored. In general, the state comprises all scheduling relevant information. In its simplest
form, it is a concatenation of current measurements and state variables the EMS receives from meters, sensors,
user interfaces, and DERs. These values can either be selected by hand, for instance, based on a list of usually
relevant information, or by an automated process, e.g., utilizing methods like the already named subset selection
for regression if applicable. In this thesis, state variables are selected by hand. Scheduling constraints arising from
user requests also need to be included in the state vector, as they limit the feasible region and are thus scheduling
relevant.
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More sophisticated approaches may process these observed state variables to derive new ones, and use the newly
derived data as an input instead. Such a preprocessing step could be used for different reasons, including the
generation of more accurate surrogates, e.g., by filtering faulty measurements, obscuring of state data for privacy
reasons, or the aggregation of multiple DERs. The latter may, for example, be achieved with autoencoders
(e.g., [113], where an ensemble of TCLs is aggregated), which open up the potential for larger scale applications
by aggregating a multitude of devices.

From a more general perspective, the availability of data itself is a prerequisite. Hence, in order to make use of
an ANN-based surrogate modeling approach and automatically learn a flexibility model, some unit, such as an
EMS, must collect all relevant data over a period of time via some interface. Aside from the already named state
data, some approaches require additional information, which either has to be derived by an EMS itself, or must
be provided by the DERs in addition to their state. Given an approach, it is usually obvious which device should
provide or derive the data. If the data describes a single DER, the DER should provide it. If it describes the joint
operation of multiple DERs, the EMS should compute it. For instance, the interval of possible charging powers a
BEV can currently be charged with is data the DER itself should provide. Whether a building with multiple DERs
can hold its total electricity consumption below a given threshold or not, should be determined by the EMS. The
challenge of training surrogates has already been discussed in the previous section, pointing out transfer learning
and data augmentation as possible remedies when there is too little data. Moreover, the need for the data to reflect
the true flexibility has already been explained and is not repeated here.

Transmission and storage: Right after a model has been generated by the flexibility provider it is transmitted to
the external entity, where it is also stored. Depending on the ANN topology, the surrogates can vary considerably
in their size, usually ranging from kilobytes to many megabytes. Hence, at least initially it is necessary to transmit a
larger amount of data from each flexibility provider to the external entity. In practice, the external entity would offer
some interface for the EMSs to connect to and send their data. The external entity saves the collected surrogate
models in some kind of database.

Exploitation: For the exploitation step, the flexibility providers send their current states to the external entity,
who then derives the flexibility choice, for instance, a schedule. As surrogates only generate approximations,
the flexibility providers may not be able to exactly reproduce the intended schedules or implement other kinds of
choices. Hence, either some deviation from the predicted behavior has to be expected and considered during the
selection process, or measures have to be taken to guarantee a high likelihood of feasibility (compare. [308]). If
high deviations must be expected, for instance, due to poor model quality, or if communication between flexibility
provider and external entity is inexpensive and reliable, implementing a feedback loop is sensible. With such a
feedback mechanism, the flexibility provider tells the external entity whether the choice is feasible or not, and may
also hint feasible options. Depending on the data provided by the flexibility provider and the type of surrogate
model, this may also enable the external entity to compute model updates and thereby improve the surrogate. Take,
for instance, a surrogate that assigns a price to a load schedule, i.e., a schedule is mapped to a price. When a
feedback mechanism is used, the flexibility provider responds to the schedule requested by the external entity with
the actual price. The combination of selected schedule as input, and the price as output, can then be used by the
external entity to update the surrogate and thereby improve the model’s accuracy.

Deviations may also be considered in the form of uncertainty. Some types of models, such as kriging models
or mixture density networks, do not only predict an output from a given input, but also provide information for
estimating probabilities. Given such a model, this information could be incorporated in the flexibility exploitation
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process, e.g., by performing stochastic optimizations or for giving guarantees. Another possibility to help the
external entity in deriving a choice is the provision of the planned load schedules by the individual flexibility
providers. The load schedule can then be used as a starting point in order to derive possible deviations [312],
possibly simplifying the search. Whether planned schedules are available or not is more relevant for deriving
choices, which is the focus of Chapter 6. Also, since planned schedules are optionally provided alongside the data
needed as inputs for the surrogate models, they are not listed in the discussion below.

Overall, any combinations of these features could be sensible, depending on the use case and the intended
functionality of the surrogate. Hence, such features are seen as possible additions to be considered when selecting
a surrogate modeling approach, and not separately named for each individual approach described below. Please
note that sometimes, it is possible to swap input and output data, and still have a theoretically sensible surrogate
model. However, even though examples are outlined below, their feasibility is not guaranteed.

Keeping all this in mind, subsequently surrogate modeling approaches are derived, based on the presented patterns
and the categorization developed in the previous chapter. Figure 4.3 is used as a reference to structure the procedure.
Beginning from the least abstract pattern, that is, the direct exploitation, the individual patterns are analyzed until
the state information based exploitation is reached. For ease of reference, approaches relevant for the remainder
of the thesis are marked as such by providing their name in the paragraph header. Surrogates, as explained before,
are built from input and output data. For this reason, the starting point to keep in mind for each category is
the question of which data is available or can easily be derived. This question is closely related to how models
belonging to each category are implemented and how the associated problems are solved. Please note that in the
process of deriving and incorporating a surrogate model, generally, the associated exploitation pattern changes.
After analyzing all patterns, a summary of the findings is given in Section 5.2.5, providing an overview of the most
promising approaches.

5.2.1 Direct Exploitation

Three basic modeling approaches have been identified for the direct exploitation pattern in the previous chapter,
namely, formulating (precise) models for each individual DER, shared models for DERs with similar characteristics,
and models mainly based on intervals. Given the identified literature falling under this category, it can be stated
that the employed algorithms for solving the investigated optimization problems are rather diverse. There are many
examples, of which only some are named here, implementing heuristics [100, 103, 15, 115], linear programs [102,
120, 122, 124], quadratic programs [98, 111, 119, 132], or even nonlinear programs [85, 110, 136, 138]. They are
often implemented as mixed integer models and, furthermore, the utilization of model predictive control is popular.

Precise Models

At a first glance surrogates and precisely formulated models seem to be mutually exclusive. While precise
models are built to be detailed representations of reality, surrogates simply approximate some function, accepting
imprecision. Depending on the exact circumstances, especially the relations between decision variables and the
objective, different opportunities for deriving surrogates may arise. Simply approximating a target function 𝑓 (𝑥)
taken from an optimization model is outlined first in this section. Then, identified opportunities for employing
surrogates for EAs and Markov models are outlined, followed by the already mentioned schedule repair found in
the literature. For the remaining types of optimization models, no further opportunities have been recognized.
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Figure 5.1: Cost based search and evaluation of load schedules.

Cost evaluation: Consider a model that has been tailored to precisely describe the processes in a building for
the purpose of minimizing the total cost of operation, which is a task often found in the literature. Any other
objective influenced by the DERs would work equally well, but since usually cost is the primary target, only cost
is considered here. In order to minimize the total cost 𝑓 (𝑥), the model must be able to compute this value based
on some decisions 𝑥 defining the operation of the available DERs. Given that 𝑥 directly corresponds to the DER
schedules, let 𝑥 contain the schedule of each DER. Both, the schedules 𝑥 and the target function value 𝑓 (𝑥), are
easily available for an EMS that optimizes the operation of DERs. For the purpose of modeling flexibility, it is
sufficient if the surrogate simply approximates 𝑓 (𝑥) for the external entity, for whom it serves two purposes. Firstly,
it can be an indicator whether a load schedule is feasible or not. Similar to the penalty method from the field of
mathematical optimization, invalid load schedules should result in a very large 𝑓 (𝑥) value, signifying infeasibility
in order to avoid it. Secondly, the cost provided by the surrogate is an estimate for the actual cost caused for the
flexibility provider implementing the given load schedule. The external entity can make use of this information
to search for a cheaper option that still satisfies all requirements. Figure 5.1 depicts the process of using this cost
evaluation surrogate. The state in the green colored box and the surrogate in the orange colored box are supplied by
each flexibility provider individually. It is stopped once an acceptable schedule has been found. Evaluating the cost
in the stopping criterion is optional. Since the cost information may be leveraged in order to find valid schedules,
which is outlined in more detail in Section 6.2, the surrogate can pose as a flexibility model.

Generation of load schedules inspired by evolutionary algorithms: Evolutionary algorithms offer a possible
way to heuristically deal with computationally complex optimization problems. Please see Section 2.5.4 for a brief
introduction. The EA framework, which is based around mapping abstract representations (genotypes) to possible
solutions (phenotypes), is very flexible in its application and, therefore, suitable for many use cases. Given such
a mapping, any phenotype, including DER schedules of arbitrary length, can be generated from a genotype. The
utilization of surrogates in the context of EAs is not new. Several ways to integrate surrogate models found in the
literature are summarized in [70]. All of these replace different steps of the algorithm, such as the initialization,
mutation, crossover, and evaluation. As the mapping from genotype to phenotype is usually hand tailored, it is
not considered for replacement with a surrogate model by any of the works referenced in [70]. However, in the
context of modeling and communicating flexibility, this exact step is especially significant. As the DERs determine
the objective value in an energy optimization problem, scheduling decisions for the DERs must be encoded in the
genotype. In other words, given an evolutionary algorithm that optimizes a DER related objective, a mapping
from genotypes to feasible load schedules is known. This mapping itself can be seen as a model for flexibility.
By varying the input, that is, the genome, different feasible load schedules can be generated. Communicating this
mapping may, however, pose some problems, as it is often a specific algorithm rather than a closed-form expression.
As a consequence, the external entity would need to execute the various algorithms provided by different flexibility
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Figure 5.2: Generating load schedules from a representation.

providers. In such a case, surrogate models may be a suitable replacement. Using surrogates, there only needs
to be a common understanding of the data structure and how the surrogate works. This rational is the core of the
generator pattern we introduced in [313].

It is, however, important to point out that there may be some restrictions to this approach, when starting from an
existing EA. Even though the load schedule is a required output needed to compute a target function value, such
as the overall cost for energy, the phenotype associated to a genotype is not necessarily a load schedule. Müller
et al. [265], for instance, use an EA to select boundaries for a closed-loop controller which operates a BESS.
Hence, an additional simulation of the closed-loop control is required in order to determine the load schedule. A
more advanced and comprehensive implementation of this combined EA and simulation approach is presented by
Mauser in [5], considering devices of all kinds. Even though the phenotype is not a load schedule, the result of the
simulation is. Therefore, in this case, it is possible to map from a genotype to a load schedule and use this data
to train a surrogate. Further limitations can arise if the EA has only a restricted ability to control DERs. If, for
example, the EA is not allowed to charge a BESS with electricity from the grid, a learned surrogate will also deny
it, even when the BESS is technically able to. In conclusion, an existing EA is a good opportunity to implement
this surrogate modeling approach, as training data can easily be generated, but it is important to assess possible
limitations beforehand.

Figure 5.2 depicts the process for generating load schedules from abstract representations. It is executed by the
external entity, who makes use of the surrogate. In the first step, a set of starting points, i.e., the initial population of
representations, is created. Then, with the help of the surrogate, each representation is mapped to a load schedule. If
the surrogate works as intended, the schedule is likely to be feasible for the given state. The resulting load schedules
are assessed by the external entity, and if one of them suffices for the intended use, the algorithm is stopped. If there
is no schedule meeting the requirements, new representations need to be generated. There are different options to
do this, including mutation and crossover. The process is then repeated with the updated population. After the
algorithm has stopped, the best identified schedule, or alternatively the associated representation, is communicated
to the flexibility provider as flexibility choice. Using this schedule generation process, the external entity is
essentially implementing and executing an EA. Which methods for generating and updating the population, which
may as well be a single individual, work best, is generally problem specific. Hence, knowledge from the domain of
EAs is crucial to implement and tweak each step involved in this approach. From a general perspective, the external
entity must be aware of the type of representation, i.e., if it is a binary string, a tuple of integers, or similar, in order
to generate a population and updates. Knowledge on how this data can be interpreted is not required.

Overall, in order to use this EA inspired generation approach, three components are required. Firstly, the surrogates
provided by the flexibility providers. The surrogate is specific to each flexibility provider, but may be based
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on a common specification, defining how certain elements of the abstract representations are interpreted. Such
a common understanding of the representation may help in the development of the remaining two components.
Secondly, an algorithm for sampling the initial population of representations and, lastly, algorithms for updating or
combining individual representations. These algorithms may be generic, fitted for a specified genotype structure,
or even supplied by the flexibility provider, e.g., in the form of surrogates as outlined in [70]. If the flexibility
providers are already making use of EAs in their local optimization, all required data for generating the surrogates
is easily available. Else, the underlying mapping must be implemented first. Fortunately, the field of machine
learning provides tools that could be employed to automate this step (see [266]). Two basic ideas are outlined in
the appendix in Section A.1. It is important to note that using these approaches comes with many new challenges.
Furthermore, there is no guarantee that the learned representations are in any way meaningful.

State-based simulation inspired by Markov decision processes: Markov decision processes are another pow-
erful modeling tool, which can be used for describing flexibility and optimizing its exploitation. A basic introduction
can be found in Section 2.5.8. Since the MDP framework is highly generic and hence very versatile, it is one option
for implementing direct exploitation approaches. In an MDP the state 𝑠𝑡 of the environment at time 𝑡 plays a crucial
role. The environment state, from the perspective of a flexibility provider or external entity, comprises all variables
relevant for optimizing schedules, as has been explained in the beginning of this section. For utilizing an MDP
the Markov property must be fulfilled, i.e., the next state must only depend on the current state 𝑠𝑡 and the selected
action 𝑎𝑡 . An exemplary state and action of a BESS could be 𝑠𝑡 = 50% SOC and 𝑎𝑡 = 1000 W of power provided
by the device. If 𝑠𝑡 does not suffice to explain 𝑠𝑡+1 with 𝑎𝑡 , it is missing information, which invalidates the model.
Hence, in this approach even more so, it is important to make sure all relevant information is contained in the state
vector.

The state 𝑠𝑡 influences not only which actions are available, that is, 𝐴(𝑠𝑡 ), but also the probability distribution
𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) of the subsequent state 𝑠𝑡+1, and the reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ) for executing action 𝑎𝑡 ∈ 𝐴(𝑠𝑡 ). Therefore,
surrogates derived from an MDP need to be able to process the state 𝑠𝑡 as an input. Figure 5.3 depicts the general
process of determining a feasible sequence of actions. Potential surrogates are again highlighted in orange color.
Starting from an initial state 𝑠0, the set of feasible actions is 𝐴(𝑠0). Given 𝑠0 and 𝐴(𝑠0), an action 𝑎 ∈ 𝐴(𝑠0)
can be selected according to some criterion, for instance, with the goal of minimizing the distance to a desired
load profile. Then, with the selected action, the subsequent state 𝑠1 can be estimated using 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). For
an external entity to be able to execute this process and determine feasible sequences of actions, they must know
𝐴(𝑠𝑡 ) and 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). Both could be supplied in the form of a surrogate. If the stochastic information provided
by 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is not required, a predictor function for the subsequent state 𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡 ) can be provided as a
surrogate instead.

In case of a deterministic process, the function 𝑓 (𝑠𝑡 , 𝑎𝑡 ) provides perfect predictions. After 𝑠1 has been determined,
the procedure can be repeated, using the latest estimate of the state 𝑠𝑡 as an input for each subsequent iteration.
Once the sequence of actions is sufficiently long, the process is finished. As the selected actions determine how the
flexibility provider’s DERs are operated, the sequence of actions defines a load schedule. Hence, given the external
entity knows 𝐴(𝑠𝑡 ), 𝑓 (𝑠𝑡 , 𝑎𝑡 ), and which action results in which load, they can use this process to determine feasible
load schedules. We proposed and tested this concept for modeling and communicating flexibility with surrogates
in [308].

In general, the required data for creating both surrogates can either be observed from the system that is to be
represented, or be collected from another existing model, such as a simulation model. A combination of both,
collecting data and generating artificial samples, is also possible. Overall, it is necessary to collect at least
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consecutive states 𝑠𝑡 and 𝑠𝑡+1, as well as the action 𝑎𝑡 executed in time step 𝑡. A surrogate 𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡 ) can
directly be created from this data. 𝐴(𝑠𝑡 ), on the other hand, has to be reconstructed using the observed 𝑠𝑡 and 𝑎𝑡
combinations, derived from the state itself, or collected directly from the devices via some interface. If feasible,
the second and third options are to be preferred, as the reconstruction based on finding multiple time steps with
identical or similar state is only viable for sufficiently large data sets. Furthermore, even if comparable states are
included in the data set, it is likely that the actions executed in similar states are similar as well. Consequently, it
is likely that large partitions of the set 𝐴(𝑠𝑡 ) cannot be reconstructed via this method and the true flexibility cannot
be captured by the learned model.

One issue that arises with this MDP surrogate modeling approach is the definition of the actions. There are two
general possibilities. Firstly, the actions can directly reproduce the operational choices offered by the individual
DERs. Take a BESS which provides control over the (dis-)charging power in steps of 100 W, for instance. Then, the
actions 0 (“idling”), 100 (“charge with 100 W”), 200 (“charge with 200 W”), etc. could be defined by the flexibility
provider. This works flawlessly, as long as only a single DER is represented. Once a second DER is added, 𝐴(𝑠𝑡 )
becomes the Cartesian product of the individual devices’ actions. Hence, there are multiple actions resulting in the
same total load, e.g., “BESS 1 idle and BESS 2 charge with 100 W” and “BESS 1 discharge with 100 W and BESS
2 charge with 200W” produce both a total load of 100 W. One possible solution is to create and communicate an
additional mapping from individual action combinations to the associated total load (see [308]). Another issue is
that the external entity is confronted with more possible choices, making the search for a certain load schedule even
more difficult. Since not every combination is equally efficient, for instance, the action with BESS 1 idling is more
efficient than the action charging BESS 2 from BESS 1, this could be dealt with by removing inefficient options.
The second option for defining actions is to simply split the interval of achievable load levels into 𝑛 discrete actions.
In case the DERs are not able to exactly achieve the defined power value, the closest achievable power level is
scheduled. A set of 𝑛 actions from the power interval [𝑙, 𝑢] is given by {((𝑢− 𝑙) · 𝑘/(𝑛−1)) + 𝑙 |𝑘 = 0, 1, . . . , 𝑛−1}.
Action 𝑘 results in load ((𝑢 − 𝑙) · 𝑘/(𝑛 − 1)) + 𝑙, 𝑘 = 0, 1, . . . , 𝑛 − 1. With this option, there is no need to create
an additional mapping for identifying the resulting total power, even when multiple DERs are present. Whenever
multiple options are available for achieving a given power, the most efficient one is selected. Since the DERs of
the flexibility provider are managed by an EMS, the EMS should be able to decide which controls are favorable.
In case there are multiple desirable solutions, the DERs should always be operated the same way in the identical
state, in order to guarantee a deterministic state transition. Throughout the remainder of this thesis, it is assumed
that actions are specified as real numbers, with the numbers signifying the resulting total load.

The iterative process outlined above and depicted in Figure 5.3 involves the two functions 𝐴(𝑠𝑡 ) for determining
the feasible actions and 𝑓 (𝑠𝑡 , 𝑎𝑡 ) for estimating 𝑠𝑡+1. Hence, two individual surrogates are required. It is, however,
possible to combine both into a single model. There are multiple ways to achieve this. For instance, both could be
combined into one single surrogate which approximates (𝑠𝑡 , 𝑎𝑡 ) ↦→ ( 𝑓 (𝑠𝑡 , 𝑎𝑡 ), 𝐴( 𝑓 (𝑠𝑡 , 𝑎𝑡 ))). Another possibility is
to generate a surrogate which outputs ( 𝑓 (𝑠𝑡 , 𝑎𝑡 ), �̃�𝑡 ), where �̃�𝑡 is the nearest feasible action in terms of the resulting
power at time step 𝑡. This output �̃�𝑡 can be compared to 𝑎𝑡 , and if the deviation is too large, 𝑎𝑡 is infeasible and the
returned 𝑠𝑡+1 invalid. Moreover, as �̃�𝑡 is the closest (predicted) feasible action, it provides a hint for choosing the
new 𝑎𝑡 and computing ( 𝑓 (𝑠𝑡 , 𝑎𝑡 ), �̃�𝑡 ) again. Only if the deviation is small enough 𝑠𝑡+1 is accepted. Overall, using
such a combined model, only one instead of two ANNs need to be trained and communicated. However, when two
ANNs are trained, they can be trained and selected separately, allowing their individual replacement when a better
model has been identified.

Repairing load schedules: From a more general perspective, the generation approach inspired by EAs and
outlined above is intended for producing a feasible load schedule from some representative input. This input
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Figure 5.4: Repair of infeasible load schedules [313].

encodes abstract, scheduling relevant information and is mapped to a valid schedule. On a closer look, load
schedules themselves are similar in this regard, as they hold scheduling relevant information, too. The major
difference is that this scheduling information can be infeasible. However, similar to the translation of instructions
encoded in the genotype, a valid schedule may be generated from the potentially invalid input. As such a mechanism
transforms infeasible schedules into feasible ones, it is called “repair” in this thesis.

This repair approach is not new, as it is the core of the flexibility exploitation with SVDDs [11]. In the case of the
SVDD, there is not even a need to identify pairs of feasible and infeasible schedules for generating the surrogate.
Instead, it is sufficient to train the model with valid samples. Using the SVDD, infeasible schedules are projected
onto the set of feasible schedules in the feature space. Therefore, inside the feature space, the “repaired” schedule
is close to the original one given as input. In [312] we tried to identify the closest feasible schedule with the help
of MILPs. The infeasible schedules and the resulting feasible schedule were used to train ANNs. However, the
surrogates were not able to achieve results which could compete with the other evaluated approaches. We argued
that this is likely due to the lack of a clear input and output relationship, as the MILP only provides one “random”
solution of many (see [312] for more details). Another option could be to follow the load schedule myopically
step by step, as long as possible. Doing so, similar to the state-based approach, the possible actions in the current
time step 𝑡 are evaluated and the devices are operated in a way minimizing the deviation from the target during this
single time step. Albeit future time steps are neglected and the resulting schedule may not be the solution closest to
the input, it is conceivable that this approach produces better results than the use of MILPs, as with this procedure
there is a more clear relationship between input and output.

After the flexibility provider has implemented a schedule repair algorithm, they can collect data and train a surrogate.
Figure 5.4 illustrates the general exploitation procedure executed by the external entity. After generating a desired
load schedule, the corresponding feasible schedule is determined with the help of the model. If this feasible
schedule is acceptable, the process can be stopped. Otherwise, it can be repeated until better options have been
identified.

Classification of Characteristics

Not only for the direct exploitation, but also the exploitation of abstracted flexibility, similar DERs are often
described with a shared model where only parameters need to be updated. Typically, the specific classes are
defined manually. Possibilities to automate the determination of a categorization could be derived from clustering
techniques. The goal would be to group DERs, either individually or as an aggregate, according to the similarity of
their achievable load schedules. This would not only yield groups of similar DERs, but also help to classify other
DERs in order to select the best fitting model. The automated generation of such a categorization is not further
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investigated in this thesis. Given a set of DER classes, shared models can be created. This is usually done by hand.
The classification and models are fixed for all entities participating in the flexibility exploitation. If shared models
are given, there is no general need for surrogate modeling. Every flexibility provider may simply express their
flexibility in terms of the provided classes. Possible reasons for using surrogates instead, including the potential to
aggregate devices, have already been pointed out, but since no further input and output combinations can be derived,
considering shared models alone does not lead to new ANN-based surrogate modeling approaches. Nonetheless,
it hints a way for possibly improving the overall ANN performance with the help of transfer learning. Using
this technique, base surrogates for different classes of DERs could benefit any ANN-based surrogate modeling
approach.

Interval-Based Models

Modeling the flexibility of DERs by intervals for power, energy, and/or power ramping provides a simple and
concise description of their abilities. Even if the intervals vary over time, the number of required parameters only
grows linearly. For instance, instead of one interval for the electrical power valid for 24 hours, 96 intervals would
suffice to describe a day in 15 minute steps. This is a rather small number of parameters, especially compared to
deep ANNs. Hence, training and communicating a surrogate to predict these intervals from a state vector is not
advisable. Instead, it is generally more efficient for the EMS to determine and communicate the intervals directly.
There are, however, exceptions where surrogate models could be used in a sensible way. Firstly, if uncertainty
is modeled, information on the likelihood of certain power, energy, or ramping levels being feasible could be
leveraged by the external entity in order to make more robust flexibility choices. One option would be to generalize
the interval-based description and distinguish multiple intervals for each value, each associated with a confidence
of the values within the interval being feasible. As the number of parameters required in such a description grows
rapidly with the level of detail, at a certain point, surrogates become viable again. In this scenario, a surrogate would
predict all required intervals from a given state. Secondly, another possible application of surrogates arises when
there are time dependent intervals with a causal dependence on past actions, that is, when the subsequent interval
is depending on the exact choice within the prior interval. This is essentially a modification of the state-based
simulation approach presented above, and demonstrates its versatility.

5.2.2 Exploitation of Abstracted Flexibility and Market-Based Exploitation

In the previous chapter it has been worked out that the central modeling approaches of the market-based exploitation
are also valid options for the exploitation of abstracted flexibility (see Figure 4.3). The major difference lies in the
existence of a market. This plays only a minor role in regard to surrogate modeling, as it does not matter whether
a market platform or some superordinate EMS decides on requests or offers. Hence, both patterns are considered
simultaneously in this section. Already discussed approaches and data-driven models, as they are incorporated
throughout this section, are omitted here.

Parameterization of a Common Model

The parameterization approach is based on the existence of a shared, versatile model, which can be adapted entirely
by setting the correct parameters. As surrogates cannot provide the shared model itself, i.e., the shared model has
to be defined manually, there only is the possibility to use surrogates for the estimation of the parameters. However,
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estimating parameters via surrogates is only a sensible option if the parameters need regular updates or if a huge
number of parameters has to be derived from the state. If this is not the case, it is more efficient and precise to
simply communicate the parameters instead. Anyhow, it is important to note that in this scenario the flexibility
is encoded differently compared to the other approaches. Here, the surrogate is only an instrument for keeping
model parameters updated, but the space of feasible schedules is described by the model and not the surrogate.
Nevertheless, since the surrogate must encode the operational restrictions and DERs’ characteristics to derive the
correct parameters, the surrogate must still encode the flexibility.

Requests and Offers

It has been pointed out before that in order to control the operation of DERs, the flexibility providers have to be
influenced. Hence, for a surrogate model to be helpful, it must describe the behavior of the flexibility provider
given a certain signal. As requests and offers may originate from flexibility providers or external entities, it is
necessary to distinguish the respective target. For the sake of brevity, in the following only requests are named, but
the same statements are true for offers, too. An external entity as target has the choice of accepting or declining
requests. A surrogate could tell the external entity what the consequences of declining a request are. However, this
information could easily be supplied as part of the request, if necessary. Nevertheless, when the opposite direction
is implemented, that is, the external entity submits offers or requests to the flexibility provider, surrogates may be
helpful instruments in multiple ways.

Request outcome and constraint outcome: As explained before, based on the meaning of the individual terms,
offers from the external entity are optional and requests are typically compulsory. If an external entity is able to
forecast how a flexibility provider reacts to certain requests or offers, they are able to compare different options and
select the most promising one to send to the respective flexibility provider. Useful information includes, but is not
limited to, the resulting load, the duration the change is maintained, and possible rebound effects. All the named
data could be provided by surrogate models generated by each individual flexibility provider and transmitted to the
external entity. Surrogates providing this information are applicable for many types of requests, including on/off
control and imposing constraints. This approach is, however, not sensible in combination with load schedules,
as the schedule itself already holds all this information. As imposed constraints have a less restricting character,
the “constraint outcome” approach is named separately, in addition to the “request outcome”. With the “response
characteristics” 𝑓 (𝑡, 𝑡𝑟 ) [138], which describes the change in load for a request at time 𝑡 with duration 𝑡𝑟 , a similar
approach has already been presented in the literature review.

Classification: Sets of load schedules play a significant role in the development of concepts for surrogate based
flexibility models. Many approaches presented in this chapter could be listed in this context, as they aim to
generate feasible load schedules from some input. By simply repeating the proposed generation procedures, a set
of schedules likely to be feasible is obtained. An alternative option to compile such a set is to sample random
schedules, test whether they are valid or not, and collect the positively classified results. The classification approach
introduced and evaluated in [313] and [312] respectively, takes a whole load schedule as an input and returns the
estimated probability of feasibility. The general procedure is depicted in Figure 5.5. It starts out with the generation
of one or multiple candidate load schedules. These schedules are then individually passed to the classifier, i.e.,
the surrogate model, which evaluates whether the schedules are feasible or not. If none of the load schedules is
feasible, the process needs to be repeated with new candidates. The procedure either stops once a desired schedule
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Figure 5.5: The original classification pattern (top) presented in [313] and a classifier based schedule generation approach (bottom).

has been classified feasible, or once a certain number of valid schedules has been identified. In the latter case,
a subsequent process needs to select the most desirable option. However, simply passing random inputs to the
classifier generally only yields very few positive results, if any at all. As usually only a small part of the set
of potential load schedules is feasible [62], the generation of candidates is a non-trivial task. An external entity
would, therefore, need additional information provided by the flexibility provider in order to confine the search
space. A potential option for ANN-based classifiers could be to exploit the gradient information and perform
backpropagation steps in order to generate an input vector with a better rating. This idea is picked up again in
Section 6.2.

Fragmented classification: Another possible way to tackle the difficulty of finding correct schedules is the
modification illustrated in the bottom half of Figure 5.5. Here, the schedule is composed by multiple fragments.
With this modification, there is no need to guess entire schedules. Instead, only fragment after fragment needs
to be found. Fragments may result from any arbitrary partition of load schedules, i.e., have any arbitrary length.
However, single time steps are the simplest option for the external entity to deal with, as only one additional value
is required in each step. For this iterative procedure to work, either the surrogate must be capable of processing
only certain parts of the input, or there must be multiple surrogates for the different steps involved. Overall, the
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Figure 5.6: Targeted generation of dynamic tariffs [313].

approach is similar to the state-based simulation in regard to the schedule being built step by step in a chronological
order. Nevertheless, with this approach, the estimation of states is not required at all. Please also note the similarity
to the cascade classifier [12], as it essentially is just a cascade of classifiers.

5.2.3 Indirect Exploitation

Tariff outcome: Models being optional is a feature making the indirect exploitation of flexibility appealing. In its
simplest implementation, electricity tariffs reflect the production, consumption, and grid state without considering
the specific flexibility providers. Nonetheless, some kind of model is needed, when a more targeted influence
is desired or the consequences of pricing decisions need to be estimated. As the literature review shows, often
elasticities are used to estimate the change in load resulting from a given change in price. Since elasticities depend
on factors like the presence of people, they vary throughout the day. Hence, often multiple elasticities are used.
Furthermore, to estimate intertemporal relations, for instance rebound effects, cross-elasticities can be added. All
these are usually estimated by the external entity, who needs to exploit the flexibility. Alternatively, these could
be estimated by each flexibility providers’ EMS on a regular basis and sent to the external entity as a (very rough)
model of the DERs. Like explained before, a potential surrogate model must be able to provide estimates of how
the associated flexibility provider reacts to a given signal, in this case the prices of the tariff. Analogously to
the previously discussed options for estimating model parameters, the elasticities could be estimated and updated
with the help of a surrogate. However, here again, it is easier to simply transmit the elasticities instead of using a
surrogate. Another option would be to estimate the changes in load directly with the surrogate, instead of using
an elasticity. In contrast to the elasticities, which provide linearized estimates, surrogates can provide estimates
incorporating nonlinear relations.

Figure 5.6 depicts the process of finding a suitable tariff for an individual flexibility provider [313, 312]. It is also
applicable if only one single price for a single time step is determined. There may be rules restricting the shape of
price profiles (e.g., [5]), for instance requiring a given average. In general, the prices are determined on the basis
of the desired change in load. During time steps in which the load should be lowered, prices above the average are
usually selected, and vice versa. Utilizing the surrogate, and the state vector provided by the respective flexibility
provider, the resulting load schedule can be estimated. If the schedule satisfies the needs of the external entity, the
resulting tariff can be communicated back to the flexibility provider. If it is unsuitable, the tariff can be updated
until a more suitable expected load schedule is found. As mentioned before, the reversal, that is, the estimation of
a tariff from a desired load schedule, may also be a meaningful approach (e.g., [267]).
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5.2.4 State Information Based Exploitation

Finally, surrogate modeling for the state information based exploitation remains to be discussed. As the indirect
exploitation with non-discriminating tariffs can be seen as stigmergic and, therefore, as part of this pattern, the
generalization of the previously presented tariff outcome approach provides one possibility to integrate surrogate
models.

Deception outcome: In the tariff approach, the idea is to find the best option by repeatedly adjusting the tariff
and predicting the resulting behavior of the flexibility provider. By replacing the tariff in Figure 5.6 with the type
of signal that is used in the pattern, e.g., the total load of all flexibility providers, the external entity can evaluate the
consequences of sending a certain signal. Furthermore, if such an approach was to be implemented, the reversal
of the input and output, that is, the surrogate receives the intended schedule and predicts which signal would
result in the schedule, could also be considered. However, in both cases the external entity would need to send
artificial signals, which are different for each flexibility provider and do not reflect the true state of the electrical
grid. Therefore, the integration of surrogates for the purpose of communicating flexibility changes the associated
exploitation pattern.

Both, tariffs and aggregated signals reflecting the state of the grid, are generally determined by some central
party. Hence, the approaches outlined here are assuming that there is at least one external entity. In a distributed
architecture with peer-to-peer communication, each flexibility provider is an external entity at the same time, as
not only flexibility is provided, but also signals are sent to other flexibility providers. In such a case, any of the
surrogate modeling approaches derived and introduced in this chapter could be utilized, given the approach fits the
intended use and available data.

5.2.5 Summary

With all the general modeling approaches analyzed, it is now possible to summarize the findings. As the discussion
shows, there are many opportunities to utilize surrogates for the purpose of encoding flexibility. Whether they
are beneficial or the cost outweighs the benefits is use case dependent. Generally speaking, the major benefit of
using surrogates is the possibility to generate them in an automated fashion and to communicate them. Therefore,
if there is no need for individual models of flexibility providers, or there is already a model, surrogates may not
provide much further value. Table 5.1 provides an overview of the most promising surrogate modeling approaches.
Approaches with questionable benefits are not listed here. As has been stated before, it is not possible to provide a
conclusive list of all imaginable approaches. Further sensible ways of encoding flexibility may exist. Nevertheless,
all surrogate modeling approaches found in the literature and referenced in this thesis are covered by the table.

Table 5.1 divides the individual approaches into two distinct categories. The aim of those in the upper section is
the generation of schedules. An external entity employing one of these approaches would use the surrogates to
generate load schedules likely to be feasible, evaluate the generated options, and then request the flexibility provider
to follow the desired schedule. Using such an approach, the external entity is able to exactly select the schedule
of each individual flexibility provider. The second type of approaches influences DERs with the help of other
types of signals, such as tariffs or constraints. For these, the external entity can only estimate how the flexibility
providers will react. The necessary predictions are made with surrogates, which can be generated and provided by
the flexibility providers themselves. By varying the inputs and evaluating the outputs of the surrogates, the external
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Table 5.1: Summary of the most promising surrogate modeling approaches for encoding and communicating flexibility. Using the upper entries,
the flexibility providers receive schedules. For the approaches in the bottom half, the input of the surrogate is sent to the providers.

Purpose Surrogate Input* Output See

Sc
he

du
le

ge
ne

ra
tio

n

Generation Representation Feasible load schedule Figure 5.2
State-based simulation Action State, feasible actions Figure 5.3
Repair Load schedule Feasible load schedule Figure 5.4
Fragmented classification Load schedule fragments Feasibility Figure 5.5
Classification Load schedule Feasibility Figure 5.5
Cost evaluation Load schedule Cost Figure 5.1

Si
gn

al
se

le
ct

io
n

Tariff outcome Tariff Load (schedule) Figure 5.6
Request outcome Requested load (change) Duration (, energy) (, rebound) Section 5.2.2
Constraint outcome Constraint Duration (, energy) (, rebound) Section 5.2.2
Deception outcome Global state Load (schedule) Section 5.2.4

*The current state of the system is generally required as an additional input

entity can select the most promising signal. This signal is then sent to the flexibility providers. For each approach,
the table lists the respective inputs and outputs, as well as the intended purpose of the surrogate which details
how the overall aim, that is, generating a schedule or identifying a signal, is achieved. As pointed out before, in
general, the current state of the represented DERs is required to accurately identify the true flexibility. Therefore,
an external entity usually needs to communicate with a flexibility provider before sending requests. Especially for
those approaches in the bottom half of the table, it is not always sensible to pursue a surrogate modeling approach.
The surrogate is beneficial in situations where a large number of potential flexibility choices needs to be generated.
If only a few options are required, it is sufficient to have them generated directly by the flexibility provider instead.
In order to generate surrogates according to one of the listed approaches, a sufficient amount of data is required.
Which data is needed exactly, evidently varies. From a general perspective, the required data may be collected from
a database, observed during operation, generated using simulation models specifically built for this purpose, or be
generated and extracted from existing model implementations. Furthermore, dataset augmentation could supply
more training data. For more detailed descriptions of the individual approaches, please see the referenced figures
and sections.

5.3 Evaluation

The primary goal of this section is to analyze how well ANN-based surrogates are able to encode flexibility and
therefore act as models for DERs. In our recent publications [312, 308] we already presented a first assessment
for some of these surrogate modeling approaches. Taking our previous findings into account, this thesis provides
a more structured and reasoned investigation of surrogate modeling, uses a newly developed and more versatile
software framework for generating and evaluating models, tests more types and combinations of DERs, and presents
a more thorough analysis of the individual results.
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Given the previous sections, it is apparent that at least in theory there are many possible ways to control the behavior
of DERs with the help of surrogates. Individual surrogate modeling approaches showed to serve one of two primary
purposes, that is, the generation of load schedules or the generation of some sort of influential signal. However,
due to the high level of abstractness, it is not possible to draw a clear separating line. A surrogate that can be used
to explore feasible schedules, can often also be used to derive other types of signals. If, for instance, the goal is to
determine feasible constraints and the duration the constraints can be met, the same information can be gathered by
searching for feasible schedules within these boundaries. Nevertheless, this does not make the surrogates for signal
selection obsolete, as they may need substantially less training data to achieve similar results, since the difficulty of
generating load schedules is rather high.

The most versatile approach identified before is the state-based simulation. With this surrogate it is possible to
replicate all other approaches listed in Table 5.1. Therefore, it can be seen as a baseline of what can be achieved
with ANN-based surrogates. For this reason, and since it yielded very promising results in our first tests [308], the
state-based simulation is used in this evaluation. How each approach could be replicated is outlined in Table 5.2.
The training of additional models or development of complementary algorithms may be required though, for
this purpose. As an example of how other approaches can be emulated, please consider the constraint outcome
approach. The constraint outcome surrogate predicts the duration a given imposed constraint can be satisfied when
in state 𝑠0. Starting from this state 𝑠0 the state-based simulation surrogate can be utilized to determine a trajectory
of states (𝑠0, 𝑠1, . . . , 𝑠𝑖), selecting only feasible actions satisfying the boundary 𝑏 given by the imposed constraint.
Once state 𝑠𝑖 is reached, where no feasible choice within the boundary is left, a lower bound for the duration is
given by 𝑖 times the length of a time step. If, for instance, the length of a time step is 15 minutes and there is an
𝑎0 ∈ 𝐴(𝑠0) ⊂ R with 𝑎0 ≤ 𝑏, but no 𝑎1 ∈ 𝐴( 𝑓 (𝑠0, 𝑎0)) with 𝑎1 ≤ 𝑏, then it has to be expected that the boundary
of 𝑏 watts can be abided by for at least 15 minutes. The number of time steps 𝑖 and, hence, the bound for the
duration, is of course depending on the action choices leading up to the state 𝑠𝑖 , which suggests that a variety of
trajectories should be tested, when the goal is to emulate the constraint outcome surrogate. The general procedure
for the assessment is as follows:

1. Definition of the exact goals and evaluation criteria

2. Selection of DER combinations to be tested

3. Specification of the data source for generating the surrogates

4. Generation of the surrogates

5. Conducting tests

6. Compiling results

7. Analysis and discussion of results

As has already been pointed out multiple times throughout this thesis, the specific use case is an important factor to
consider when implementing a surrogate based exploitation of flexibility. In the first step, it is therefore necessary
to specify the respective goals in order to test and evaluate ANN-based flexibility models. Also, in this step,
the specific criteria for assessing each model’s performance is derived from these goals. Next, all DERs to be
considered in the evaluation are selected. It is then decided how the necessary data for training the ANNs is
gathered. Given the data sources, the ANN-based flexibility models are generated, and subsequently tested. With
the obtained results it is then possible to give a general answer to which quality of approximation is achievable.
The remainder of this section is structured according to this methodology.
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Table 5.2: Using the state-based simulation to replicate the other surrogate modeling approaches. While some approaches may be replicated
directly, others require additional models or algorithms. However, all approaches can be replicated, which demonstrates the versatility
of the state-based simulation approach.

Surrogate Replication with a surrogate of the state-based simulation approach

Sc
he

du
le

ge
ne

ra
tio

n

Generation
Generic function using the surrogate to simulate a state trajectory by selecting
actions from the set of feasible actions based on some associated generic genotype

State-based simulation *

Repair
Step by step transitions, always choosing the feasible action closest to the respective
power value of the time step given by the (potentially infeasible) input schedule
Step by step replication of the schedule by selecting the given power values. Once
an infeasible actions is chosen, the classification result is “infeasible”. If all actionsFragmented classification
are admissible, the schedule is classified “feasible”

Classification See fragmented classification
Cost evaluation Additional cost model 𝑐(𝑠𝑡 , 𝑎𝑡 ) specifying cost for selecting action 𝑎𝑡 in state 𝑠𝑡

Si
gn

al
se

le
ct

io
n Tariff outcome

An additional RL policy 𝜋(𝑎 |𝑠) trained by the flexibility provider is passed to the
external entity, who then uses the policy to emulate the optimization conducted by
the flexibility provider in order to determine the resulting load schedule
Testing a given request by selecting the associated actions. Like in the classification,

Request outcome
up to the first infeasible action choice, the schedule is feasible

Constraint outcome
Testing a given constraint by selecting the respective actions, similar to the request
outcome approach

Deception outcome See tariff outcome

5.3.1 Goals and Evaluation Criteria

Table 5.3 provides a short summary of the evaluation’s general framework. The goal is to generate a set of feasible
load schedules from which the external entity can choose an option. This is the same goal that is pursued in our
previous publications [312, 308]. Schedules are generated by randomly selecting actions in each single time step.
With the state-based simulation approach, for a schedule to be feasible, it is necessary that the ANNs are correctly
identifying feasible actions and provide sufficiently accurate forecasts of the resulting states.

The assessment is conducted with DERs found in households and commercial buildings. A detailed specification
of the investigated configurations is provided in the next section. To learn the necessary ANNs, it is sufficient to
have data listing feasible actions for given states, and state transitions for given actions and states. A control or
optimization logic is not required. Therefore, the approach can easily be applied to individual DERs and aggregates
of multiple DERs, such as buildings. The data for training the surrogates is acquired with the help of simulation
models. It would also be possible to extract the required data from optimization models. However, the implemented
optimization models are only used during the evaluation, in order to assess the results in more detail. Finally, the
criteria for assessing the performance reflects the respective goal. In the past, we have either used the percentage of
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Table 5.3: Evaluation procedure summary.

State-based simulation

Goal Generating a set of feasible load schedules of a length up to 24h
DERs Individual devices and aggregates of DERs
Data sources Simulation models
Evaluation Overall feasibility, classification performance, deviation from feasible schedules

feasible load schedules [308] or deviation measures [312] in order to assess the performance of schedule generation
approaches. Both showed to have their individual shortfalls. On the one hand, when generating load schedules, it
is desirable to end up with truly feasible schedules, which can be reliably reproduced by the DERs. On the other
hand, even minor prediction errors can make a schedule infeasible, even though in practice the DERs could have
reproduced it “well enough”. Therefore, in contrast to our previous publications, both criteria are used in this thesis.
Please keep in mind that in a practical implementation it is possible to make use of responses to the external entity
for giving feedback whether the choices are plausible or not.

5.3.2 Considered Distributed Energy Resources

In our recent papers we primarily considered residential buildings, and decided to test a BESS, a CHPP with an
HWT, and the combination of both. While, in this thesis, the focus on DERs commonly found in residential buildings
remains, additionally an EVSE and more complex aggregates of DERs are tested. All tested DER configurations
exhibit different characteristics and operational constraints, which need to be learned by the surrogate model.
Please keep in mind that the goal is to encode the flexibility in electricity consumption and production. Therefore,
thermal flexibility cannot directly be exploited with the model, but still needs to be learned as it determines the
behavior of heat producing DERs. Overall, the BESS is by far the most flexible device, as it is the only considered
DER that can switch between consumption and production, or more precisely, charging and discharging electrical
energy. The other devices are either able to consume or provide electricity. Furthermore, different DER specific
characteristics are considered, which add new constraints. The EVSE, for instance has availability restrictions and
varying charging requirements, depending on connected BEV’s capacity and SOC. The CHPP, on the other hand,
has dwell time requirements to prevent the device from repeatedly starting up and shutting down, resulting in wear
and tear.

Battery energy storage system: For parameterizing the BESS model in a stand-alone test, the Tesla Powerwall
2 was chosen as a reference. All relevant parameters are given in Table 5.4. The data sheet of the Powerwall only
provides the round-trip efficiency of 0.9 and does not provide information on self-discharge [268]. Splitting the
10% loss equally, charging and discharging efficiencies of 0.95 are assumed, leading to a comparable round-trip
efficiency. Regarding self-discharge, in experiments with lithium-ion battery cells, fully charged cells lost around
10% of their energy over a period of 31 days [269]. This breaks down to a loss of 0.34% per day and is hence
negligible.
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Table 5.4: Parameters of the tested BESS.

BESS Tesla Powerwall 2

Capacity 13.5 kWh [268]
Maximum (constant) power (charge and discharge) 5 kW [268]
Charging efficiency 0.95 assumption*
Discharging efficiency 0.95 assumption*
Standing loss 0 **

*based on round-trip efficiency of 0.9 [268]
**negligible for the investigated 24h periods

Combined heat and power plant satisfying heat demand: The reference device for parameterizing the CHPP
model is a first generation Senertec Dachs HKA G 5.5. When running, it provides 5.5 kW of electrical power. In
order to add more complexity to the model and make it harder to learn, ramping and minimum dwell times are
considered. It is assumed that the power is ramping up and down linearly. The minimum dwell times are chosen
randomly and range from 0 to 60 minutes. The CHPP is not tested in isolation, as even with dwell time constraints
and ramping, the constraints are rather simple. Instead, the combination of CHPP and HWT, both satisfying a
given, varying heat demand, is tested. For the sake of brevity, in the following, the HWT is omitted when referring
to this system simply as “CHPP satisfying heat demand” or “CHPP configuration”. Table 5.6 lists all parameters.
The assumed HWT standing loss has been computed with the formula utilized for determining HWT energy labels
given in the EU [270]. Overall the same parameters as in [312] are used, but not the same models. Heat demands
have been determined with the CREST Demand Model [271], assuming a 4 person detached family home, on a week
day. A total of 180 time series has been generated, 60 for summer, winter and intermediate seasons, respectively.

Table 5.5: Parameters of the tested CHPP.

CHPP Senertec Dachs HKA G 5.5

Electrical power 5.5 kW [272]
Thermal power 12.5 kW [272]
Power ramping linear, 15 min assumption
Minimum running time (soft constraint) 0, 15, 30, 45 or 60 min assumption
Minimum idle time (soft constraint) 0, 15, 30, 45 or 60 min assumption

Electric vehicle supply equipment: The parameters for the EVSE are based on the Keba P30, a commercial
charging station. It is connected to three phases, each providing 32 A at 230 V, that is, 22.08 kW in total. A
minimum charging power of 3.6 kW has been assumed. As the charging equipment is able to supply different
BEVs, the model must be able to handle varying charging requirements. In this evaluation, varying capacities,
initial SOCs and target SOCs are considered. The target SOC is specified as an interval of allowable values.
Minimum and maximum charging powers are assumed to be fixed, independent of the specific EV. Charging
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Table 5.6: Parameters of the tested combination of CHPP, HWT, and heat demand.

CHPP satisfying heat demand

CHPP Senertec Dachs HKA G 5.5

HWT Volume 750 l assumption
Temperature range (soft constraint) 60 to 80 °C assumption
Standing loss 0.00245 1/h assumption*

Heat demand Four person household on a week day [271]

*energy efficiency class B to C [270] measured at a 45 K temperature difference [273]

requests have been derived randomly based on the battery capacities of a variety of different BEV models. The
arrival rate, as well as the allowable ranges for the target SOC, and standing times are assumptions. An arrival rate
of 1/48 means that 2 BEVs are expected to arrive during 96 time steps.

Table 5.7: Parameters of the tested EVSE and BEVs.

EVSE Keba P30

Minimum charging power 3.6 kW assumption
Maximum charging power 22 kW 32 A on 3 phases
BEV arrival rate 1/48 assumption

BEV capacities

smart EQ fortwo 17.6 kWh [274]
BMW i3 27.2 or 37.9 kWh [275, 276]
Seat Mii Electric 36.8 kWh [277]
Renault ZOE (R110 and R135) 52 kWh [278]
Tesla Model S 70 or 85 kWh [279]

Charging parameters

Arrival SOC U(0, 0.9) assumption
Target min U(0.3, 0.99) assumption
Target max U(0.7, 1) assumption
Staying time 15 min to 1 day assumption

Detached family home: The first aggregate of DERs is a combination of a BESS, CHPP, HWT, and heat demand,
as listed in Table 5.8. It simply joins together the BESS and the CHPP satisfying the heat demand configurations.
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Table 5.8: Parameters of the tested aggregate of BESS, CHPP, HWT, and heat demand.

Detached family home

BESS Tesla Powerwall 2

CHPP, HWT, heat demand Identical to CHPP satisfying heat demand (see Table 5.6)

Table 5.9: Parameters of the HoLL model.

FZI House of Living Labs

3× BESS, each BAE SECURA PVV Block 6V6 PVV 420
Capacity 7.8 kWh [280]
Maximum (constant) power 780 W [280]
Charging efficiency 0.78 assumption*
Discharging efficiency 1 assumption*
Standing loss 0 **

EVSE Keba P30

CHPP Senertec Dachs HKA G 5.5

GCB Elco Thision L 100
Thermal power 40 kW ***
Ramp on start up 40 kW/ 450 s ***
Ramp on shut down 20 kW/ 60 s ***

HWT Volume 3300 l
Temperature range (soft constraint) 40 to 60 °C
Standing loss 0.005655 1/h ***

Demand Historic time series ***

*efficiency of lead-acid batteries reported to be around 0.78 to 0.8 in [281]
**2 % per month [282], negligible for the investigated 24 h periods

***based on measurements in the FZI HoLL
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FZI House of Living Labs: The fifth configuration tested in this thesis is a simplified model of the FZI House of
Living Labs (HoLL). It is a combination of the above models with adapted parameters and constraints. An overview
of the parameters can be found in Table 5.9. The BESS is made up of three identical lead-acid battery systems with
a total usable capacity of 23.4 kWh. The maximum total charge and discharge power is 2,340 W. According to
the manufacturer the BESS only looses 2% of its charge over the course of a month [282]. Self-discharge is hence
negligible. In contrast to the other configurations, the HWT is larger and additionally connected to a GCB. The
GCB parameters, as well as the HWT heat loss are derived from measurements collected during normal operation
of the devices. Like in the other configurations, inflexible electricity consumption is not considered as it cannot be
influenced.

Aggregated battery energy storage system: When moving to higher voltage levels in the electrical grid, the
need for aggregation grows. To test the aggregation on a larger scale, a configuration consisting of 100 independent
BESSs has also been tested. The simplified HoLL configuration, in contrast, combines different types of DERs
and helps to test the ability of ANN-based surrogates to aggregate heterogenous DERs. Half of the 100 BESSs are
small storages suitable for single family homes, the other half has enough capacity to act as a shared buffer for a
larger number of buildings in a distribution grid. The exact parameters are listed in Table 5.10.

Table 5.10: Parameters for the aggregated BESS model combining a total of 100 individual storages.

Aggregated BESS

50× BESS, each Tesla Powerwall 2

50× BESS, each Capacity 120 kWh [310]
Maximum (constant) power (charge and discharge) 120 kW [310]
Charging efficiency 0.95 assumption
Discharging efficiency 0.95 assumption
Standing loss 0 assumption

5.3.3 Data Sources

The versatility of ANNs comes at the cost of needing large amounts of data for training, especially for deep ANNs.
As a rule of thumb, for supervised deep learning working with categorical data, 5,000 samples per category suffice
to train a model with acceptable performance, and 10 million samples to reach or exceed human performance [27,
p. 20]. Given the 4 · 24 · 365 = 35, 040 quarter hours of a year, training surrogate models using observed data
samples of 15 minute length seems viable. If, however, time series covering a whole day are required, only 365
non-overlapping samples remain. For those approaches falling under the category signal selection, the situation is
even more severe when the signal is only sent sporadically. Then only a few samples may remain.

Another potential pitfall of using solely observed data is insufficient variability. As explained before, a trained
model can only reflect the flexibility found in the training data. If the training data does not exhibit variability, e.g.,
due to following a similar schedule each day, the generated surrogate does not encode the true potential of the DERs.
While dataset augmentation may alleviate some of these issues, it cannot generally solve them. Therefore, surrogate
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modeling approaches for encoding flexibility can greatly benefit from existing optimization and simulation models,
as they can be used to generate data for training surrogates. For instance, EAs can provide all the data required for
surrogates following the generation approach, MDPs are suitable for a state-based simulation surrogate, and any
cost based optimization model allows the generation of feasible load schedules needed in the classification and cost
evaluation approaches. If such models are not already present, the potential lack of data or data variability can also
be tackled with simulation models. By utilizing any of these options, it is possible to generate synthetic data for
situations not encountered in the past. This can greatly help to improve the quality of the trained surrogate models,
as more regions of the set of possible inputs are covered during the training process. Since simulation models
provide the required data more efficiently, as there is no need to interact with a solver software, training data is
acquired by means of simulation. Nevertheless, additional optimization models are implemented for the purpose
of analyzing the results. Simulation and optimization models for each configuration of DERs are presented in the
following. The models are based on our previous publications [312] and [308]. All of them have been implemented
in Python as part of a newly developed framework for generating load schedules and training ANN-based surrogates.

Simulation Models

In the developed framework, all simulation models are derived from a common, abstract class named Model, which
defines the basic functionality all models must provide. A depiction of this base class can be found in Figure 5.7.
For the sake of brevity, only the core functionality of this base class is illustrated. It is designed to provide plentiful
information in order to be a suitable data source for most surrogate modeling approaches. The attribute dt holds the
length of a single time step Δ𝑡 in seconds, which is needed to compute the energy flows during a single time step.
The set of all considered actions is stored in an array named actions. Each action is an integer value and equals the
resulting power in watts. In the framework, power flowing towards a flexibility provider has a positive sign, while
power flowing away has a negative sign. Therefore, the action -1000 translates to “provide 1 kW of power”, as the
power flows away from the DERs providing it. The set of all considered actions may be a proper superset of the set
of actually achievable actions, i.e., it can contain elements which are unachievable for the modeled DER.

In general, an action determines how a single DER or a combination of DERs should operate. If two or more DERs
are aggregated, there can be multiple actions associated with the identical total load, depending on the encoding of
actions. In order to generate models that are easy to handle for the external entities, such “duplicates” are avoided
by encoding actions as the resulting electrical power. Consequently, there can be ambiguous actions that may be
achieved in multiple different ways. This is solved by choosing the most profitable option if there is more than one
way of providing or consuming the requested power level. In a state where more than one option is optimal, always
the same specific option should be selected in order to act less randomly and more predictably. The current state
of the simulated DER is stored in the state array. As in reality the true state of a device is generally only partially
observable, a hidden_state array can hold further information unavailable to the learning algorithm generating the
surrogate.

Based on the state and hidden state the set of feasible actions can be retrieved with the feasible_actions() method,
which is implemented as a class property. The set is created by collecting the feasible elements from the actions
set, which results in a subset. Finally, the transition method allows advancing the simulation to the subsequent
time step. Given a feasible action, for instance selected randomly from the set of feasible actions, it computes the
subsequent state, hidden state, and the resulting interaction with the environment of the DER. The method returns
the new state and interaction.
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Model

- dt: int
- actions: array<int>
+ state: array<float>
+ hidden_state: array<object>

+ feasible_actions(): array<int>
+ transition(action: int, interaction: pair<int, int>): pair<int, int>

Figure 5.7: Base class of all models. The simulation model works exactly like the state-based simulation surrogate.

Figure 5.8 depicts the interplay of actions and interactions for an exemplary ensemble comprising a CHPP, BESS,
HWT, and a heat consumer. The interaction tuple initially holds only zeroes. Each model, one by one, receives
the interaction tuple from the previous model and manipulates the values according to its behavior. In regard to
the sign of the power flow, the resulting interaction is specified from the perspective of the next model in line.
While the CHPP and BESS both take an action as an input, the (inflexible) heat consumer and HWT do not. The
individual actions for the CHPP and BESS are determined by the local EMS. After calling each transition function,
the interaction tuple holds the resulting aggregated electrical and thermal power flows. Using this mechanism,
aggregates can be formed by combining multiple simulation models within another simulation model.

In comparison to reality, the interaction of the components is highly simplified. Overall, all implemented simulation
models are rather simple and abstract when compared to the actual DER. Nevertheless, compared to most DSM
related models found in the literature review, the simulation models utilized in this thesis are still very detailed. In
order to generate a load schedule, the selection of an action and the transition to a new state are repeated until the
desired amount of steps has been reached. Depending on the surrogate modeling approach and machine learning
algorithms it is beneficial to include infeasible samples in the training data. An infeasible load schedule is generated
by simply selecting an infeasible action in any of the time steps.

In the following the individual models for the implemented DERs are introduced in terms of the required parameters,
as well as the equations describing the state transition. The time step is given by the index 𝑡. It assumes values from
𝑡 = 0 up to the considered time horizon 𝑇 . The length of a simulated time step in seconds is Δ𝑡 and a fixed value.
Amounts of energy are calculated in Ws. All parameters have been set according to the configurations presented
in the previous section. The set of feasible actions is derived by inserting the state transition equation into the
constraints and checking which actions lead to an acceptable state. As an example, consider the state transition law
𝑠𝑡+1 := 𝑠𝑡 + 𝑎𝑡 which depends on action 𝑎𝑡 . Furthermore, let the state be restricted to the interval [0, 100]. Then
the set of feasible actions is 𝐴(𝑠𝑡 ) = {𝑎𝑡 |𝑠𝑡+1 ∈ [0, 100]} = {𝑎𝑡 | − 𝑠𝑡 ≤ 𝑎𝑡 ≤ 100 − 𝑠𝑡 }.

Battery energy storage system: The model for the BESS includes the capacity, a maximum charging and
discharging power, charging and discharging efficiencies, as well as standing losses. Additionally, artificial
minimum and maximum constraints for the SOC are incorporated. These artificial constraints can serve multiple
purposes. Firstly, they can act as a buffer for increasing the share of feasible load schedules, which is evaluated in
further detail later in this section. Secondly, they could be used by the EMS to restrict the flexibility provided to
the external entity. Aside from the restriction posed by the capacity and the minimum and maximum SOCs, it is
assumed that there is no dependence between the current amount of stored energy and the different parameters. In
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CHPP.transition(action, interaction)
CHPP action

- 5500 W
provide 5.5 kW

interaction
0 Wel , 0 Wth
initial values

BESS.transition(action, interaction)
BESS action

+ 2500 W
charge 2.5 kW

interaction
5500 Wel , 12500 Wth

provide 5.5 kW provide 5.5 kWel and 12.5 kWth

A negative power means a flow
away from the DER

A positive power means a flow
towards the DER

charge 2.5 kW 3 kWel remain

interaction
3000 Wel , 12500 Wth

Heat_Demand.transition(action, interaction)

4.5 kW (random) 8 kWth remain

HWT.transition(action, interaction)

interaction
3000 Wel , 8000 Wth

store excess heat 0 kWth remain

interaction
3000 Wel , 0 Wth

Aggregated action
- 3000 W

provide 3 kW

Figure 5.8: Connecting multiple DER simulation models with the help of the interaction tuple provided by the transition function.
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other words, the SOC does not influence the maximum and minimum power. Let 𝑄BESS
𝑡 be the amount of stored

energy at the beginning of time step 𝑡. In order to compute the losses from charging and discharging, the direction
of the energy flow needs to be considered. When neglecting the standing losses, the change in stored energy is
given by

Δ𝑄BESS
𝑡 :=

{
𝑃BESS
𝑡 · [BESS

𝐶
Δ𝑡 , 𝑃BESS

𝑡 ≥ 0 (charging)
𝑃BESS
𝑡 · 1

[BESS
𝐷

Δ𝑡 , 𝑃BESS
𝑡 < 0 (discharging) ,

with the average power 𝑃BESS
𝑡 , as well as charging and discharging efficiencies [BESS

𝐶
and [BESS

𝐷
. In any time

step, the BESS may either charge or discharge. The power 𝑃BESS
𝑡 is limited by the (constant) maximum charging

and discharging powers 𝑃BESS and 𝑃BESS, that is, 𝑃BESS ≤ 𝑃BESS
𝑡 ≤ 𝑃BESS. The standing loss is computed with

respect to the average amount of stored energy during the considered time step, and using the relative self-discharge
per hour [BESS

𝑆
. Since the average is computed, the resulting state 𝑄BESS

𝑡+1 appears on both sides of the equation.
Therefore, some minor rearrangements are necessary.

𝑄BESS
𝑡+1 = 𝑄BESS

𝑡 + Δ𝑄BESS
𝑡 − 𝑄BESS

𝑡 +𝑄BESS
𝑡+1

2 · Δ𝑡
3600[

BESS
𝑆

𝑄BESS
𝑡+1 = 𝑄BESS

𝑡 · 1−[BESS
𝑆

Δ𝑡
2·3600

1+[BESS
𝑆

Δ𝑡
2·3600

+ Δ𝑄BESS
𝑡 · 1

1+[BESS
𝑆

Δ𝑡
2·3600

.

At any time the amount of stored energy should satisfy

0 ≤ 𝑆𝑂𝐶BESS ≤
𝑄BESS

𝑡

𝑄BESS
≤ 𝑆𝑂𝐶BESS,

where 𝑄BESS is the capacity of the BESS, and 𝑆𝑂𝐶BESS and 𝑆𝑂𝐶BESS are the minimum and maximum SOC,
respectively. If for some reason the SOC is exceeding the minimum or maximum, for instance in the random initial
state, the power is restricted in order to push the SOC back inside the bounds. As each action directly corresponds
to some power 𝑃BESS

𝑡 , a feasible action must comply with all restrictions for 𝑃BESS
𝑡 and 𝑄BESS

𝑡 . The interaction,
which is determined by the transition method, is simply the average electrical power provided or consumed by the
BESS.

Electric vehicle supply equipment: Since the EVSE can only operate in conjunction with a BEV, it is built
around a generic BEV model. The BEVs are simplified BESSs of varying capacity that can only be charged.
Discharging is neglected here for two reasons. Firstly, there is currently no widespread use of vehicle to grid
technology. Secondly, to make the BEV more distinct from the BESS, in order to test more diverse models. In the
EVSE model, each BEV is characterized by its capacity and SOC. Given a BEV, a charging process is specified
by adding a minimum and maximum target value for the SOC and the remaining standing time. Therefore, at
time step 𝑡 the EVSE state comprises the capacity of the currently connected BEV 𝑄EVSE

𝑡 , the associated SOC
𝑆𝑂𝐶EVSE

𝑡 , the minimum and maximum target SOCs 𝑆𝑂𝐶EVSE
𝑡 and 𝑆𝑂𝐶EVSE

𝑡 , and the remaining standing time
𝜏EVSE
𝑡 . If vehicle specific minimum and maximum charging powers were to be considered, additional state variables

would be required. While the capacity and target SOCs remain untouched when transitioning to the next time step,
the SOC is updated according to the selected action, using the BESS model with a relative self-discharge of 0.
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Self-discharge is not considered, since the BEVs are only connected for several hours each time. The remaining
standing time is updated by simply subtracting the length of a time step.

𝜏EVSE
𝑡+1 := max{0, 𝜏EVSE

𝑡 − Δ𝑡}.

Once the remaining standing time reaches the value 0, the BEV leaves and the EVSE has to wait until a new BEV
arrives. Upon the arrival of another BEV, or whenever the parameters need to be adjusted, the state variables are
updated, defining the details of the new charging process. The feasibility of actions is determined by the limitations
of the vehicle’s battery, the remaining standing time, and the constraints for the final SOC. Both target SOC
constraints are soft constraints, since there is no plausibility check if it is actually attainable or not. Should the
minimum SOC be unreachable during the remaining standing time, charging at maximum power is the only feasible
action. If the maximum SOC is exceeded, the EVSE can only idle. An additional minimum charging power, aside
from idling with 0 W consumption, can be enforced in the model by restricting the set of possible actions passed
to the simulation model.

Arrivals of BEVs are modeled by means of queuing theory, assuming exponentially distributed time intervals
between two individual arrivals. The capacity, SOC, as well as the minimum and maximum target SOCs are all
chosen randomly. The parameters used in the evaluation can be found in Table 5.7. If a BEV arrives while another
one is connected to the EVSE, it is placed in a queue. Once a vehicle leaves, that is, when 𝜏EVSE

𝑡 = 0, the next BEV
in the queue starts charging in 𝑡 + 1 and all previous state variables are replaced.

Hot water tank: The model of the HWT is derived from the BESS model, but uses the tank and ambient
temperatures instead of the amount of stored energy to describe its state. Given the HWT temperature \HWT

𝑡 and
the ambient temperature \ambient

𝑡 , the stored thermal energy 𝑄HWT,H
𝑡 in Ws at time 𝑡 is

𝑄
HWT,H
𝑡 := (\HWT

𝑡 − \ambient
𝑡 )𝑉HWT𝜌water𝑐water,

where 𝑉HWT, 𝜌water and 𝑐water are the volume of the tank, density of water, and specific heat capacity of water. The
state transition equations of the HWT model are identical to those of the BESS, that is,

𝑄
HWT,H
𝑡+1 = 𝑄

HWT,H
𝑡 ·

1 − [HWT
𝑆

Δ𝑡
2·3600

1 + [HWT
𝑆

Δ𝑡
2·3600

+ Δ𝑄
HWT,H
𝑡 · 1

1 + [HWT
𝑆

Δ𝑡
2·3600

,

with the change in stored energy while neglecting standing losses

Δ𝑄
HWT,H
𝑡 :=

{
𝑃

HWT,H
𝑡 · [HWT

𝐶
Δ𝑡 , 𝑃

HWT,H
𝑡 ≥ 0 (charging)

𝑃
HWT,H
𝑡 · 1

[HWT
𝐷

Δ𝑡 , 𝑃
HWT,H
𝑡 < 0 (discharging)

and the total power flow

𝑃
HWT,H
𝑡 := 𝑃CHPP,H

𝑡 + 𝑃GCB,H
𝑡 − 𝑃demand,H

𝑡 ,
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which is depending on the thermal powers 𝑃CHPP,H
𝑡 and 𝑃GCB,H

𝑡 produced by the CHPP and the GCB, as well as
the heat demand 𝑃demand,H

𝑡 . Since the HWT itself cannot be controlled, the model always returns an empty array of
feasible actions and the power 𝑃HWT,H

𝑡 is passed to the transition method in the form of the interaction argument.
The HWT model does not directly make use of the minimum and maximum SOC constraints. Instead, there are
minimum and maximum temperature constraints. While the minimum temperature is the ambient temperature,
which is reached once the tank lost all of its stored energy, the maximum temperature may vary. These restrictions
are hard constraints, once the HWT reaches one of them, it either cannot provide any more energy or store any
more energy. Energy demand or supply exceeding these constraints is passed on to other DERs via the interaction
vector. This means, as long as the HWT is able to store or provide energy, the resulting thermal interaction is zero.
Therefore, if multiple DERs are combined, the HWT is usually the last model in the chain of DERs to transition to
the next time step. Additional soft constraints specifying a corridor of desirable temperatures are introduced in the
aggregated models that combine the HWT with other DERs.

Combined heat and power plant: A CHPP produces varying amounts of electricity and heat, depending on
its mode of operation. Typically, its control is influenced by the local heat demand. However, in the context of
demand side flexibility, the focus lies on the provided electrical power. Therefore, in this thesis “operation mode”
refers to a specific set point and amount of produced electrical power. In regard to set points, it is possible to
distinguish non-modulating and modulating CHPPs. A non-modulating CHPP is either running or idling, i.e., has
𝑛 = 2 operation modes. Modulating CHPPs can attain various power levels and provide a larger number 𝑛 > 2 of
operation modes. In the implemented model, the achieved output power is defined in the form of square matrices,
similar to how transition matrices describe Markov chains. Given the index of the current operation mode 𝑖, the
CHPP provides on average𝑚𝑖, 𝑗 watts of power during the transition to the mode 𝑗 . As in general heat and electricity
outputs are not identical, they are given by two separate matrices (𝑚CHPP,H

𝑖, 𝑗
) ∈ R𝑛×𝑛 and (𝑚CHPP,E

𝑖, 𝑗
) ∈ R𝑛×𝑛. Take

for instance the following two matrices of a non-modulating CHPP, which are used in the experiments:

(𝑚CHPP,E
𝑖, 𝑗

) :=

(
0 −5500

2
−5500

2 −5500

)
, and (𝑚CHPP,H

𝑖, 𝑗
) :=

(
0 −12500

2
−12500

2 −12500

)
.

Please note that the negative signs in both matrices are by modeling convention, as energy flowing towards a device
has a positive sign and energy flowing away has a negative sign. While in mode 𝑖 = 1 (first row), the CHPP is
not running. It has the options to either remain in this mode throughout the next time step, which results in 0 W
output (first column), or to start up and provide 5500

2 W of electrical power (second column). For the produced heat
it is 0 W and 12500

2 W, respectively. As the example shows, ramping can easily be modeled with the help of these
matrices. The implementation assumes that ramping always finishes within a single time step. Even though no
modulating CHPPs are evaluated in this thesis, the following description is given for a total of 𝑛 operation modes.

Aside from different operation modes, the CHPP model considers minimum dwell times. The dwell time is the
time the device has been staying in its current operation mode. Here, the CHPP model only incorporates dwell
time restrictions for being turned off and on, i.e., producing no power or any power. Assuming the first row 𝑖 = 1
reflects the “off” mode, and given the current dwell time 𝜏CHPP

𝑡 and minimum running time 𝜏CHPP,on in seconds, a
CHPP can perform the following actions:
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𝐴CHPP (𝑖, 𝜏CHPP) :=


Actions leading to “off” mode , if “off” and minimum “off” time not reached yet
Actions leading to “on” modes , if “on” and minimum “on” time not reached yet
Actions leading to any mode , else

=


{𝑚CHPP,E

𝑖, 𝑗
| 𝑗 = 1} ,if 𝑖 = 1 and 𝜏CHPP < 𝜏CHPP,off

{𝑚CHPP,E
𝑖, 𝑗

| 𝑗 = 2, 3, . . . , 𝑛} ,if 𝑖 > 1 and 𝜏CHPP < 𝜏CHPP,on

{𝑚CHPP,E
𝑖, 𝑗

| 𝑗 = 1, 2, . . . , 𝑛} , else
.

Both dwell time constraints are soft constraints intended to reduce wear and tear from frequent mode switching. In
order to ensure that there is always at least one feasible action in any situation, these constraints can be ignored by
setting a flag. This flag is used in the aggregated models. Each time the CHPP transitions from a running to the
stopped state or vice versa, the dwell time 𝜏CHPP is reset to Δ𝑡, since at the beginning of the next simulation step Δ𝑡

seconds will have passed. With the current mode 𝑖 and the subsequent mode 𝑗 , it is therefore

𝜏CHPP
𝑡+1 (𝑖, 𝑗) :=

{
𝜏CHPP
𝑡 + Δ𝑡 , if remaining “off” or “on”
Δ𝑡 , if switching between “off” and “on”

=

{
𝜏CHPP
𝑡 + Δ𝑡 , if (𝑖 = 1 ∧ 𝑗 = 1) ∨ (𝑖 > 1 ∧ 𝑗 > 1)
Δ𝑡 , if (𝑖 = 1 ∧ 𝑗 > 1) ∨ (𝑖 > 1 ∧ 𝑗 = 1)

The state of the CHPP is given by its current mode 𝑖, dwell time 𝜏CHPP
𝑡 , and minimum dwell times 𝜏CHPP,on and

𝜏CHPP,off. By making the minimum dwell time part of the state vector, it is possible to adapt the constraints without
changing the model and therefore without relearning the surrogate.

Gas condensing boiler: In contrast to the other DERs, which are implemented as stand-alone models, the GCB
has directly been integrated into an HWT model, since the GCB only provides thermal flexibility. The GCB is
modeled the same way as the CHPP, but without constraints for the dwell time. Its state is therefore completely
described by its current mode of operation 𝑖, which is needed to select the correct output power from the given
(𝑛GCB × 𝑛GCB)-matrix (𝑚GCB

𝑖, 𝑗
). The associated HWT uses exactly the model described above. Therefore, the

overall state is given by the mode of the GCB, the temperature of the HWT and the ambient temperature. Since
the GCB does not provide electrical flexibility, the set of feasible actions is always empty for this device. Instead,
it operates on its own, following a hysteresis control. Every time the simulation reaches the lower temperature
constraint, the GCB turns on, and every time the upper temperature constraint is reached it shuts down.

Electricity and heat demand: The implemented demand model uses a set of reference time series to determine
the consumed power. In this model, the state variable is the power consumed during the next time period. Therefore,
whenever a state transition occurs, this value is simply replaced with the help of the reference time series. All
reference time series must have the same length and temporal resolution. Whenever a simulation is started, one
reference time series is chosen randomly. The identifier of this series is stored as a hidden state variable, for the
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Figure 5.9: Downsampling of the reference time series by randomly selecting values.

purpose of selecting only values from this specific series. Furthermore, the hidden state includes a position marker,
pointing to the next time series element to consider. This pointer is shifted with every state transition to reflect
the passage of Δ𝑡 seconds. In case the time series’ temporal resolution is higher than Δ𝑡, that is, less than Δ𝑡

seconds lie between two entries of the time series, the pointer moves more than one element in each time step and
a downsampling mechanism is applied.

The implemented downsampling process is depicted in Figure 5.9. In the illustrated example, the black, dashed
reference time series holds a value for each minute and the time step length Δ𝑡 is 5 minutes. This means that the
pointer to the current element in the reference time series (black arrow) is shifted forward 5 values with each time
step. The blue lines are the downsampled time series. It is constructed by repeatedly drawing one of the elements
between the current and the subsequent pointer position, and then moving the pointer. Here, the potential values in
each step are labeled a to e. This downsampling method is used with the goal of generating more diverse demand
series, compared to simply computing the average.

The demand model aggregates all inflexible demand. Therefore, there is no possibility to influence the demand
with any action. The interaction returned by the transition method is equal to the negative state variable, as the
direction is inverted from the perspective of other DERs.

Combined heat and power plant satisfying heat demand: This model combines the CHPP, HWT, and heat
demand models presented above into a new one and adds further operational constraints. At any time the heat
demand must be satisfied, either directly by the CHPP or by using the thermal energy stored in the HWT. As
mentioned before, there are additional temperature soft constraints added to keep the temperature in a desirable
region. In this combined model, the CHPP is forced to start or stop its production of heat (and electricity) once the
minimum or maximum temperature is reached, regardless of its current dwell time. If for instance, the minimum
temperature has been reached, the only feasible action for the CHPP is to switch to the mode producing the most
energy. In such a case, the dwell time constraint is ignored by setting the respective temporary flag provided by
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the CHPP model. Nonetheless, as long as the temperature is acceptable, the CHPP’s dwell time constraints must
not be violated. By operating the CHPP in this manner, the heat demand can always be satisfied, given the CHPP
and HWT are reasonably sized. Moreover, there is at least one feasible action in any state. Hence, the “dead-end”
issue discussed in [308] is completely avoided and the model is more realistic. The power flow towards or away
from the HWT is given by

𝑃
HWT,H
𝑡 := 𝑃CHPP,H

𝑡 − 𝑃demand,H
𝑡 ,

which is passed to the HWT’s transition method as an interaction.

Detached family home: The detached family home is one of the three investigated systems combining multiple
DERs that provide electrical flexibility. It joins the BESS, CHPP, HWT, and heat demand models into a single
aggregated model. The CHPP, HWT, and demand models are integrated the exact same way as described above,
using soft constraints for the HWT temperature and allowing to force the CHPP into certain modes when the
temperature bounds are violated. Thereby, they form one of two sub-systems. The second sub-system is the BESS,
which can operate independently of the other DERs. The set of feasible actions is determined by computing
the feasible actions of the two individual sub-systems and determining each possible combination of actions. As
actions are encoded in terms of the associated total power, there can be combinations of CHPP and BESS actions
resulting in the same total value. Ambiguous actions are resolved by considering the temperature of the thermal
storage. Assuming standard German consumer prices for electricity and gas, it is generally only beneficial to use
the CHPP when the produced heat is utilized. If the HWT temperature is already high, it is cheaper to simply draw
electricity from the grid and use the HWT to satisfy the heat demand. Therefore, when there are multiple ways of
achieving the requested total power, the CHPP is turned on when the temperature is in the lower half of the intended
temperature range, and it is turned off if the temperature is in the upper half. The remaining difference is covered
by the BESS.

FZI House of Living Labs: With the combination of a BESS, EVSE, CHPP, HWT and a GCB, the HoLL model
is the most diverse one investigated in this thesis. While the BESS and EVSE can operate independently, the CHPP
and GCB are both sharing the same HWT which stores excess energy for later consumption. In contrast to the
detached family home, in this configuration, the CHPP is never forced to start, since the GCB is able to handle the
heat demand on its own. Nevertheless, the CHPP is still forced to shut down once the upper temperature boundary
is exceeded. In the real HoLL the minimum dwell time of the CHPP is 10 minutes for both modes. While it would
be possible to simply set 15 minutes in the simulation model, the minimum dwell times are varied throughout the
experiments, in order to make the task more challenging. If there are multiple ways to achieve a requested action,
the model makes a short-sighted choice based on an economic rational. Similar to the detached family home, it
is only beneficial to use the CHPP when the generated heat is utilized. Therefore, it is activated or stopped if the
HWT temperature is in the lower or upper half of the intended temperature range. After this choice, another degree
of freedom may still remain. If the BEV can be charged without discharging the BESS, the ambiguity is eliminated
by prioritizing the charging of the BEV over the charging of the BESS. In case the BESS must be discharged to
achieve the requested action, the BEV is charged as slowly as possible, if at all. This simple strategy tries to avoid
losses from transferring energy between batteries.

Aggregated battery energy storage system: The aggregated BESS combines 100 individual battery storages,
each using the BESS model outlined before. Feasible actions are determined by simply adding the admissible power
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intervals. If one BESS could provide [−5, 5] kW and a second one could provide [−5, 3] kW, the admissible power
for their aggregate is [−10, 8] kW. Every predefined discrete possible action lying within this interval is feasible.
Each of these BESSs has its own SOC, which means the aggregated maximum and minimum power varies over
time, as some storages may be nearly empty while others are almost full. When an action is requested, the specified
power needs to be disaggregated and distributed to the individual storages. It is assumed that the aggregated power
is split proportionately to the power each storage is able to provide on its own. If the maximum charging power
of a single storage 𝑖 is 𝑃𝑖

𝑡 at time 𝑡 and the requested, aggregated power is 𝑃𝑡𝑜𝑡𝑎𝑙 > 0, then the resulting charging
power of this BESS is 𝑃𝑖

𝑡 = 𝑃
𝑖
𝑡 ·

𝑃𝑡𝑜𝑡𝑎𝑙∑
𝑗 𝑃

𝑗
𝑡

. Discharging is handled analogously.

Artificially Relaxed and Tightened Constraints

In our most recent publication on the topic of surrogate modeling [308] we recognized that it is important to
consider inaccurate state estimations when formulating or selecting constraints. Since, in general, ANNs do not
provide perfectly accurate predictions, the approach may fail to produce feasible load schedules, even with well
performing ANN-based surrogates. This issue is further amplified with each single computed time step, as the
prediction errors add up. Please consider the CHPP satisfying a heat demand as it is described above, for instance.
The joint model keeps the HWT temperature within an acceptable temperature range by overriding the CHPP’s
dwell time constraints if necessary. Now, let the actual HWT temperature be 80.1° C, while the forecast of the
ANN is 79.9° C. In this situation, the ANN-based model may decide to keep the CHPP running, even though it
must turn off in reality. Conversely, the surrogate would try to stop the CHPP if its prediction was 80.1° C, even
though the real temperature is 79.9 °C and it is not allowed to do so yet. This example shows that even the smallest
error can result in the infeasibility of generated load schedules. The issue is not limited to ANNs, but also applies
for all other types of models that can only approximate and not exactly reproduce the reference model or real world.
In preliminary trials the same state-based simulation approach has been tested with finite state machines instead
of ANNs, where the exact same problem arose from rounding errors. Therefore, it is necessary to incorporate
buffers [308] or select less hard constraints.

In this thesis, this challenge has been tackled by artificially tightening and relaxing some selected constraints during
the training and evaluation. It is important to point out that it may not always be possible to manipulate constraints
in such a way. If not, the state variables associated with the respective constraint must be forecasted with very
high accuracy. By using tighter constraints, it is possible to lead the surrogate to act before the actual constraint is
reached, or to stay away from the boundary at all. In the example above, the surrogate could be forced to deactivate
the CHPP when only approaching 80° C. Therefore, even when the predicted temperature is too low, the CHPP
will correctly be deactivated. Then again, this may cause the CHPP to be deactivated too early, even though the
minimum running time has not yet been reached. As a consequence, it is necessary to relax the dwell time constraint
within this newly created border region, allowing to force the CHPP to turn off, but not enforcing turning it off.
However, this relaxation must not be taught to the surrogate model, as this would simply shift the original problem
to the newly created boundary of the relaxed constraint. Combining both, the tightened constraints for training the
surrogate and the relaxed constraints for evaluating with the reference model, overlapping regions are created, in
which the effects of prediction errors are absorbed.

There are two possible ways to add manipulated constraints to the surrogate itself. Firstly, they can be directly
taught to the surrogate. Secondly, they may be passed as an additional state variable. The latter approach has the
advantage of being more flexible, as the constraints, and thereby the size of the buffer, can be adapted dynamically.
However, this comes at the cost of adding more variables that need to be estimated. Since the goal of this chapter is
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Figure 5.10: Adaptations made to the constraints of the CHPP satisfying heat demand configuration.

to evaluate which quality of approximation is achievable with ANN-based surrogates, mostly the latter approach is
used, to be able to vary the buffer size as needed. This is also the reason why the BESS model’s state has a minimum
and maximum SOC variable. For the CHPP satisfying a heat demand, the constraints have been adapted as depicted
in Figure 5.10. In order to understand the meaning of each adaptation, it is necessary to consider two cases. Firstly,
the (soft) temperature limit being approached from outside the interval of acceptable temperatures and, secondly,
the limit being approached from inside. As the temperature may be over- or underestimated, a violation of the limit
is either detected too late or too early. During training, the adapted constraints teach the surrogate to not activate
or deactivate the CHPP if it is close to the respective temperature boundary, even though the dwell time would
allow it. This adaptation is relevant for the first case, when the temperature approaches the limit from outside. By
adding this constraint, resuming the normal operation too early is prevented. Consider a temperature exceeding the
upper (soft) constraint, for instance. Due to the violation, the CHPP must shut down and eventually the temperature
begins to fall again. Without the additional constraint, if the temperature is underestimated, the CHPP may be
started too early. Starting too late, on the other hand, is acceptable, since the temperature of the HWT is high.
The considerations for the lower boundary are analogous. During the evaluation, two relaxations are applied to the
constraints in order to deal with prediction errors while approaching the limit from inside the boundaries. Firstly,
if the surrogate underestimates the progression of the temperature towards one of the temperature constraints, the
CHPP mode may be adapted too late, as the violation occurs earlier. To deal with this issue, the CHPP is only
forced to change its operation mode when the original boundary plus a given margin is exceeded. This effectively
shifts the original boundary outwards, widening the range of acceptable temperatures. Secondly, to deal with an
overestimated progression and too early actions, mode changes within an area close to the boundary are permitted.
In the case of the HoLL model, only the adaptations for the upper temperature boundary are applied, since there is
no forced activation on low temperatures.
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Optimization Models

For each simulated device, the framework also includes a mixed integer linear model that can be used in MILPs.
A MILP is formed by adding an objective function. Using different objective functions, it is possible to determine
schedules for various goals, e.g., minimizing cost or following a target schedule. The parameters for the individual
device models can be extracted directly from the simulation models. With this setup it is possible to run a simulation
and then directly generate a MILP from the simulation model to validate the simulation output. For evaluating the
feasibility of a load schedule (𝑃𝑡 )𝑡=1,2,...,𝑇 , the objective is to minimize the total deviation from the target schedule
(𝑃target

𝑡 )𝑡=1,2,...,𝑇 , that is,

min
·

∑︁
𝑡=1,...,𝑇

𝑑𝑃abs
𝑡

s.t.

|𝑃target
𝑡 − 𝑃𝑡 | ≤ 𝑑𝑃abs

𝑡 , 𝑡 = 1, . . . , 𝑇 .

The aggregated power 𝑃𝑡 at time 𝑡 is the sum of the consumed or provided powers of the individual DERs. For
instance, when only the BESS is evaluated, the constraint 𝑃𝑡 = 𝑃

BESS
𝑡 is added alongside the BESS model. In the

following the mixed integer linear models of the individual simulation models are presented.

Battery energy storage system: The optimization model of the BESS is mostly identical to the simulation model.
In order to distinguish charging from discharging, which is necessary for computing charging and discharging losses
separately, the power flow 𝑃BESS

𝑡 is split into two parts, 𝑃𝐵𝐸𝑆𝑆+
𝑡 for charging and 𝑃𝐵𝐸𝑆𝑆−

𝑡 for discharging. This
modification adds a degree of freedom to the model that would allow the optimizer to dissipate electricity by
charging and discharging at the same time. To prevent this from happening, the binary variables 𝑏BESS,charge

𝑡

limit the BESS to either charge or discharge during each time step 𝑡 = 1, 2, . . . , 𝑇 . All remaining constraints and
equations are directly taken from the simulation model. The initial amount of stored energy is passed to the model
via 𝑄BESS

0 .

𝑃BESS
𝑡 = 𝑃𝐵𝐸𝑆𝑆+

𝑡 − 𝑃𝐵𝐸𝑆𝑆−
𝑡 , 𝑡 = 1, . . . , 𝑇

0 ≤ 𝑃𝐵𝐸𝑆𝑆+
𝑡 ≤ 𝑃BESS · 𝑏BESS,charge

𝑡 , 𝑡 = 1, . . . , 𝑇
0 ≤ 𝑃𝐵𝐸𝑆𝑆−

𝑡 ≤ |𝑃BESS | · (1 − 𝑏BESS,charge
𝑡 ) , 𝑡 = 1, . . . , 𝑇

Δ𝑄BESS
𝑡 = 𝑃𝐵𝐸𝑆𝑆+

𝑡 · [BESS
𝐶

Δ𝑡 − 𝑃𝐵𝐸𝑆𝑆−
𝑡 · 1

[BESS
𝐷

Δ𝑡 , 𝑡 = 1, . . . , 𝑇

𝑄BESS
𝑡 = 𝑄BESS

𝑡−1 · 1−[BESS
𝑆

Δ𝑡
2·3600

1+[BESS
𝑆

Δ𝑡
2·3600

+ Δ𝑄BESS
𝑡 · 1

1+[BESS
𝑆

Δ𝑡
2·3600

, 𝑡 = 1, . . . , 𝑇

𝑆𝑂𝐶BESS ≤ 𝑄BESS
𝑡

𝑄BESS
≤ 𝑆𝑂𝐶BESS , 𝑡 = 1, . . . , 𝑇

𝑏
BESS,charge
𝑡 ∈ {0, 1} , 𝑡 = 1, . . . , 𝑇
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Electric vehicle supply equipment: In contrast to the EVSE simulation model, which makes use of SOCs to
describe its state, the optimization model is built around amounts of stored energy. Let𝑄EVSE

𝑡 be the current amount
of stored energy in the BEV connected to the EVSE and 𝑃EVSE

𝑡 the power used by the EVSE. Since the EVSE
can be configured with a minimum charging power 𝑃EVSE

𝑡 , binary variables 𝑏EVSE,charge
𝑡 are required to identify the

time steps a BEV is charged. The maximum charging power is 𝑃EVSE. Assuming perfect predictions, all charging
parameters generated by the simulation model in the given time horizon are passed to the optimization model.
Aside from the initial amounts of stored energy and the time varying target range [𝑄EVSE

𝑡 , 𝑄EVSE
𝑡 ] of each charging

process, the planned remaining standing time at each time step 𝜏EVSE
𝑡 is passed to the optimization model. Given

𝜏EVSE
𝑡 and the maximum charging power 𝑃EVSE, 𝜏EVSE

𝑡 · 𝑃EVSE is the maximum amount of energy the EVSE can
provide until the BEV leaves. Therefore, at any time step 𝑡 of a charging process, max {0, 𝑄EVSE

𝑡 − 𝜏EVSE
𝑡 · 𝑃EVSE}

is the minimum amount of energy the BEV must have stored in order to reach 𝑄EVSE
𝑡 in time and, hence,

max {0, 𝑄EVSE
𝑡 − 𝜏EVSE

𝑡 · 𝑃EVSE} ≤ 𝑄EVSE
𝑡 ≤ 𝑄EVSE

𝑡 , 𝑡 = 1, . . . , 𝑇 .

With the help of 𝜏EVSE
𝑡 it is further possible to check if the current charging process has finished or a new one is

starting. Once the car leaves 𝜏EVSE
𝑡 equals zero and, hence, 1{0} (𝜏EVSE

𝑡 ) = 1. If instead 1R>0 (𝜏EVSE
𝑡 ) = 1, the

charging process is still in progress. It is therefore

1R>0 (𝜏EVSE
𝑡 ) · 𝑃EVSE

𝑡 𝑏
EVSE,charge
𝑡 ≤ 𝑃EVSE

𝑡 ≤ 1R>0 (𝜏EVSE
𝑡 ) · 𝑃EVSE𝑏

EVSE,charge
𝑡 , 𝑡 = 1, . . . , 𝑇 .

As long as 1R>0 (𝜏EVSE
𝑡−1 − 𝜏EVSE

𝑡 ) = 1 the standing time still decreases and the current charging process is in
progress. Once 𝜏EVSE

𝑡 reaches 0 or is set to a higher value in order to start a new charging process, we have
1R>0 (𝜏EVSE

𝑡−1 − 𝜏EVSE
𝑡 ) = 0. Using this, it is possible to reset the amount of stored energy 𝑄EVSE

𝑡 for each new
charging process. Let �̂�EVSE

𝑡−1 be the expected amount of energy at the beginning of each planned charging process
in step 𝑡 − 1. Then we have

𝑄EVSE
𝑡 = 𝑄EVSE

𝑡−1 · 1R>0 (𝜏EVSE
𝑡−1 − 𝜏EVSE

𝑡 )
+ �̂�EVSE

𝑡−1 · (1 − 1R>0 (𝜏EVSE
𝑡−1 − 𝜏EVSE

𝑡 ))
+ 𝑃EVSE

𝑡 · [EVSE
𝐶

Δ𝑡 , 𝑡 = 1, . . . , 𝑇 .

All indicator functions 1A (𝑥) are resolved during the initialization of the model, which is possible since all forecasts
𝜏EVSE
𝑡 are known in advance.

Hot water tank: This model is similar to the BESS. The only differences are the added water temperature \HWT
𝑡

and the temperature bounds in place of the SOC bounds.
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\HWT
𝑡 =

𝑄
HWT,H
𝑡

𝑉 HWT𝜌water𝑐water + \ambient , 𝑡 = 1, . . . , 𝑇

𝑃
HWT,H
𝑡 = 𝑃

HWT,𝐻+
𝑡 − 𝑃HWT,𝐻−

𝑡 , 𝑡 = 1, . . . , 𝑇

0 ≤ 𝑃
HWT,𝐻+
𝑡 ≤ 𝑃HWT · 𝑏HWT,charge

𝑡 , 𝑡 = 1, . . . , 𝑇
0 ≤ 𝑃

HWT,𝐻−
𝑡 ≤ |𝑃HWT | · (1 − 𝑏HWT,charge

𝑡 ) , 𝑡 = 1, . . . , 𝑇
Δ𝑄

HWT,H
𝑡 = 𝑃

HWT,𝐻+
𝑡 · [HWT

𝐶
Δ𝑡 − 𝑃HWT,𝐻−

𝑡 · 1
[HWT
𝐷

Δ𝑡 , 𝑡 = 1, . . . , 𝑇

𝑄
HWT,H
𝑡 = 𝑄

HWT,H
𝑡−1 · 1−[HWT

𝑆
Δ𝑡

2·3600
1+[HWT

𝑆
Δ𝑡

2·3600
+ Δ𝑄

HWT,H
𝑡 · 1

1+[HWT
𝑆

Δ𝑡
2·3600

, 𝑡 = 1, . . . , 𝑇

\ambient ≤ \HWT
𝑡 ≤ \HWT , 𝑡 = 1, . . . , 𝑇

𝑏
HWT,charge
𝑡 ∈ {0, 1} , 𝑡 = 1, . . . , 𝑇

Since, in all conducted experiments, the largest possible flow of thermal energy is well below any physical limitations
of the parameterized heat storages, the maximum and minimum power 𝑃HWT and 𝑃HWT have both been set to
a very large number M. In this and all subsequent models M is a placeholder for any number large enough not to
limit the model in its capabilities.

Combined heat and power plant: The linear mixed integer model of the CHPP makes use of binary variables
for tracking its operation mode. At the beginning of each time step 𝑡, the current operation mode 𝑖 may be changed
to mode 𝑗 , given none of the constraints is violated. The state transition is encoded with the help of the variables
𝑏CHPP
𝑡 ,𝑖, 𝑗

∈ {0, 1}. If, for instance, at the start of the first time step 𝑡 = 1 the CHPP is in operation mode 𝑖 = 1 and
switches to mode 𝑗 = 0, we have 𝑏CHPP

1,1,0 = 1. As for any time step only a single transition must occur, the sum
of all 𝑏CHPP

𝑡 ,𝑖, 𝑗
for any given 𝑡 must equal 1. Additionally, operation mode 𝑖 can only be left for mode 𝑗 , if mode

𝑖 has been selected in the previous time step. During time step 𝑡 the CHPP provides 𝑃CHPP
𝑡 and 𝑃CHPP,H

𝑡 watts
of electrical and thermal power. Like in the simulation model, the power produced in each mode is given by the
matrices (𝑚CHPP,E

𝑖, 𝑗
) ∈ R𝑛×𝑛 and (𝑚CHPP,H

𝑖, 𝑗
) ∈ R𝑛×𝑛. This leads to the constraints∑

𝑖

∑
𝑗

𝑏CHPP
𝑡 ,𝑖, 𝑗

= 1 , 𝑡 = 1, . . . , 𝑇∑
𝑖

𝑏CHPP
𝑡−1,𝑖, 𝑗 =

∑
𝑘

𝑏CHPP
𝑡 , 𝑗 ,𝑘

, 𝑡 = 1, . . . , 𝑇 and 𝑗 = 1, . . . , 𝑛

𝑃CHPP
𝑡 =

∑
𝑖

∑
𝑗

𝑏CHPP
𝑡 ,𝑖, 𝑗

· 𝑚CHPP,E
𝑖, 𝑗

, 𝑡 = 1, . . . , 𝑇

𝑃
CHPP,H
𝑡 =

∑
𝑖

∑
𝑗

𝑏CHPP
𝑡 ,𝑖, 𝑗

· 𝑚CHPP,H
𝑖, 𝑗

, 𝑡 = 1, . . . , 𝑇

.

In order to simplify the tracking of the minimum dwell times for running and idling, the binary variables 𝑏CHPP,off
𝑡

are introduced. It is assumed that the mode 𝑖 = 1 equals the “off” state. Any mode 𝑖 > 1 is therefore an “on” state.
Whether the CHPP is turned on or off during time step 𝑡, can therefore be determined with

𝑏
CHPP,off
𝑡 =

∑︁
𝑘

𝑏CHPP
𝑡 ,𝑘,1 , 𝑡 = 1, . . . , 𝑇 .
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The initial values 𝑏CHPP
0,𝑖, 𝑗 , 𝑏CHPP,off

0 , the initial dwell time 𝜏CHPP, and the minimum dwell times in seconds are all
parameterized according to the simulation model. For this purpose, all dwell times are converted from seconds to
the respective number of time steps, that is,

𝜏CHPP,off := d 𝜏
CHPP,off

Δ𝑡
e

𝜏CHPP := b 𝜏
CHPP
0
Δ𝑡

c
.

As the dwell time constraints are soft constraints, the two binary variables 𝑏CHPP,forceOn
𝑡 and 𝑏

CHPP,forceOff
𝑡 are

introduced for forcing the CHPP into starting or stopping its operation, completely ignoring the dwell time.

𝑏
CHPP,off
𝑡 ≤ (1 − 𝑏CHPP,forceOn

𝑡 ) , 𝑡 = 1, . . . , 𝑇
𝑏

CHPP,off
𝑡 ≥ 𝑏

CHPP,forceOff
𝑡 , 𝑡 = 1, . . . , 𝑇

The previously discussed relaxation of constraints is achieved with the help of the binary variables 𝑏CHPP,allowOn
𝑡

and 𝑏CHPP,allowOff
𝑡 . These variables allow the CHPP to ignore the dwell time constraints for the “off” and “on”

state, respectively, but do not force it to change its operation mode. In the following, only the minimum “off” time
constraint is presented, as both constraints, “on” and “off”, are analogous. For each time step

Δ𝜏
CHPP,off
𝑡 := (𝑏CHPP,allowOn

𝑡 + 𝑏CHPP,forceOn
𝑡 ) · M , 𝑡 = 1, . . . , 𝑇

holds either the value 0 or a very large number exceeding the minimum dwell time. By adding Δ𝜏
CHPP,off
𝑡 to

the current dwell time, the minimum dwell time constraint is automatically satisfied whenever 𝑏CHPP,allowOn
𝑡 or

𝑏
CHPP,forceOn
𝑡 equals 1. In general the minimum dwell time is enforced by ensuring that the CHPP has been idling

during the previous 𝜏CHPP,off time steps. Whether this is the case or not can be detected with the help of 𝑏CHPP,off
𝑡 .

The device has been out of operation sufficiently long if 𝑏CHPP,off
𝑖

= 1 for all 𝑖 = 𝑡 − 𝜏CHPP,off, . . . , 𝑡 − 1. Mode
changes are detected by computing (−𝑏CHPP,off

𝑡 + 𝑏CHPP,off
𝑡−1 ). If the mode remains unchanged, this expression

assumes the value 0, if the CHPP is turned off it equals -1, and if it is turned on the value is 1. Therefore, whenever
(−𝑏CHPP,off

𝑡 + 𝑏CHPP,off
𝑡−1 ) = 1, i.e., the CHPP is starting up in 𝑡, the sum of the associated 𝑏CHPP,off

𝑡 must equal
𝜏CHPP,off. Incorporating the initial dwell time 𝜏CHPP leads to

∀𝑡 ≥ max{2, 𝜏CHPP,off − 𝜏CHPP} :

Δ𝑡CHPP,off +
𝑡−1∑︁

𝑖=max{1,𝑡−�̃�CHPP,off }
𝑏

CHPP,off
𝑖

≥ min{𝑡 − 1, 𝜏CHPP,off} · (−𝑏CHPP,off
𝑡 + 𝑏CHPP,off

𝑡−1 ).

The constraint only applies for 𝑡 ≥ 2, since at 𝑡 = 1 there are only two possible situations of which neither requires
this constraint. Firstly, in case 𝜏CHPP,off − 𝜏CHPP = 1, the CHPP must idle one more time step, which is checked at
𝑡 = 2. Secondly, if 𝜏CHPP,off − 𝜏CHPP < 1, the CHPP has already been idling long enough, making this constraint
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superfluous. As mentioned before, Δ𝑡CHPP,off is added so that the soft constraint can be ignored if necessary. For
𝑡 < 𝜏CHPP,off − 𝜏CHPP, the CHPP must remain “off”, as long as it is not forced to start up. Therefore,

𝑏
CHPP,off
𝑡 ≥ 𝑏

CHPP,off
𝑡−1 − Δ𝑡CHPP,off , 𝑡 = 1, . . . , 𝜏CHPP,off − 𝜏CHPP − 1.

Please keep in mind that 𝑡 ∈ N.

Gas condensing boiler: The GCB optimization model uses the same state transition formulation as the CHPP
model, but is limited to producing thermal power. Hence, we have∑

𝑖

∑
𝑗

𝑏GCB
𝑡 ,𝑖, 𝑗

= 1 , 𝑡 = 1, . . . , 𝑇∑
𝑖

𝑏GCB
𝑡−1,𝑖, 𝑗 =

∑
𝑘

𝑏GCB
𝑡 , 𝑗 ,𝑘

, 𝑡 = 1, . . . , 𝑇 and 𝑗 = 1, . . . , 𝑛GCB

𝑃
GCB,H
𝑡 =

∑
𝑖

∑
𝑗

𝑏GCB
𝑡 ,𝑖, 𝑗

· 𝑚GCB
𝑖, 𝑗

, 𝑡 = 1, . . . , 𝑇

.

Further constraints are required in order to model the hysteresis control which is used to keep the HWT temperature
in an acceptable range. Whether the device is running or not is detected by computing

𝑏
GCB,off
𝑡 =

∑︁
𝑘

𝑏GCB
𝑡 ,𝑘,1 , 𝑡 = 1, . . . , 𝑇 .

Additionally, the binary variables 𝑏GCB,start
𝑡 and 𝑏GCB,stop

𝑡 are used to signify the need to start up or shut down
the device. The GCB must start to produce heat when the temperature of the HWT falls below the lower bound
\HWT,𝑚𝑖𝑛, and is only allowed to stop once the temperature exceeds the upper bound \HWT,𝑚𝑎𝑥 . It must then
remain deactivated until the cycle starts again. The two constraints

\HWT,𝑚𝑖𝑛 − \HWT
𝑡−1 ≤ M · 𝑏GCB,start

𝑡 , 𝑡 = 1, . . . , 𝑇
−\HWT,𝑚𝑖𝑛 + \HWT

𝑡−1 ≤ M · (1 − 𝑏GCB,start
𝑡 ) , 𝑡 = 1, . . . , 𝑇

force 𝑏GCB,start
𝑡 to attain the value 1 if and only if \HWT,𝑚𝑖𝑛 > \HWT

𝑡−1 . The upper bound is modeled correspondingly.
Given that 𝑏GCB,start

𝑡 and 𝑏GCB,stop
𝑡 only equal 1 if the respective boundary is exceeded, the hysteresis control is

achieved with the constraints

𝑏
GCB,off
𝑡 ≥ 𝑏

GCB,stop
𝑡 , 𝑡 = 1, . . . , 𝑇

(1 − 𝑏GCB,off
𝑡 ) ≥ 𝑏

GCB,start
𝑡 , 𝑡 = 1, . . . , 𝑇

𝑏
GCB,off
𝑡 ≥ 𝑏

GCB,off
𝑡−1 − 𝑏GCB,start

𝑡 , 𝑡 = 1, . . . , 𝑇
(1 − 𝑏GCB,off

𝑡 ) ≥ (1 − 𝑏GCB,off
𝑡−1 ) − 𝑏GCB,stop

𝑡 , 𝑡 = 1, . . . , 𝑇

.

While the first two constraints force the GCB to start or stop, the second pair of restrictions forces it to remain on
or off.
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Demand: Time series for electricity and heat demand are created by the simulation model described earlier in
this section. The generated series (𝑃demand,H

𝑡 )𝑡=1,2,... is simply passed to the MILP as a parameter.

Combined heat and power plant satisfying heat demand: This model combines the CHPP, HWT and heat
demand models presented above. The power received or provided by the HWT is

𝑃
HWT,H
𝑡 = −(𝑃CHPP,H

𝑡 + 𝑃demand,H
𝑡 ) , 𝑡 = 1, . . . , 𝑇

Additional constraints are introduced to make use of the CHPP’s ability to ignore the dwell time constraints in
order to keep the HWT temperature within an acceptable region. This region is bounded by soft constraints. In the
following, only the constraints for the lower bound are presented, as the complementary constraints for the upper
bound are analogous. Let \HWT,𝑚𝑖𝑛 be the lowest acceptable temperature, then

\HWT,𝑚𝑖𝑛 − \HWT
𝑡−1 ≤ M · 𝑏CHPP,forceOn

𝑡 , 𝑡 = 1, . . . , 𝑇

forces the CHPP to start whenever the temperature of the HWT falls below \HWT,𝑚𝑖𝑛. The constraint can be
relaxed by incorporating a small buffer. Let this buffer be Δ\ kelvin. Then we have

(\HWT,𝑚𝑖𝑛 − Δ\) − \HWT
𝑡−1 ≤ M · 𝑏CHPP,forceOn

𝑡 , 𝑡 = 1, . . . , 𝑇 .

When using relaxed constraints, close to the temperature boundary, the CHPP is allowed to be activated regardless
of its dwell time. This is achieved with

(\HWT,𝑚𝑖𝑛 + Δ\) − \HWT
𝑡−1 ≤ M · 𝑏CHPP,allowOn

𝑡 , 𝑡 = 1, . . . , 𝑇 .

However, as long as the temperate is above \HWT,𝑚𝑖𝑛 + Δ\, the binary variable 𝑏CHPP,allowOn
𝑡 must be equal to 0,

which requires

−(\HWT,𝑚𝑖𝑛 + Δ\) + \HWT
𝑡−1 ≤ M · (1 − 𝑏CHPP,allowOn

𝑡 ) , 𝑡 = 1, . . . , 𝑇 .

Finally, the constraint

𝑏
CHPP,forceOn
𝑡 ≤ 𝑏

CHPP,allowOn
𝑡 , 𝑡 = 1, . . . , 𝑇

prevents the CHPP from being forced to change its mode, when it is not allowed to.

Detached family home: This configuration simply combines the model of the BESS with the “CHPP satisfying
heat demand” model described in the previous paragraph. The total power is
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5 Artificial Neural Networks as Surrogate Models for Flexibility

𝑃𝑡 = 𝑃
BESS
𝑡 + 𝑃CHPP

𝑡 .

FZI House of Living Labs: The mixed integer linear model of the HoLL combines the BESS, EVSE, CHPP,
HWT, and GCB model. As pointed out before, the CHPP is only forced to shut down, but never forced to start up.
Hence, the associated constraints on the lower energy bound found in the configurations combining a CHPP and
HWT are not applied here. A heat demand series is again generated by the simulation model and passed to this
model as a parameter. The total power drawn from or fed into the grid is

𝑃𝑡 = 𝑃
BESS
𝑡 + 𝑃EVSE

𝑡 + 𝑃CHPP
𝑡 .

Aggregated battery energy storage system: The aggregated BESS MILP is formed by combining 100 indi-
vidual BESS models to one large optimization problem. The total power is

𝑃𝑡 =

100∑︁
𝑖=1

𝑃
BESS,𝑖
𝑡 ,

where 𝑃BESS,𝑖
𝑡 is the power contributed by the 𝑖-th BESS. In contrast to the simulation, where a requested

aggregated power level is split proportionally, the MILP is free to choose any combination of 𝑃𝑖
𝑡 values adding up

to the correct sum.

5.3.4 Surrogate Generation

Surrogate models are trained by the framework in an automated process, using datasets generated with the help of
the different simulation models. For each individual surrogate modeling approach different sets of data are needed.
It is therefore necessary to implement specific sample generators, collecting and structuring the required data.
However, this only needs to be done once, as all relevant variables and methods are standardized in the framework,
using class-based inheritance. For this thesis a sample generator for the state-based simulation approach has been
implemented. Tensors of a fixed size are utilized to store the training and validation datasets. Before the training
process begins, the datasets are initialized, filling them with newly generated samples. If desired, the samples can
be replaced during training, allowing repeated renewals of the dataset. All data is generated in dedicated processes,
leveraging the processing power of multi-core processors. Training and validation batches are drawn randomly.
The datasets are shared between processes, allowing the parallelized training of ANNs, either on CPU or GPU
using PyTorch and CUDA.

While in our previous work, the ANN topology and hyperparameters were specified manually [312, 308], in this
thesis, they are all randomly selected. Motivated by neural architecture search outperforming manual architecture
engineering for different tasks [283], the ANN topology is generated randomly. Alongside other hyperparameters,
for instance the learning rate, learning rate decay, and regularization term, parameters describing the ANN structure
are drawn from a predefined set of possible options. All generated ANNs are feedforward neural networks.
Figure 5.11 shows the topology specific parameters and illustrates their meaning by showing exemplary values and
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Figure 5.11: Exemplary parameters for generating an ANN alongside the resulting fully connected ANN. Additional modules like batch norm
or dropout layers are placed in front of the linear layers. A swish activation function is added after every affine linear layer
𝑦 = 𝑥𝑊 ᵀ + 𝑏, except for the output layer, where a custom activation layer can be applied. The underlined parameters are fixed.

the resulting ANN. The depth of the ANN is determined by the number of hidden layers. A width parameter
specifies the width of the hidden layers. Widths for input and output layers are fixed parameters. Two additional
parameters specify the number of layers the width should be interpolated. They allow the linear interpolation
of widths between the input layer, hidden layers, and output layer. In Figure 5.11, it is one layer on either end.
Hidden layers, generated according to the hidden layer count, are affine linear layers, i.e., compute 𝑦 = 𝑥𝑊ᵀ + 𝑏
(see also Figure 2.3), but may be preceded by additional modules. The framework implements the possibility to
randomly add batch normalization and dropout layers, which can both help to train better performing ANNs [27].
Each hidden linear layer is activated by a swish activation function 𝑓 (𝑥) = 𝑥 · 𝜎(𝛽𝑥) [30] with a random beta. A
custom activation function, including a mixture of different activations for different neurons, can be specified for the
output layer. Furthermore, random skip connections are added to the ANN. Skip connections skip one or multiple
ANN layers, creating shorter paths through the ANN [27]. With their help, layers receive larger gradients [27,
284], singularities of the loss function’s Hessian matrix are eliminated [284], and the loss is smoothed around
the minima [285], overall facilitating the generation of better results. Skips are constructed by creating a random,
binary, upper triangular matrix. The rows and columns of all elements with value 1 specify a skip connection. In
Figure 5.11 only the resulting skips are depicted.
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5 Artificial Neural Networks as Surrogate Models for Flexibility

With all these sources of randomness in addition to the randomly initialized ANN weights, it is apparent that chance
plays a non-negligible role in finding well performing models. Therefore, multiple different ANNs are trained,
each with its own random topology and hyperparameters. After each training epoch, the ANNs’ performance is
evaluated using the validation dataset and a performance score is computed from the validation losses. In [308] we
rated the learned models based on the highest validation loss observed during an epoch. The idea was to select the
model exhibiting the best worst-case performance. However, more recent experiments showed that the distribution
of losses can vary widely, and therefore the maximum loss is only a weak indicator for how well the model performs.
Exemplary distributions of losses can be found in the results section. To consider the whole distribution of losses,
the 0-, 0.25-, 0.5-, 0.75- and 1.0-quantiles are determined for each epoch. The epochs are then rated by computing
the average of these quantiles. Given the averages, the best ANN and epoch are selected by searching the lowest
score, completing the training process.

The state-based simulation surrogates require two separate ANNs, a classifier and one predicting state transitions.
All state-based surrogate models are trained from samples generated with the respective simulation models by
repeatedly drawing a random state, determining the feasible actions, selecting an action randomly, and computing
the subsequent state. In order to train the classifier ANN it is sufficient to repeat only the first two steps. The
classifiers are all trained using the binary cross entropy loss function. For the state transition estimators, the loss
function varies. While it is of course possible to compute the losses of all state variables with a single loss function,
it is often desirable to adapt the variable encoding and loss function in order to achieve better results. Take for
example the MSE loss, which is utilized for predicting continuous variables. Using this loss function to predict
one of multiple discrete options requires the manual rounding of the results, as we did in [312]. In such a case, it is
usually beneficial to use a one-hot encoding and apply a cross entropy loss instead. Since the state vector in general
comprises different types of variables, some of them discrete, some of them continuous, it is sensible to specify the
loss function as a mixture of multiple different losses. With this mixed loss function, a suitable loss function for
each element of the state vector can be selected. Additional weights can be used to prioritize individual elements.
When applying a higher weight to a single element, the associated prediction error makes up a larger portion of
the overall loss. Therefore, it is more important to focus on a precise prediction of this element. To simplify
the handling of element specific encodings and loss functions, the framework implements easily configurable pre-
and post-processing functionality. This includes the normalization, discretization, and one-hot encoding of single
elements, as well as the reversal. Furthermore, it is possible to process not only individual vectors, but also entire
batches at once.

Even though it is not required, the state transition model is additionally trained to predict the interaction resulting
from the state transition. This information was used for additional testing and further analysis during the develop-
ment process. As long as only feasible actions are passed to the simulation model, the returned electrical interaction
should always be the additive inverse of the action. In other words, if the sum of action and interaction does not
equal zero, the system is not able to draw or provide the exact amount of power specified by the action. When an
infeasible action is requested, the simulation models execute the closest feasible action. Hence, given the ANN is
able to predict the correct interaction, the interaction output can be used as an indicator of feasibility, or to identify
which action was performed during the previous time step. Utilizing this information, it is theoretically possible to
do completely without the classifier and only use a single ANN. However, in experiments the separated classifier
helped to improve the results, and it was therefore not made use of the interaction prediction.
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5.3.5 Evaluation Process

The quality of approximation provided by the state-based surrogate models is evaluated in up to three different
steps:

In the first step, the performance of the classifier is assessed. For this purpose, a random test dataset is generated,
utilizing the same sample generators employed during the training process. With the dataset, the shares of true and
false positives, as well as true and false negatives are determined. Here, using the state-based simulation surrogate,
positive refers to actions being classified as feasible. This isolated test is significant for two reasons. Firstly, the
shares of false positives and false negatives are rough indicators for the expected model performance. Assuming
the algorithm generating the load schedules does not systematically favor actions that tend to be false positives,

𝐹𝑃
𝐹𝑃+𝑇 𝑃

can be seen as a rough estimate of the chance of selecting an infeasible action. However, since during load
schedule generation imprecise state forecasts are used, this estimate is more akin to a lower bound for the chance
of selecting an infeasible action. The false negative rate, on the other hand, indicates how well the surrogate is
able to describe the true flexibility. A higher false negative rate means less possible choices, even though in reality
more options are viable. Secondly, when only load schedules with a length of one time step are required, that is,
when requesting an immediate and short-sighted change in behavior, only the classifier’s ability to identify feasible
actions is relevant. The classifier ANN returns values from the interval [0, 1]. In the experiments, any action with
a rating of 0.5 or higher is considered feasible. While it would be possible to change this threshold in order to tune
the false positive and false negative rates, the threshold remains fixed.

In the second step, sets of load schedules are generated and synchronously evaluated with the help of the
associated simulation model. The load schedule generation is implemented as proposed earlier in Figure 5.3.
In each time step a set of potentially feasible actions is identified with the help of the ratings returned by the
classifier. Actions are chosen randomly from this set, employing two different strategies. The first strategy chooses
any action completely randomly, which is how we performed our first evaluation of state-based surrogates for
flexibility [308]. Doing so, the state is the only influence of past actions on the next choice, as it determines which
actions are valid. For DERs with many feasible actions, like the BESS, this produces load schedules alternating
between positive and negative, and high and low power flows. In a practical use case, presumably less volatile
schedules are desired by the external entity, maintaining a reduced or increased demand for a longer period of
time. The second strategy is intended to produce such load schedules. It divides the overall set of possible
actions, which is not to be confused with the set of feasible actions in a given state, into multiple smaller sets by
dividing the range between the maximum and minimum achievable power into intervals. Take for instance a BESS
able to provide -5 kW to 5 kW. Dividing this range into 4 equally sized pieces yields the intervals [−5,−2.5],
[−2.5, 0], [0, 2.5], and [2.5, 5]. These intervals are used to limit the action selection step during load schedule
generation. A series of intervals is created by drawing them randomly with replacement and repeating each element
a predefined number of times, in order to create longer periods with comparable power flows. For example, the
drawing procedure could lead to the sequence ( [−5,−2.5], [−2.5, 0]). Repeating each element 4 times results in
( [−5,−2.5], [−5,−2.5], [−5,−2.5], [−5,−2.5], [−2.5, 0], [−2.5, 0], [−2.5, 0], [−2.5, 0]). Now, during schedule
generation, the selection algorithm tries to choose feasible actions from within the interval associated with the
current time step, that is, in the first 4 steps a power in [−5,−2.5]. Should there be no action rated feasible
within the desired interval, the interval is expanded including the direct neighbors until all options are depleted. In
case no feasible actions can be identified, both strategies resort to selecting the action with the highest ratings, as
there should always be at least one valid action. While generating each load schedule, a simulation is performed
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synchronously. By tracking the outputs of the surrogate and simulation model, a dataset allowing very detailed
analyses is created. Furthermore, the feasibility can directly be detected with the simulation model.

In the third step, an additional evaluation with the help of a MILP is conducted. If aggregates of multiple DERs
are evaluated, the simulation model alone may not be able to identify all feasible schedules. Please remember that in
this thesis the set of actions does contain each possible aggregated power only once, since duplicates are eliminated
by always operating the individual DERs the most beneficial way. Due to errors in the predicted state, the surrogate
may expect the DERs to operate the wrong way, while still achieving the correct power. Even though the power
in this time step is correct, this can lead to the states of the surrogate and simulation model diverging. Take for
instance a CHPP and a BESS. Running the CHPP, when the produced heat is not required may be disadvantageous
depending on the gas and electricity prices. An erroneous prediction of the amount of stored heat could lead to the
CHPP starting up, instead of providing the same electrical power with the help of the BESS. This may prevent the
simulation model from following the surrogate’s schedule at a later time. To deal with this issue, each schedule
deemed unachievable by the simulation model is evaluated a second time by solving a MILP that searches the
schedule with the minimum MAE (see Section 5.3.3). If the schedule is feasible, the target function value is 0.
In the strict sense, these schedules are infeasible, as the reference model, i.e., the simulation model, is not able to
reproduce them. However, even though the schedule is not optimal in the sense of operating devices in the most
beneficial way, it is, after all, still feasible and could therefore be requested by an external entity. Moreover, the
only way to incorporate all possible state trajectories in the simulation model and thereby encode them into the
ANNs, is by defining an individual action for any combination of DER actions, as we do in [308]. As explained
before, this would lead to an increased complexity for the external entity.

5.3.6 Results

Surrogate models, i.e., combinations of classifiers and state estimators as required by the state-based simulation
approach, have been trained for each DER configuration utilizing the models and methodology outlined above.
The set of possible actions for each configuration has been defined by splitting the range between the minimum
and maximum attainable power into equidistant parts. For the single DER configurations, each step in positive
(negative) direction equals 1% of the maximum (minimum) power. With the exception of the aggregated BESS,
for which a step size of 0.5% was used, the aggregated systems’ actions all lie 100 W apart from each other. It is
important to note that there is a trade-off between complexity and detailedness. Generally speaking, more actions
allow for a more precise description, but may lead to a worse approximation quality. In an attempt to provide
rather precise models, small distances between actions have been selected, but ultimately all step sizes are arbitrary
choices.

Since the ultimate goal is to assess the quality of approximation achievable by ANN-based surrogate modeling, a
rather large number of samples has been used for training the ANNs. Up to 1000 training epochs with a dataset of
1000 batches, each consisting of up to 3072 samples, have been conducted. If the score of a model did not improve
within 100 epochs, training was stopped early. For the aggregated BESS the batch size had to be halved because
of limited video RAM. During the training, the dataset was regularly updated, replacing the oldest samples in the
dataset with newly generated ones. For each required ANN, 16 attempts with random hyperparameters and ANN
topology were made. The best performing ANNs were selected automatically and an evaluation was conducted.

In this section, the results gained for each individual configuration are presented. Results were generated by testing
the classifiers with 100,000 randomly selected states and by creating 10,000 load schedules following the steps
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described in the previous section. The resulting schedules had a length of one day, split into 96 time steps of
15 minutes. In order to evaluate the approach for more short-sighted applications or applications working with a
coarser temporal resolution, all statistics have also been computed using only the first 4 and 24 elements of each
schedule.

Battery Energy Storage System

The first investigated configuration was a single BESS. Its range of action was split into 201 distinct actions, one
“idle” action and 100 actions for charging and discharging, respectively. Minimum and maximum SOC were fixed
throughout schedule generation. An overview of the results is given in Table 5.11. For the first entry in any load
schedule, only the performance of the classifier is relevant. The classification results for 100,000 randomly selected
states are listed in the upper portion of the table. Each individual action was rated positive or negative, depending on
the numerical rating and the (arbitrary) feasibility threshold of 0.5. With 201 actions, there were 201 classifications
per state, of which each is either true or false. The listed shares of true positives, true negatives, false positives,
and false negatives are the averages of all 201 · 100, 000 individual classifications. With only a BESS to consider,
the classifier exhibited a rather high accuracy. Both, the share of false positives and false negatives, were almost
negligible with less than 0.0025%. Assuming the independence of false positives (false negatives), this means a
∼ 0.5% chance (𝑃(𝑋 ≥ 1) with a binomially distributed 𝑋 ∼ 𝐵𝑖𝑛(𝑛 = 201, 𝑝 = 0.000025)) to have a false positive
(false negative) in a given state sampled from the training distribution.

Table 5.11: Evaluation results for the BESS. The single time step metrics relate to a total of 201 · 100, 000 classifications, performed in
100,000 ANN evaluations. For each combination of strategy and buffer size 10,000 schedules have been generated.

Single time step

True positive True negative False positive False negative FPR FNR
87.3932% 12.6038% 0.0017% 0.0013% 0.0133% 0.0014%

Multiple time steps

Purely random Random reference
4 steps 24 steps 96 steps 4 steps 24 steps 96 steps

Feasible 100.00% 99.95% 99.61% 99.94% 98.65% 86.76%
MAE* 0.00 2.08 0.52 12.50 2.08 0.54
RMSE* 0.00 10.21 5.10 25.00 10.21 5.21

Multiple time steps with a 1% buffer

Feasible 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
MAE* 0.00 0.00 0.00 0.00 0.00 0.00
RMSE* 0.00 0.00 0.00 0.00 0.00 0.00

*only infeasible schedules
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Figure 5.12: Feasibility of BESS schedules over time.
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Figure 5.13: Number of erroneous actions per infeasible BESS schedule. No buffers have been applied during schedule generation.
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Figure 5.14: Errors (not equal to 0) of infeasible BESS schedules. Actions in the BESS configuration range from -5000 W to 5000 W. No
buffers have been applied during schedule generation.

When it comes to generating entire schedules, the two employed strategies for selecting actions show large
differences as long as no buffers are used. Since schedules become infeasible the time step at which an invalid
action is chosen and remain infeasible from then on, the number of achievable schedules decreases with each
passing time step. This process is visible in Figure 5.12, which depicts the percentages over time. With 99.61%
feasible schedules even for the 96 time step horizon, the purely random selection of actions achieved very high
percentages of feasibility. In contrast, selecting actions close to a given less volatile (random) reference schedule
resulted in only 86.76% feasible schedules after 96 time steps. The reason for this comparatively bad result is
the forced approach of the boundary regions, where any error by the classifier or state estimator can cause the
selection of an invalid action. With the purely random action selection, any action deemed feasible is equally likely
to be selected. Therefore, when having an SOC around 0.5, the strategy frequently switches between charging and
discharging, as both are equally likely to be selected. The closer an SOC boundary is approached, the fewer actions
pointing in this direction are classified feasible, resulting in a growing likelihood of selecting an action pushing
the SOC in the opposite direction. The reference-based strategy, on the other hand, tries to follow a reference
profile, which demands charging or discharging for multiple consecutive steps. Hence, even when a boundary is
approached, the SOC may still be pushed closer and closer to the bound. With a buffer of 1% at each boundary,
i.e., constraining the surrogate model to a minimum SOC of 1% and a maximum SOC of 99% by adapting the state
vector, all generated schedules were valid, regardless of the employed strategy. Aside from the share of feasible
schedules, the table lists the MAE and RMSE of the infeasible schedules. Both decrease with increasing schedule
length, as the share of valid time steps, that is, steps with an error of zero, increases.

Figure 5.13 depicts the number of invalid actions per generated load schedule. Feasible schedules are not included
in the numbers. Infeasible schedules of 96 time steps had up to two invalid actions, when using the reference-based
strategy, instead of one invalid action with the random strategy. The median and 75%-quartile are at one error per
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schedule. The number of errors is measured with the help of the simulation model. If an invalid action is chosen,
the model corrects it to the closest feasible action and the generation process continues like it would after a valid
choice. The respective distribution of errors is illustrated in Figure 5.14. Each error is computed by subtracting the
action performed by the simulation model from the intended action given by the schedule. Thus, a positive number
means that the resulting power flow is less than the requested power, and vice versa. Only values unequal zero, that
is, actual errors, are considered in the boxplots. In any case, the absolute error was at most 50 W. Please remember
that the actions range from -5000 W to 5000 W for the considered BESS configuration. Therefore, even the
infeasible schedules generated by using the reference-based action selection and no buffers at all, were remarkably
close to feasible schedules, especially when considering that the majority contains only a single incorrect value.

Electric Vehicle Supply Equipment

The EVSE model was trained with 101 distinct actions, ranging from 0 kW to 22 kW in steps of 1%, i.e., 220 W.
Any action greater than 0 kW but below 3.6 kW is always invalid, as a minimum charging power of 3.6 kW is
assumed. All parameters defining the individual charging processes, that is, the capacity, initial SOC, remaining
standing time, and the minimum and maximum SOC were provided as a forecast. Hence, only the SOC needed to be
estimated. The results for the EVSE are summarized in Table 5.12. The shares of false positive and false negatives
were comparatively small. In contrast to the BESS, the majority of actions was infeasible for the EVSE, which
is visible in the shares of true positives and true negatives. This was caused by the test dataset being generated
the same way the training and evaluation data sets are generated. To make sure the classifier learns the charging
constraints correctly, it was mostly confronted with states in which only a few time steps remain for charging. States
with low remaining standing times and states where no BEV is available are states where only few actions are valid.

For the EVSE, the purely random action sampling and the reference-based strategy performed similarly. They
ended up with 58.33% and 57.10% of the schedules being feasible after 96 time steps. A surprisingly big share
became infeasible early in the generation process. After 4 time steps 94.39% and 93.35% were still valid, which in
turn means that around 6% already lost their validity. This initial drop is also visible in Figure 5.15. Subsequently,
the slope flattens, as fewer schedules became infeasible. A major factor to keep in mind is the limited availability of
the BEV, which is not only determined by the remaining standing time, but also the arrival rate. In this evaluation,
initial states for each schedule are drawn from the same distribution the training states are drawn from. Therefore,
almost all schedules are starting with a charging process being under way. Furthermore, this initial charging process
is often limited to only a few remaining time steps, which again increases the likelihood of errors since additional
constraints for the charging power are active. After finishing a charging process, and due to the expected arrival
of one BEV per 48 time steps, the EVSE oftentimes idles. As time passes, more and more simulated schedules
transition from the initial charging process to idling most of the time, which in turn explains the less than exponential
decay of feasible schedules later on. Hence, when there is a less challenging distribution of initial states, better
results than those presented here can be expected. The MAE and MSE values were considerably larger than those
achieved with the BESS model, even when taking the larger range of action into account.
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Table 5.12: Evaluation results for the EVSE. The single time step metrics relate to a total of 101 · 100, 000 classifications, performed in
100,000 ANN evaluations. For each combination of strategy and buffer size 10,000 schedules have been generated.

Single time step

True positive True negative False positive False negative FPR FNR
25.4650% 74.5319% 0.0021% 0.0009% 0.0029% 0.0037%

Multiple time steps

Purely random Random reference
4 steps 24 steps 96 steps 4 steps 24 steps 96 steps

Feasible 94.39% 80.22% 58.33% 93.35% 79.42% 57.10%
MAE* 282.16 92.92 35.60 243.65 73.79 30.70
RMSE* 741.88 511.82 349.27 641.66 431.63 317.50

Multiple time steps with a 1% buffer

Feasible 99.86% 98.76% 94.54% 99.82% 98.93% 94.79%
MAE* 192.50 83.68 38.65 259.72 72.65 38.49
RMSE* 437.04 411.90 371.54 485.75 316.41 368.69

Multiple time steps with a 2% buffer

Feasible 99.99% 99.92% 99.37% 99.99% 99.92% 99.43%
MAE* 275.00 79.06 37.36 330.00 59.58 36.63
RMSE* 550.00 415.54 370.22 491.93 300.41 368.32

*only infeasible schedules

Since the remaining standing time for each time step is provided to the external entity as part of the forecast, there
are only two possible sources for errors, misclassification and imprecise SOC forecasts. In the experiment, the
major cause of infeasibility was the imprecise prediction of the BEV’s SOC. A closer look at the state estimator
showed occasional errors of up to around 4.8 percent points in both directions. The 0.25- and 0.75-quartiles of the
observed SOC errors are -0.03 percent points and 0.04 percent points, respectively. Please keep in mind that in
contrast to the BESS, the EVSE must be able to handle batteries of various capacities. Imprecise prediction can
be kept in check by using buffers. With increasing buffer size the share of feasible schedules quickly converged
to 100%. More than three-thirds of all infeasible schedules generated without buffers contained at most 2 errors,
as is visible in Figure 5.16, where the 0.75-quartile is at the value 2. Overall, none of the schedules had more
than 15 errors. However, the isolated errors were comparatively large and ranged up to 7.92 kW, meaning that
the requested action was to charge with 7.92 kW more than is possible for the simulation model. Regarding the
remaining standing time, even though the predicted value was replaced by the provided forecast, the state transition
ANN correctly determined the subsequent value for all 100,000 states in the validation set. This particular result
was achieved by using a one-hot encoding and the cross entropy loss for the remaining standing time, which makes
the prediction task trivial. Since the remaining standing time was predicted so well, instead of passing an individual
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Figure 5.15: Feasibility of EVSE schedules over time.
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Figure 5.16: Number of erroneous actions per infeasible EVSE schedule. No buffers have been applied during schedule generation.
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Figure 5.17: Errors (not equal to 0) of infeasible EVSE schedules. Actions in the EVSE configuration range from 0 kW to 22 kW. No buffers
have been applied during schedule generation.

forecast for each time step, it would be sufficient to only include the initial time step and value for each charging
process.

Combined Heat and Power Plant Satisfying Heat Demand

For the CHPP configuration, the range of action starting at -5.5 kW and ending at 0 kW, was split into 101 equidistant
actions. A new, randomly created heat demand forecast was given for each individual schedule generation attempt.
During training, the CHPP was additionally constrained to not start when the HWT temperature is 79 °C or higher,
and not stop when it is 61 °C or below (see Section 5.3.3). Throughout the evaluation, these additional restrictions
did not apply. Table 5.13 provides a summary of the achieved results. The CHPP was configured to allow two
modes of operation, “on” (-5.5 kW) and “off” (0 kW), and provided -2.75 kW while transitioning between both
modes. Hence, of the 101 actions, at most two actions could be feasible at any given time, which manifests itself
in the high share of true negatives and low share of true positives listed in Table 5.13. Not a single false positive
was observed in the evaluation. The false negative rate, on the other hand, was comparatively high.

Both strategies, the purely random choice of actions and the reference-based choice performed similarly well. This
is not surprising, given that frequent changes of the operation mode are prevented by the minimum dwell times.
Hence, in case of the CHPP, both strategies produce similar schedules. After 96 time steps, the share of feasible
schedules was 90.08% and 89.05%, respectively. However, the MAE and RMSE were even bigger than those of
the two previous configurations. Figure 5.18 shows the feasibility of the schedules over time. Similar to the BESS,
the slope is becoming steeper and not flatter with a growing number of time steps. This suggests that the primary
cause for choosing an invalid action was the error of the estimated state, which generally grows with every time
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Table 5.13: Evaluation results for the CHPP configuration. The single time step metrics relate to a total of 101 · 100, 000 classifications,
performed in 100,000 ANN evaluations. For each combination of strategy and buffer size 10,000 schedules have been generated.

Single time step

True positive True negative False positive False negative FPR FNR
1.4658% 98.5102% 0.0000% 0.0240% 0.0000% 1.6096%

Multiple time steps

Purely random Random reference
4 steps 24 steps 96 steps 4 steps 24 steps 96 steps

Feasible 99.94% 98.95% 90.08% 99.81% 98.98% 89.05%
MAE* 1604.17 288.10 119.29 1628.29 438.11 127.27
RMSE* 2381.57 923.19 607.74 2422.99 1225.31 632.05

Multiple time steps with a 1°C buffer

Feasible 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
MAE* 0.00 0.00 0.00 0.00 0.00 0.00
RMSE* 0.00 0.00 0.00 0.00 0.00 0.00

*only infeasible schedules
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Figure 5.18: Feasibility of schedules for the CHPP configuration over time.
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Figure 5.19: Number of erroneous actions per schedules infeasible for the CHPP configuration. No buffers have been applied during schedule
generation.
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Figure 5.20: Errors (not equal to 0) of schedules infeasible for the CHPP configuration. Actions in the CHPP configuration range from -5.5 kW
to 0 kW. No buffers have been applied during schedule generation.
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step. The number of errors per infeasible schedule, which is depicted in Figure 5.19, was again rather small. The
0.75-quartiles are 2 and 4 errors per schedule, respectively. The errors themselves are shown in Figure 5.20. They
ranged from -5.5 kW to 5.5 kW with many errors around either -2.75 kW or 2.75 kW. These two values are not
surprising, as they are the only operational options apart from 0 kW. The medians are mostly at -2.75 kW. An error
of -2.75 kW is recorded when the generated schedule tries to start the CHPP even though it is not possible at that
moment in time. Such failed attempts to start or stop the CHPP were mostly caused by inaccurate temperature
forecasts and the associated rules for forcing starts and stops. This argument is further supported by the observed
lack of infeasible schedules once a buffer of 1 °C was introduced.

Detached Family Home

The detached family home combines the BESS and CHPP configurations. Therefore, in sum, the possible actions
range from -10.5 kW to 5 kW. This range was split into 156 actions, yielding steps of 100 W. Analogous to the CHPP
configuration, the surrogate for the detached family home has been trained with additional constraints, preventing
the CHPP from starting when the HWT temperature is 79 °C or higher, and prohibiting to stop when it is 61 °C
or below (see again Section 5.3.3). Table 5.14 shows the test results for the detached family home. Unlike the
previous configurations, the detached family home comprises multiple DERs.

As explained earlier, for aggregated systems, there is trade-off between having multiple, possibly countless, actions
for each power level and having only one after eliminating each degree of freedom. Since, in order to reduce
complexity, the latter option has been chosen, the implemented simulation models may not be able to reproduce a
schedule, even though it would generally be achievable by the DERs in their given states. In order to analyze the
general reproducibility, even though it requires deviating from the intended operational logic, a further evaluation
was conducted with the help of the optimization model. The MILP-based results are listed in the rows labeled
“Feasible (MILP)”. Especially the reference-based strategy for selecting loads seems to produce schedules that
are infeasible for the simulation model, but achievable for the MILP. At 96 time steps 67.97% were actually
reproducible, while the simulation was able to follow only 47.29% without deviation. However, strictly speaking,
the additional 20.68% of schedules were still infeasible, as the simulation model defines the ground truth. In
order to fulfill such a schedule, the flexibility provider needs to deviate from the logic trained into the surrogate’s
state transition ANN. Then again, the schedule is achievable, which means given sufficient compensation, the
flexibility provider may still be inclined to implement it. Nonetheless, without an analysis in the context of a
specific application, it is not possible to state which of these two rates is more meaningful. For this reason, both
rates are listed.

A buffer of 1% for the BESS and 1 °C for the HWT temperature sufficed to raise the number of feasible schedules
over 88%. With a 2% and 2 °C buffer, more than 89% were achievable. Please note that in this particular case the
results for the two different buffer sizes are very similar. For the random strategy, the larger buffer even produced a
worse result. In preliminary tests, the larger buffer usually led to slightly higher shares of feasible schedules. Most
likely, due to randomness, the achieved results for the smaller buffer using the random strategy are particularly
good, while those for the larger one are particularly bad. Assuming a fixed chance of generating a feasible schedule,
the total number of feasible schedules after 10,000 attempts follows a binomial distribution, since each schedule is
generated independently. With 𝑝 = 90%, in 95 of 100 runs of the experiment, the total number can be expected to
lie within the interval [8940, 9058]. This means that fluctuations of about half a percent point are easily possible,
which supports the hypothesis proposed above.
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Table 5.14: Evaluation results for the detached family home. The single time step metrics relate to a total of 156 · 100, 000 classifications,
performed in 100,000 ANN evaluations. For each combination of strategy and buffer size 10,000 schedules have been generated.

Single time step

True positive True negative False positive False negative FPR FNR
65.0322% 34.5162% 0.0047% 0.4469% 0.0136% 0.6825%

Multiple time steps

Purely random Random reference
4 steps 24 steps 96 steps 4 steps 24 steps 96 steps

Feasible 99.91% 97.90% 81.57% 99.44% 90.37% 47.29%
Feasible (MILP) 99.93% 98.88% 90.31% 99.55% 93.29% 67.97%
MAE* 91.67 94.37 36.26 97.77 32.69 21.48
RMSE* 266.15 534.01 320.05 438.49 310.77 243.34

Multiple time steps with a 1% and 1°C buffer

Feasible 99.93% 99.08% 90.82% 99.94% 98.84% 88.21%
Feasible (MILP) 100.00% 99.91% 99.32% 100.00% 99.90% 98.33%
MAE* 367.86 158.42 53.27 1225.00 185.20 59.70
RMSE* 837.73 716.11 390.91 2527.35 773.87 430.20

Multiple time steps with a 2% and 2°C buffer

Feasible 99.94% 98.95% 90.03% 99.93% 98.86% 89.26%
Feasible (MILP) 99.98% 99.93% 99.67% 100.00% 99.98% 99.67%
MAE* 954.17 119.13 49.76 564.29 157.27 53.82
RMSE* 1875.83 555.61 375.81 1346.42 713.57 402.39

*only infeasible schedules (according simulation)

The MAE and RMSE values lay in-between those of the BESS and CHPP configurations, since the additional
BESS is able to compensate for some of the CHPP related errors. Interestingly, MAE and RMSE both grew with
the introduction of buffers. Please keep in mind that MAE and RMSE are computed only for infeasible schedules.
As the number of infeasible schedules decreases, this means that there are fewer errors in the entirety of generated
schedules, but they are larger. In the previous configurations the MAE and RMSE values, if not equal to zero
anyway, seemed to underlie minor, random fluctuations, but for the detached family home a clear trend was visible.
The same effect could be observed in the HoLL configuration. The errors of the aggregated BESS, on the other
hand, behaved as expected and decreased with increasing buffer sizes, which suggests that the effect is connected
to the CHPP or its interplay with the BESS.

To further analyze the growing errors caused by buffers, a series of manual tests has been conducted. Before
discussing the findings, it is important to remember that there are different kinds of buffers used in this configuration,

139



5 Artificial Neural Networks as Surrogate Models for Flexibility

as is explained in Section 5.3.3. In summary, the BESS’s SOC buffer is set by state variables and, thus, can be
changed any time by adapting the state vector. The CHPP and HWT, in contrast, have a fixed temperature buffer
which is learned by the ANN during surrogate generation. Changing the buffer size in the schedule generation
process does not affect this learned buffer. Instead, the HWT related constraints are relaxed. Therefore, increasing
the buffer has two effects. Firstly, the BESS’s range of action is narrowed, secondly, the temperature constraints
may be violated more. One possible reason for the increased errors could be the ANNs performing worse with
the changed input variables. However, although it does not completely rule out the ANNs as a cause, a dedicated
test with randomly sampled states did not show any general difference in performance. A closer look into the
state vectors produced during the schedule generation process revealed that infeasibility was mostly caused by the
incorrect prediction of the CHPP’s behavior. In contrast to the CHPP configuration, where the CHPP is the only
DER, in this configuration, the BESS state has a strong influence on CHPP control. Whenever there is a degree of
freedom, i.e., there is more than one option to implement an action, the CHPP mode is selected according to a fixed
set of rules with the aim of reducing costs. The BESS only covers the difference between the desired CHPP power
and the target defined by the requested action. In turn, this means that the CHPP must change modes whenever the
BESS is not able to cover the difference. Therefore, decreasing the BESS’s flexibility with a buffer forces the CHPP
to change modes more often. Consequently, the contribution of the CHPP to the overall load schedule increases.
Keep in mind that the CHPP configuration on its own exhibited very large MAEs and RMSEs. In addition to
this finding, it could be observed that the state prediction surrogate occasionally neglected the SOC buffers, which
again can result in incorrect CHPP modes. While setting the wrong CHPP mode does not immediately lead to
infeasibility, the longer the schedule becomes, the farther the real and predicted state trajectories may diverge. In
infeasible schedules, the temperature error often exceeded the 2 °C buffer. Additionally, the deviations are amplified
by long minimum dwell times. If no dwell time restrictions had been considered, the results would likely be much
better. In summary, the increase is caused by multiple factors combined, with reduced BESS flexibility and ANN
prediction errors being major causes.

Figure 5.21 and Figure 5.22 depict the share of feasible load schedules over time. The graphs have been split into
two separate figures, to allow for a better comparison. With one exception, the graphs look similar to those of the
BESS and CHPP configurations, starting flat and becoming steeper over time. Only the curve associated to the
reference-based strategy changes its curvature and flattens again after about half of the time horizon. The number
of observed errors is depicted in Figure 5.23. With 1, 2, and 3 the values for the 0.75-quartiles are again small,
although there were up to 16 and 21 errors in a single schedule. The extent of the individual errors is shown in
Figure 5.24. Errors ranged from -10.1 kW to 9.7 kW, covering almost the entire range of possible errors. Similar to
the CHPP configuration, large deviations were caused by the surrogate not correctly describing the CHPP. However,
the BESS is able to counteract some of these errors. For the reference-based strategy, the 0.25 and 0.75-quartiles
are -600 W and -100 W after 96 time steps, and for the random strategy, they are -1400 W and 600 W, respectively.
Since the random strategy generally involves more mode changes of the CHPP, this result suggests that one major
cause of deviations was illicit attempts to change the CHPP’s operation mode.
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Figure 5.21: Feasibility of detached family home schedules over time.
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Figure 5.22: Feasibility of detached family home schedules over time.
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Figure 5.23: Number of erroneous actions per schedules infeasible for the detached family home. No buffers have been applied during schedule
generation.
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Figure 5.24: Errors (not equal to 0) of schedules infeasible for the detached family home. Actions this configuration range from -10.5 kW to
5 kW. No buffers have been applied during schedule generation.
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FZI House of Living Labs

With its BESS, CHPP, HWT, GCB, and EVSE, the HoLL is the configuration with the most heterogenous DERs.
In combination, a total load ranging from -7.9 kW to 24.4 kW is achievable. Steps of 100 W have been selected to
create the set of discrete actions which was used by the surrogate.

Table 5.15: Evaluation results for the FZI House of Living Labs. The single time step metrics relate to a total of 324 · 100, 000 classifications,
performed in 100,000 ANN evaluations. For each combination of strategy and buffer size 10,000 schedules have been generated.

Single time step

True positive True negative False positive False negative FPR FNR
38.2278% 61.7311% 0.0178% 0.0232% 0.0289% 0.0607%

Multiple time steps

Purely random Random reference
4 steps 24 steps 96 steps 4 steps 24 steps 96 steps

Feasible 97.39% 89.96% 51.67% 95.81% 84.58% 42.16%
Feasible (MILP) 99.31% 97.07% 77.40% 98.42% 95.27% 78.82%
MAE* 379.79 116.99 73.21 331.03 81.76 59.69
RMSE* 1113.20 600.55 460.54 1034.91 506.73 425.14

Multiple time steps with a 1% and 1°C buffer

Feasible 99.26% 96.23% 74.39% 98.85% 95.55% 67.79%
Feasible (MILP) 99.96% 99.57% 97.69% 99.84% 99.51% 96.43%
MAE* 694.93 219.12 79.10 623.48 247.98 113.47
RMSE* 1510.09 855.31 500.78 1374.22 966.13 653.75

Multiple time steps with a 2% and 2°C buffer

Feasible 99.50% 96.36% 76.08% 98.91% 95.55% 70.13%
Feasible (MILP) 99.99% 99.78% 98.87% 99.96% 99.85% 98.72%
MAE* 678.00 177.60 80.38 765.83 256.40 129.84
RMSE* 1521.09 771.34 508.94 1626.11 973.23 703.11

*only infeasible schedules (according simulation)

The results in Table 5.15 show that, on average, the classifier ANN misclassified 324 · (0.0178%+0.0232%) ≈ 0.13
of the 324 actions in each given state. This equates to one misclassified action every 7.5 steps. During load schedule
generation, the errors of the predicted state heavily impair the identification of valid actions. After 96 time steps,
51.67% and 42.16% of the schedules were feasible, when no buffers were used. In contrast, the MILP was able to
reproduce 77.40% and 78.82% of the generated schedules. The large gap can be explained with the very flexible
DERs and the operation logic implemented in the simulation model. While the simulation model tries to use the
CHPP only when the temperature of the HWT is low and prioritizes charging the BEV over charging the BESS,
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5 Artificial Neural Networks as Surrogate Models for Flexibility

the MILP can control the DERs freely. Especially the possibility to charge the BESS before the BEV gives the
MILP an advantage in reproducing the generated schedules, as only a charged BESS can be discharged. But then
again, this higher flexibility comes with increased costs. A small buffer of 1% for the BESS and EVSE, as well as
a 1 °C buffer for the HWT temperature, improved the share of feasible schedules drastically. Doubling the buffers
to 2% and 2 °C yielded only minor improvements. Overall, with buffers of 2% and 2 °C, 98.87% and 98.72% of
the generated schedules were achievable by the simplified HoLL, when forgoing the desired DER prioritization.
Around 99% of the load schedules were feasible at the fourth time step. The MAE and RMSE values are smaller
than those found in the CHPP configuration, which can again be explained by the presence of a battery storage.
Like in the previous configuration, the errors grow with the introduction of a buffer, but to a lesser extent. The
same explanation as before applies here, too. However, the effect seems to be dampened by the additional DERs.

The share of feasible load schedules over time is depicted in Figure 5.25 and Figure 5.26. All graphs show the
same initial dip that can be observed in the EVSE configuration. Here again, the reason lies in the distribution of
the initial states. In the great majority of initial states, there is a BEV present and a charging process is about to
finish. With less BEVs and longer remaining charging times in the initial states, better results are very likely. The
remaining progression over time is similar to the other configurations examined before, which isn’t surprising, as
the HoLL combines all of them. Figure 5.27 and Figure 5.28 depict the number of errors and the distribution of
said errors, when no buffers are used. The 0.75-quartiles for the number of errors are at the values 1, 2, 5, and 8,
depending on the strategy and time horizon. The maximum number of errors observed in a single schedule reaches
54 and 65 at 96 time steps, and is therefore quite high. With a 2% and 2 °C buffer, the highest observed numbers
were 33 and 48 (not depicted). Errors range from -17.8 kW to 23.4 kW. For an error of -17.8 kW to appear, the
surrogate must fail to charge the BEV, even though it is required. An error of 23.4 kW can occur when charging the
BEV is attempted but fails. The 0.25 and 0.75-quartiles are -1 kW and -0.1 kW, as well as -1.5 kW and 1.4 kW for
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Figure 5.25: Feasibility of HoLL schedules over time.
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Figure 5.26: Feasibility of HoLL schedules over time.
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Figure 5.27: Number of erroneous actions per schedules infeasible for the HoLL. No buffers have been applied during schedule generation.
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Figure 5.28: Errors (not equal to 0) of schedules infeasible for the HoLL. Actions this configuration range from -7.9 kW to 24.4 kW. No buffers
have been applied during schedule generation.

the random strategy after 4 and 96 time steps, respectively. In case of the reference-based strategy, the interquartile
range shrinks. The quartiles are at -1 kW and -0.1 kW, as well as 0.1 kW and 0.3 kW. Therefore, while there are
more errors in the reference-based strategy, they tend to be smaller. However, the 0.01 and 0.99-quantiles after
96 time steps are -5.3 kW and 5.3 kW, as well as -4.5 kW and 5.8 kW for both strategies, which indicates that the
biggest errors are comparable in size.

Aggregated Battery Energy Storage System

In total, the 100 aggregated BESS are able to provide or consume up to 6,250 kW. The exact bounds vary as the
individual SOCs change. Like before, buffers for the BESS were applied during schedule generation by setting
the associated input variables. In this experiment all batteries shared the same SOC limits. The action space has
been approximated with a set of 401 discrete actions, resulting in a distance of 31.25 kW between two neighboring
actions. Table 5.16 presents the results for the aggregated BESS.

With an accuracy of 99.89%, the classifier performed worse than the HoLL classifier, but better than the detached
family home classifier. At 401 actions, 0.11% of false predictions means one misclassification every second to
third step. The observed FPR of 0.2881% is much higher than in the previous configurations and a major factor
contributing to the lower shares of feasible schedules. After only 4 time steps 98.02% and 61.95% of schedules were
feasible, depending on how actions were selected. At 96 time steps, 45.55% and 0.07% remained. The reason for
the better results of the random strategy was the same as in the BESS configuration, that is, the tendency of avoiding
boundary regions. Figure 5.21 illustrates the progression over time in more detail. For the reference-based strategy,
the graphs show major dips in the first few steps. A look into some state vectors predicted during the generation
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Table 5.16: Evaluation results for the 100 aggregated batteries. The single time step metrics relate to a total of 401 · 100, 000 classifications,
performed in 100,000 ANN evaluations. For each combination of strategy and buffer size 10,000 schedules have been generated.

Single time step

True positive True negative False positive False negative FPR FNR
82.9439% 16.9488% 0.0490% 0.0584% 0.2881% 0.0703%

Multiple time steps

Purely random Random reference
4 steps 24 steps 96 steps 4 steps 24 steps 96 steps

Feasible 98.02% 84.02% 45.55% 61.95% 9.31% 0.07%
Feasible (MILP) 99.78% 98.56% 82.03% 82.63% 42.32% 7.34%
MAE* 45021 9308 4811 109227 59798 59327
RMSE* 133098 54335 46078 236364 154788 160741

Multiple time steps with a 2% buffer

Feasible 99.70% 98.77% 91.05% 80.44% 53.95% 11.15%
Feasible (MILP) 100.00% 100.00% 98.23% 97.23% 73.12% 25.07%
MAE* 40104 4838 2497 52415 30526 30438
RMSE* 92702 29401 29579 122553 97134 106172

Multiple time steps with a 5% buffer

Feasible 99.88% 98.32% 58.72%
Feasible (MILP) 100.00% 99.04% 68.59%
MAE* 42969 9386 11557
RMSE* 96108 37580 61451

*only infeasible schedules (according simulation)

process revealed that the simulated and expected states diverge quickly in infeasible schedules. It is conceivable
that the ANNs performed badly in some parts of the state space and well on others. While the share of feasible
schedules grows considerably when evaluated with the MILP, it remained at only 7.34% for the reference-based
strategy. In contrast to the previous configurations, buffers of 2% and 5% instead of 1% and 2% were applied. The
feasibility over time with buffers is depicted in Figure 5.30. With a 2% buffer 91.05% and 11.15% of the generated
schedules were valid. The MILP was able to reproduce 98.23% and 25.07%, respectively. At 4 time steps it were
99.7% and 80.44% when evaluated with the simulation model, as well as 100% and 97.23% when evaluated with
the MILP. In an effort to see if the share of feasible schedules with length 96 can be raised over 50%, a buffer of
5% has been applied, which resulted in 58.72% for the reference-based strategy.

Figure 5.31 and Figure 5.33 show the number of errors without buffers and how they are distributed. The 0.75-
quartiles are at the values 1, 2, 8, and 27. Noteworthy is the comparatively high 0.25-quartile of 14 errors for the

147



5 Artificial Neural Networks as Surrogate Models for Flexibility

0 20 40 60 80 100
Time step

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f f
ea

sib
le

 lo
ad

 sc
he

du
le

s

random
random*
reference
reference*
reference, 2% buffer
reference*, 2% buffer

Figure 5.29: Feasibility of aggregated BESS schedules over time.
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Figure 5.30: Feasibility of aggregated BESS schedules over time.
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Figure 5.31: Number of erroneous actions per schedules infeasible for the aggregated BESS schedule. No buffers have been applied during
schedule generation.
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Figure 5.32: Errors (not equal to 0) of infeasible aggregated BESS schedules.

Figure 5.33: Errors (not equal to 0) of schedules infeasible for the aggregated BESS. Actions this configuration range from -6,250 kW to
6,250 kW. No buffers have been applied during schedule generation.
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reference-based strategy at 96 time steps. The maximum numbers are 11 and 84 at schedule length 96. Of all the
investigated configurations, the surrogate for the aggregated BESS generated the most faulty load schedules. The
errors themselves ranged from around -1,8 kW to 1,2 kW, that is, almost 30% of the maximum charge and discharge
power. The quartiles for schedule length 96 were at -343.8 kW and -31.3 kW, as well as -375 kW and 62.5 kW.

5.3.7 Discussion

In order to test how well ANN-based surrogates can approximate the flexibility of DERs, the goal of generating
feasible load schedules had been selected. Throughout the different experiments the achieved share of valid
schedules varied widely. Generating load schedules that consist of 4 steps yielded shares of 93% (EVSE) and
higher, except for the 62% for the aggregated BESS. With the help of buffers the share can easily be pushed to
around 99%. As the number of time steps increases, the number of feasible schedules decreases. How fast the
share declines varies from configuration to configuration and with buffer size. The results ranged from 0.07%
(aggregated BESS) to 100% (e.g., BESS with buffer) at 96 time steps. As was to be expected, the individual
DERs were approximated much better than the aggregated configurations. With more DERs, there are more state
variables and more complex dynamics to be learned, resulting from the interplay of different DERs. Additionally,
if multiple DERs are present, the surrogate must learn how the requested load is distributed to the devices. For the
configurations with only one DER and without buffers, 57% (EVSE) to almost 100% (BESS) feasible schedules of
length 96 were achieved. At least 47% and 42% were reached with the two building configurations. Here again,
buffers showed to massively improve the numbers, pushing them towards 100% in the single DER configurations,
and at least raising them over 50% for the aggregating configurations. Even when no buffers are used, the majority of
errors found in infeasible schedules were within a few percent of the maximum and minimum achievable power and,
therefore, relatively small. Furthermore, most time steps of infeasible schedules were feasible. The results show
that the strategy used for selecting actions in the state-based simulation approach can have massive consequences
on the attained values, depending on the configuration and time horizon. Generally the purely random selection,
which was the only one we considered in [308], performs better, since boundary regions tend to be avoided when
storages are involved. In contrast, the reference-based selection has been designed to decrease the volatility of
the schedule and provide more realistic requests. The next step for exploring more realistic strategies would be to
implement a DSM test scenario with simulated flexibility providers.

Aggregated systems were not only evaluated against their simulation model, but also the associated MILP. The
MILP, being more flexible in its use of DERs, is able to reproduce more of the generated schedules. Therefore,
a higher share of schedules is feasible in this second evaluation. In some configurations the result improved
dramatically, for instance, up to the factor 10 in the aggregated BESS. Mostly, however, a few percent points are
added. Schedules only reproducible by the MILP, but not by the simulation model, are feasible from a general
perspective, but only if the desired control logic, which is implemented in the simulation model and defines the
priority of the DERs, is violated. As a consequence, the implementation of such a schedule can come with extra
costs. Whether this is acceptable or not depends on the specific application. Regardless, as the goal was to learn
the flexibility from the simulation model, it still must be considered as being inadequate.

Given the good performance in generating short schedules of around 4 time steps, buffers are not necessarily
required. While time steps of 15 minutes have been used in the experiments, the results can be expected to
generalize well to other, comparable time step lengths. Requests with short-lived signals are especially relevant
when the flexibility is needed to react to an event, such as a grid congestion, where it is usually sufficient to
cover the time required for fixing the congestion and some additional periods for rebound effects to take place.
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Hence, judging from the ability to create feasible schedules, the state-based simulation surrogates would be very
suitable for generating such short-lived signals. In contrast, when optimizing the operation of DERs, a longer time
horizon has to be considered. As the results show, in case schedules are generated only once a day, the likelihood
of sending infeasible schedules to flexibility providers is rather high. However, usually in an optimization with
random influences, schedules are updated periodically in order to react to recent events. MPC would be viable with
surrogates, as at most the first time steps, often just the first step itself, are implemented. Nevertheless, the share
of feasible schedules at the end of the time horizon has direct impact on the ability to identify good schedules. A
surrogate which only produces few feasible schedules causes huge uncertainty for the optimizer. If the share of
feasible schedules at the end of the planning horizon is high, the optimizer can be more confident that the planned
path is achievable. Overall, if it is crucial that a flexibility provider is able to exactly follow the signals, buffers
should be used.

Even though high shares of feasible schedules have been reached in most of the experiments, these numbers alone
are not sufficient to evaluate how well the ANNs learned the flexibility offered by the simulation models. Instead,
they only show how well the ANNs encode a fraction of the flexibility. The simulation model being able to
reproduce the generated schedules is important for planning. However, a surrogate yielding the identical feasible
schedule over and over again would easily achieve a share of 100%, even though the output does not show any
flexibility. Only combined with the inverse experiment, that is, generating schedules from the simulation model and
evaluating them with the surrogates, a conclusion is possible. Due to the versatility of the state-based simulation
approach, this kind of test can easily be implemented. Table 5.17 provides the classification results for 100,000
schedules in each configuration. Of the 100,000 schedules, 50,000 were sampled as vectors of random numbers
within the range of possible actions and evaluated with the simulation model in order to assign a label, 25,000 were
generated with the random strategy, and the remaining 25,000 were generated with the reference-based strategy.
This method results in at least 50% feasible schedules, as both strategies only choose valid actions. A random
vector of numbers is highly unlikely to be a reproducible schedule. Nevertheless, for the configurations with battery
storages some of them were valid. The classification task would be more challenging by producing schedules
were only a single action is invalid, which could easily be implemented with the developed models. However, the
presented partition into 50% random and 50% feasible schedules has already been used in [11] and is used here in
order to allow the comparison of results. All configurations have been tested with buffers. For obtaining schedules
with 4 and 24 time steps, the first 4 and 24 values of the full schedules have been extracted.

Table 5.17: Classification results using the state-based simulation approach and buffers.

4 steps 24 steps 96 steps

BESS, 2% buffer 99.98% 99.54% 96.46%
EVSE, 2% buffer 98.62% 96.28% 90.85%
CHPP satisfying heat demand, 2 °C buffer 99.95% 99.69% 96.19%
Detached family home, 2% and 2 °C buffer 99.69% 97.84% 85.03%
HoLL, 2% and 2 °C buffer 99.22% 95.09% 74.64%
Aggregated BESS, 5% buffer 98.28% 78.09% 58.67%

The numbers show that the configuration with single DERs are performing best. The associated surrogates are
mostly able to correctly identify whether the given schedules are valid or not. For the aggregated configurations,
the results vary. While the detached family home reaches 85%, the aggregated BESS falls short of 59%. For
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comparison, a classifier randomly assigning labels is expected to reach 50%. Not listed here is the type of error.
Misclassified schedules are mostly false negatives. Mostly there is not a single false positive. The highest numbers
of false positives are 200 for the detached family home and 295 for the aggregated BESS, both at time step 4. At
time step 96, the only configuration with false positives is the BESS, with a total of three. For the aggregated BESS,
only around 20% of the feasible schedules of length 96 have been recognized as such. Infeasible ones, on the other
hand, have all been identified correctly. In summary, the extremely low number of false positives further confirms
that the surrogates have learned at least portions of the DERs dynamics. The numbers show that the flexibility is
far from being captured completely by the surrogates in the long run. For the most complex configurations the
numbers indicate that less than half of the achievable schedule space is covered. However, for short periods of time
the surrogates are able to represent the DERs very accurately. In order to obtain a more complete representation
of the flexibility and improve the result for long periods, the low number of false positives suggests that schedules
should not be filtered as strictly. Two possible parameters for adjustment are the threshold of the classifier, and
the fit of the ANNs. The classification threshold has been set to 0.5. An action with a rating of 0.5 or higher is
deemed valid. By reducing this threshold, more schedules will be classified feasible by the surrogate. The ANN
fit has an influence as well, as an overfitted model can cause exactly the effects observed here. A more strict early
stopping—a window of 100 training epochs was granted before stopping early—is one possible way to obtain better
generalizing ANNs. An added benefit would be the reduction of the required training time. However, both comes
at the cost of more false positives and a reduced share of feasible schedules generated with the help of the surrogate.

Another important aspect to consider is that all results have been generated on the basis of simulation models.
While the simulation models are designed to mimic real systems, they are only approximations themselves. In
order to show that the generated results in this thesis also apply for real DERs, further tests with load profiles
measured from existing hardware have been conducted. For three of the six configurations, namely the BESS, the
CHPP satisfying heat demand, and the HoLL, data was available. However, the HoLL data was incomplete, as
it lacked measurements for the EVSE and BESS. Therefore, only the BESS and the CHPP configurations could
be evaluated. Table 5.18 presents the classification results. The BESS data originates from the research project
grid-control [310]. It comprises 666 load schedules with 96 consecutive time steps of 15 minutes each. About
one fourth of these schedules consists of only zero values. The associated BESS has a capacity of 9 kWh and can
charge or discharge with up to 4.6 kW. Using the measured load and the recorded SOC values, the losses due to
efficiency and self-discharge have been estimated and the simulation has been parameterized suitably. The charging
efficiency has been set to 83%, and the relative self-discharge per hour was parameterized with 0.0075. Then, with
the help of the simulation model, another surrogate has been trained. Both, the simulation model and the surrogate,
were able to reproduce all 666 schedules. The data for the CHPP configuration has been taken from the ESHL at
the KIT in Karlsruhe. The dataset contains 197 schedules and was tested with the surrogate used in the evaluation
of the CHPP configuration. Out of these, only 185 could be reproduced by the simulation model. The surrogate
achieved the identical result. Overall, these results show that the models are generally suitable to describe these
two configurations.

Table 5.18: Classification results using the state-based approach and measured load profiles from real devices.

Real schedules Feasible (simulation) Feasible

BESS 666 666 666
CHPP satisfying heat demand 197 185 185
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During the development and experiments it became apparent that the major challenge for generating load schedules
is the precision of the estimated states. As the presented numbers show, the classifier ANNs are very well capable
of identifying feasible actions in a given state. The shares of false positives and false negatives are mostly well
below 0.1%. Only once, with a rate of 0.45% a higher number was reached. The state estimates, while mostly
being precise, are sometimes extremely inaccurate. Such state errors are larger in the more complex systems.
While, for instance, in 100,000 tested transitions, the SOC error of the BESS surrogate was around 0.12 percent
points at most, the SOC error produced by the EVSE surrogate reached up to 4.8 percent points. Since errors
carry over to subsequent time steps, they accumulate and the true state diverges from the predicted state. Hence,
with increasing schedule length, it becomes more and more important to reduce such errors. Sometimes, even
trivial logic relationships, such as the minimum dwell times and the progression of the current dwell time, are not
learned correctly. Training success is often strongly depending on the hyperparameters of the training process.
With unsuitable hyperparameters, the resulting ANNs perform very poorly. In contrast to our previous work [312,
308], where hyperparameters and the ANN topology were chosen by hand, a random search has been conducted in
this thesis. More advanced methods for the ANN topology design and hyperparameter optimization like CMA-ES,
could further improve the results by yielding better ANNs.

There are many parameters having an impact on the process of generating and exploiting surrogates. Aside from
the various hyperparameters, the amount of available data, variables in the state vectors, size of the action set, and
training algorithms all influence the training success. Naturally, learning surrogates for modeling flexibility with
the help of ANNs benefits from better training algorithms. In the future, new algorithms may reduce the amounts
of required data and the difficulties of learning logics. Regarding the level of detail of the approximation, there
is a trade-off between complexity and detailedness. Assuming well performing ANNs, the set of possible actions
defines which power levels are generally attainable. If the set is coarser, there are fewer possible inputs and outputs
for the ANNs and the external entity must decide between fewer options. Therefore, the complexity is reduced in
every single step, from model training to the exploitation itself. At the same time, with fewer actions to choose
from, the DERs are represented less exactly. A larger action set, on the other hand, is only sensible if the surrogates
are accurate, as the performance may drop even further. Aside from the actions, the remaining elements in the
input and output vectors influence the training process. In general, there should only be data in the vectors which
is truly required. If unnecessary or redundant elements are present, the ANN may learn spurious correlations, i.e.,
relationships which do not exist in reality, or may have trouble to learn correlations correctly. As mentioned before,
in this thesis, the transition models were trained to provide an additional output specifying which action has been
implemented. The idea behind this attempt was that if the resulting action is predicted close enough, there is no
need to use an additional classifier ANN. Instead of using a classifier, the whole set of possible actions could be
passed in the form of a batch, and if the resulting action and requested action are close enough, an action would be
considered valid. While simple models performed well, for instance, the BESS surrogate being off 300 W at most,
complex models did not. In case of the aggregated BESS, the difference between expected result and requested
action was mostly 0, but reached prediction errors of up to 9,719 kW. Overall, the additional classifier ANNs
performed better. Not learning the performed action in the transition model will most likely have an influence
on the ANNs performance. It is, however, unclear if positive or negative. Another possibility for improving the
long-term performance could be the unrolling of the ANN. The models have been trained by computing a single
transition. When unrolling is applied, multiple transitions are computed in sequence and the loss is calculated from
the resulting state.

One parameter not yet discussed is the length of a time step. If time steps are very short, the individual elements
in the state vector will usually not change by much and only few events, which may distort the resulting state, can
happen. The longer the time step becomes, the more effects may have an influence on the outcome. This means that
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when starting in the identical state, one and the same system may produce different follow-up states even though
the same average power was consumed or provided. In case of the simulation model and the algorithms used here,
this is not an issue, as the parameter is simply adapted in the algorithms and every formula remains exactly the
same. When historic data is used instead, it is not as simple. To see this, take a BESS, for instance. The action 0
would be equivalent to doing nothing. If it keeps idling, the SOC does only change marginally. The same outcome,
which is measured as average power, can be achieved by charging with 1 kW for half the time and then discharging
with 1 kW the remaining time. While the average power is identical, the resulting state is not. Due to charging and
discharging losses, the resulting SOC is lower this time. With these two examples, there are two data points for
the identical action and state, and both produce different outcomes. As the MSE loss, which is used in this thesis,
implicitly assumes a normal distribution, the ANN would tend to predict the average of the observed values. One
option to deal with this would be the training of stochastic models. The stochastic information could also be used
by the external entity. Another option is to filter such occurrences from the historic data, and search for periods
where the power level remains stable. Nonetheless, this would result in even fewer suitable data, especially when
time steps are long. Overall, when using longer time steps new problems may arise, but, at the same time, longer
periods of time can be covered with fewer time steps which greatly improves the approximation quality.

Results in Comparison With Other Publications

Concluding this discussion and chapter is a comparison of the results achieved in this thesis and results found in the
related literature. Aside from the ANN-based approaches we proposed in [312] and [308], the literature presents
surrogate modeling approaches based on SVDDs [63, 11, 65], Chi-shapes [69], and cascaded classifiers [12, 67,
68]. Subject of all of these publications is the encoding of the flexibility of DERs into learned models.

ANN-based approaches: In comparison to a dedicated classifier [312], the state-based simulation surrogates
perform worse. Accuracy and 𝐹1-score of the BESS, CHPP, and detached family home configurations are listed
in Table 5.19. The inferior performance is caused by the comparatively high number of false negatives. Possible
measures for decreasing the number of false negatives and potentially increasing the scores have already been
discussed. While the ANNs of the classifier approach seem to perform very well, it is unclear how they should be
used to derive feasible load schedules. One possible solution to this question is proposed in Section 6.2.

Table 5.19: Comparison of old and new ANN-based classification results given by [312].

Classification with a
dedicated classifier [312]

Classification using the
state-based simulation (this thesis)

𝐹1-score accuracy 𝐹1-score accuracy

BESS 0.995 0.995 0.970 0.965
CHPP 0.993 0.995 0.960 0.962
Detached family home 0.972 0.974 0.824 0.850

Table 5.20 presents the best MAE values and their associated RMSE values achieved by any surrogate modeling
approach in [312]. The BESS and CHPP values were produced with the generation approach, and the results for the
aggregate of both by the repair approach. Consistently, the average error produced by the state-based simulation is
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much smaller. While it is not possible to tell how well the generation and repair approaches cover the true flexibility,
the classification results showed that the state-based simulation captures most of it in the considered configurations.
However, the average errors may increase when the coverage is improved.

Table 5.20: Comparison of new and old ANN-based results. Listed are the best MAE and their corresponding RMSE values found in [312],
and the values generated with the random strategy using the state-based simulation approach.

Generation and repair* State-based simulation
MAE RMSE MAE RMSE

BESS 1.8 4.7 0.002 0.020
CHPP 52.5 140.2 11.834 60.287
Detached family home 133.1 211.8 6.683 58.986

* best result achieved in [312], regardless of approach

A first evaluation of the state-based simulation has been presented in [308]. The results are given in Table 5.21. For
the BESS, the performance has improved, likely due to better performing neural networks. In our previous work,
the hyperparameters have been selected by hand. The newly introduced hyperparameter search may have played
a crucial role in this improvement. As we predicted in [308], the introduction of a buffer for the BESS further
improved the result. The numbers for the CHPP configuration and the detached family home are only roughly
comparable, since the CHPP model and the action set have been adapted. In [308] the CHPP configuration could
run into “dead-end” states, where no actions are valid, for instance, if the CHPP must run because of the minimum
dwell time, but at the same time must stop because of a high HWT temperature. Instead of solving this by using
buffers, in this thesis, the dwell time constraint is a soft constraint. Whenever the HWT temperature exceeds the
bounds, the CHPP is free to ignore the dwell time. This has been implemented by adding further variables and logic
to the CHPP and HWT models, which results in a higher model complexity. Moreover, the heat demand time series
are more diverse in this thesis, as 3 · 60 instead of only 3 different series were passed into the generation process.
The remaining dynamics are the same. Both CHPP configurations, the old one and the new one, produced very
similar shares of feasible schedules. At the same time, the performance for the detached family home worsened
considerably. Aside from the changed operation logic of the CHPP and more diverse input data, the main reason is
most likely the changed action set. In [308] the degree of freedom present when implementing a given power level
is passed to the external entity. If, for instance, the BESS has 201 possible actions and the CHPP has 2 possible
actions, the external entity would select from a set of 2 · 201 = 402 actions. With a higher number of DERs or
actions this approach leads to a very high number of possible actions. For this reason, in this thesis, the degree of
freedom was eliminated. The surrogate not being able to follow this elimination logic close enough causes a drop
in the share of feasible schedules. In contrast to the simulation model and the surrogate, the MILP is not bound to
this logic, which is the reason for the improved MILP results given in parentheses.

Support vector data description: In most publications using SVDDs for encoding the flexibility of DERs, for
instance, [63, 64, 286, 65, 287], the evaluation is based on the aggregated schedule achieved with the help of
a surrogate-based coordination algorithm. In these coordination algorithms, the SVDD is used for transforming
infeasible load schedules into feasible schedules. Schedule repair is in most cases performed by mapping an
infeasible schedule into the latent feature space, where it is projected onto the SVDD sphere in order to make it
feasible, and then calculating an approximate preimage within the schedule space. As every point on and inside
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Table 5.21: Comparison of new and old state-based simulation results. Listed are the shares of feasible schedules given in [308], and the
values achieved with the random strategy using the state-based simulation approach. The shares evaluated by the MILP are given
in parentheses.

prior work [308] this thesis
Buffer none 2 °C none 2% and 2 °C

BESS 98.30% - 99.61% 100%
CHPP* 95.30% 99.80% 90.08% 100%
Detached family home∗,∗∗ 96.00% 99.10% 81.57% (90.31%) 90.03% (99.67%)

* CHPP restrictions in [308] are less complex
** actions in [308] are easier to disaggregate

the sphere is feasible in regard to the SVDD approximation, the infeasible schedule is turned feasible. For more
information on SVDD and this mechanism, please see Section 2.4.5 and [11]. Since the performance of the repair
mechanism and the coordination algorithm are intertwined, it is not possible to draw direct conclusions about the
SVDD-based approximation performance. Fortunately, a dedicated analysis of the SVDD performance has been
presented in [11]. The results are given in Table 5.22 and Table 5.23.

Table 5.22: Comparison of the classification performance using the state-based simulation and SVDD. All SVDD numbers are taken from [11].

SVDD ANN-based (no buffers)
32 time steps 96 time steps 4 time steps 32 time steps 96 time steps

Electric boiler 98.19% 96.94% - - -
CHPP* 59.65% 99.38% 98.51% 88.77% 68.03%
EVSE - - 98.57% 95.67% 90.66%
Heat pump 86.82% 98.51% - - -
BESS 95.32%** 97.29%** 99.96% 98.85% 95.38%

* SVDD for modulating CHPP and ANN for non-modulating CHPP
** Positive and negative labels interchanged to achieve better results

Bremer [11] presents a very thorough analysis of the SVDD models for an electric boiler, a modulating CHPP, a
heat pump, and a BESS. A modulating CHPP, in contrast to the non-modulating CHPP modeled in this thesis,
offers more than only an on- and off-switch. Instead, the power can be controlled within an interval, which makes
the model more similar to the EVSE model, just with a reversed power flow. Using non-modulating CHPPs in
our papers and this thesis has practical reasons, as the CHPP installed in the HoLL and ESHL are non-modulating
as well. Table 5.22 lists the classification performance achieved when the models are used as classifiers. For
schedules of 32 time steps, the ANN-based surrogates performed better. At 96 time steps, the SVDD showed better
performance. Even though both CHPPs are not directly comparable, due to the similarity to the EVSE model, it can
be assumed that a surrogate of the state-based simulation approach would have performed better for a modulating
CHPP than for the non-modulating CHPP. Regarding the BESS it must be noted that in order to achieve the
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listed SVDD accuracy, it was necessary to interchange the positive and negative classification label. Without this
additional step, around 70% could be reached [11, p. 164].

The only numbers for the reproducibility of schedules generated with the SVDD surrogates provided by Bremer
are for the modulating CHPP and schedules consisting of 8 time steps. Since all values were given in the form of a
graph, Table 5.23 provides only approximate data points, which have been read from the graph. Depending on the
SVDD hyperparameter 𝜎 the results vary strongly. The smaller 𝜎, the more similar an input and a support vector
need to be in order to reach a positive classification result. This means that with a very small 𝜎 the SVDD repair
mechanism approximately returns one of the support vectors, which are known to be feasible. Consequently, the
share of feasible schedules is high, but the diversity may be low, depending on the support vectors. Nevertheless,
the classification performance at 𝜎 = 0.1 is high, which indicates that the available flexibility is captured well with
this parameter choice. In comparison to the 97% classification performance and 100% share of feasible schedules
reached by the SVDD, the state-based simulation reached 91.82% and 98.95% for the non-modulating CHPP, as
well as 96.1% and 79.4% for the EVSE. The performance for a modulating CHPP would probably lie somewhere
in-between. It must be noted that the ANN-based numbers are for schedules of length 24. As the accuracy and
share of feasible schedules generally decreases the longer the schedules become, the results at 8 time steps would
be even better. Furthermore, for generating the listed numbers, no buffers were used during the evaluation.

Table 5.23: Comparison of the state-based simulation and SVDD-based surrogate. All SVDD numbers are taken from [11]

SVDD, CHPP*, 8x15 minutes ANN-based (no buffers), 24x15 minutes
𝜎 = 0.1 𝜎 = 0.2 𝜎 = 0.3 𝜎 = 0.4 CHPP* EVSE

Schedule classification 97% 93% 81% 88% 91.82% 96.14%
Feasible schedules generated 100% 89% 33% 17% 98.95% 79.42%

* SVDD for modulating CHPP and ANN for non-modulating CHPP

Schedules with 96 time steps for modulating CHPPs are evaluated in [69]. The authors achieve feasible rates of
94.34% using a small and 75.21% using a large thermal storage. The worst CHPP and EVSE results achieved
in this thesis are 89.05% and 57.10%. A modulating CHPP can again be expected to lie somewhere within this
range. Overall, the state-based simulation and SVDD approach show similar performances. While the ANNs tend
to outperform the SVDD in short time horizons, the SVDD is slightly ahead for longer schedules. However, a more
thorough comparison with more types of DERs and also identical reference models is required in order to reach a
final conclusion.

Chi-shapes: Chi-shapes are proposed as an alternative to the SVDD-based description in [69]. A chi-shape is
basically a concave hull around a set of points described in the form of a polygon [69]. In contrast to the SVDD-based
approach where the schedule is transformed in the latent feature space, computations for transforming a schedule
from the infeasible to the feasible region are performed directly in the schedule space. However, in the experiments,
the chi-shape approach was outperformed by the SVDD approach. In case of the two modulating CHPPs mentioned
above, the chi-shape approach reached 34.2% and 74.5% feasible schedules instead of the 94.34% and 75.21%
achieved by the SVDD.
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Cascade classification: The last approach in this comparison is the cascade classification introduced in [12]. In
this approach the feasibility of a schedule is judged with the help of a set of classifiers instead of a single one. This
idea is closely related to the use of ANN-based classifiers and the fragmented classification approach derived in
this chapter. Aside from artificial “hypersphere” and “hyper-banana” test sets, schedules from the same modulating
CHPP used in the SVDD evaluations are considered in [12, 67, 66] and [68]. The modulating CHPP is the only
DER considered. All relevant results in [12, 67, 66] and [68] are given in the form of graphs for the TP and TN
rates plotted against the training set size. As some graphs lack detailed markings, the values listed here are by no
means exact. All schedules cover 96 time steps. In [12], the cascade approach reaches a TP rate of around 99%
and a TN rate near 100%. Individual CHPPs are also considered in [66] and [68]. Both papers present the identical
graphs, depicting a TP rate of around 99%. The TN rate is 100%. An ensemble of 5 to 50 CHPPs is considered
in [67]. For this aggregated setting a TP rate of around 99.9% and a TN rate of 100% are reached. All cascade
classifiers have been trained with 15.000 or fewer samples to reach these numbers. The ANNs are trained with
considerably more data. To put these classification rates into context, the state-based simulation reaches TP and
TN rates of 36.1% and 100% for the non-modulating CHPP without buffers. With a 2% buffer the TP rate reaches
92.4%. In case of the EVSE, the TN rate is 100%, too. Without buffers, the TP rate is 81.3% and with a buffer
of 2% it is 81.7%. Given these numbers, it is apparent that the cascade classifier exhibits superior classification
performance. However, neither is the state-based simulation surrogate trained to be a classifier, nor has schedule
generation been tested for the cascade classifier.

5.4 Summary

Surrogate models have the potential to serve as generic descriptions of the flexibility of DERs, which is required in
order to control the associated DERs’ operation. Furthermore, surrogates may be learned in an automated process,
potentially without the need of manual modeling. Depending on the information processed and provided by a
surrogate, it may either remain valid for extended periods of time or needs to be generated newly for each individual
exploitation attempt. In this chapter, several approaches for encoding the flexibility of DERs into surrogate models
have been illustrated, of which none is exclusive to ANNs. The identified approaches either serve the generation
of entire load schedules likely to be feasible or the selection of a use case specific signal. Due to its versatility, the
state-based simulation has been selected in order to establish a baseline for the capabilities of ANN-based surrogate
modeling of the flexibility of DERs.

With the state-based simulation approach high shares of feasible load schedules could be achieved. Especially short
schedules are very likely to be feasible and capture the underlying flexibility well. However, for long schedules and
complex systems, the quality of approximation declines rather quickly. Not only is the share of feasible schedules
falling, but also the coverage of the true flexibility decreasing. Buffers in the form of artificial constraints during
the training and relaxed constraints during the evaluation help to counteract the approximation errors and improve
the results. In order to cover more of the true flexibility, the number of false negatives must be decreased. This
likely results in a decreased share of feasible schedules. Some possible options, like early stopping of the training
process, have been outlined in the discussion.

In comparison with our previous work, the results in this thesis are the best ones achieved yet. Furthermore, the set
of actions has been simplified, which is now handled much easier by the external entity, as the number of options
decreased drastically. The SVDD-based approaches perform similarly well, judging from the classification results
and feasible schedule rates. While the state-based simulation performs better in the short-term, the SVDD does
better in the long-term. However, these rates alone have limited explanatory power concerning the diversity and
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usefulness of the generated schedules. Such a comparison should be conducted based on a practical use case in
the future. In the role of a classifier, the cascade classifier is superior to the state-based simulation. However, the
cascade classifier has not yet been used to generate load schedules. Finally, while all alternative surrogates can be
trained with much fewer data, the ANN-based approaches are the only ones that do not have to be newly generated
each time a description of the flexibility is required. In other words, while the ANN-based surrogate uses the
identical ANNs in each DER state, the SVDD, chi-shape, and cascade classifier surrogates have to be generated
again for each new DER state. Hence, for a test with 100.000 schedules starting each in a different state, like the
classification test presented in this discussion, 100.000 surrogates have to be generated with up to 15.000 training
samples each. The total number of 1.500.000.000 schedules surpasses the several million training samples of the
ANNs by far. Considering this specialization of the alternative surrogate modeling approaches for a given state,
the ANN performance across different states becomes far more impressive.
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Artificial-Neural-Network-Based Surrogate Models

With the objective of reproducing the space of feasible load schedules, the previous chapter established a baseline
for the quality of approximation achievable with ANN-based surrogate modeling. While the trained ANNs may
perform very well in the task of forecasting some particular information, an external entity still needs to be able
to make use of it. The primary goal of this chapter is to assess the ANN-based surrogate modeling approaches
presented in Table 5.1 regarding their usefulness for deriving control signals, either for influencing the general
behavior or directly controlling the operation. The central research question of this chapter is RQ3 “How adequate
are the different ANN-based modeling approaches for controlling schedules of flexibility providers?”. This question
is, like the others, divided into multiple subquestions. The chapter is structured as follows.

RQ3.1 Which criteria can be used for assessing the adequacy of a modeling approach?
Section 6.1 collects and selects criteria from the literature and develops a basic framework for assessing the
different approaches.

RQ3.2 What is the assessment of the individual ANN-based modeling approaches?
With the help of the defined criteria, a qualitative assessment of the approaches found in Table 5.1 is
conducted. In the first step, it is outlined in Section 6.2 how each approach may be used in order to solve
exemplary scheduling tasks. The assessment and its results are then presented in Section 6.3. Afterwards, a
quantitative evaluation of the state-based simulation approach is presented in Section 6.4

Finally, a summary is provided in Section 6.5.

6.1 Criteria for the Assessment

A set of criteria has to be defined first, in order to be able to compare the different surrogate modeling approaches.
Since the approaches do not only provide distinct information, but even serve different general purposes, like the
generation of feasible load schedules or the generation of price profiles (see Table 5.1), the assessment needs
to resort to general criteria. Furthermore, each approach is more or less loosely tied to a specific exploitation
pattern. Therefore, if an exploitation pattern by itself restricts the ability to influence DERs, the surrogate does
as well. Another aspect complicating the assessment is the need for additional algorithms. Surrogate models
provide approximated data. The algorithms built around them determine how well it is put to use. It is therefore
necessary to evaluate each approach in the context of the employed algorithms. For this reason, before any ratings
can be derived, it must at least be outlined how an external entity would identify appropriate control signals with
each individual approach. A quantitative analysis, furthermore, requires the implementation and testing of said
algorithms, which in turn calls for the development of realistic and relevant benchmark environments [288], a topic
that only recently started to gain traction for energy related applications (see [288] and [289], for instance). Since
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a thorough analysis of the different ANN-based surrogate modeling approaches is not possible in the scope of this
thesis, this chapter primarily aims at providing a fundament for future investigations of the topic at hand.

Comparative studies of (new) algorithms can be found quite regularly in the literature, where they are often tested
against other well known algorithms. Conducting such a comparison is also called benchmarking [290]. As the
goal of a benchmarking process is to identify the best algorithms for given optimization problems, it is generally
based upon quantitative analyses using some performance measures [288]. Measures used in such an analysis
rate, for instance, the algorithms’ efficiency, reliability, and solution quality [290]. Efficiency measures include
the number of fundamental evaluations, the running time, as well as the memory usage [290, 291]. An exemplary
measure for reliability is the number of constraint violations [290]. The quality of a solution can be judged by
comparing the time till a given target function value is achieved, or by the function value achieved within a set time
frame [290, 292, 291]. Since it would be necessary to implement each single approach for a quantitative analysis,
only qualitative judgements can be derived within the scope of this thesis. Out of those measures named above,
the efficiency is the most sensible option for which a qualitative analysis can be conducted, since it is possible to
(very) roughly estimate the required computational effort for training and using the required ANN models for each
approach. Reliability and robustness strongly depend on the trained ANNs’ ability to generalize. They can therefore
not be estimated. Regarding the solution quality, it is to be expected that simpler approaches, i.e., approaches that
reveal fewer options to influence the operation of DERs, are approximated better since all evaluations are faster
and fewer operational options have to be considered. Within the boundaries of such a simple approach with less
complex ANNs, it is therefore easier to find the best or a near optimal solution. However, due to the more limited
options of influencing the DERs, the truly optimal solution may not be achievable in the simplified model. This
illustrates the difficulty of comparing surrogate modeling approaches.

The main challenge in identifying qualitative criteria is the strong dependence on the specific use case. In a certain
sense the task of comparing surrogate modeling approaches is similar to the task of comparing meta-heuristics
themselves. Meta-heuristics, such as evolutionary algorithms and simulated annealing, are black-box optimization
strategies [293] (see also Section 2.5). They provide general frameworks for implementing heuristics for arbitrary
optimization problems. Nevertheless, when a meta-heuristic is implemented, at least some adaptations are advised
in oder to incorporate problem-specific knowledge (see [293]). Wolpert and Macready [293] show with their “no
free lunch” theorems that no optimization strategy universally outperforms every other strategy. Similar to the
topic of surrogate modeling, there is a dependence on the considered use case and problem-specific adaptations.
As a consequence, comparing the achieved results for a given type of problem alone is not sufficient to derive
general conclusions. Instead, many problems [293] and, for a given problem, problem instances [294] should
be investigated in order to rate each approach quantitatively. The literature proposes a variety of measures to
compare meta-heuristics, including the general applicability [295, 296], efficiency [295, 296], effectiveness [296],
user-friendliness [295, 296], and many similar ones (see for instance [296]). Most of these criteria are not directly
applicable here, since the individual surrogate modeling approaches serve different purposes and the measures are
often quantitative. Out of the identified measures, the most fitting criteria for a qualitative analysis of the modeling
approaches could be the general applicability, as well as, once again, the (estimated) efficiency in terms of the
required computational effort.

A qualitative comparison of software frameworks for meta-heuristics is presented in [297]. However, the assessment
is based on implementation specifics, such as the supported stopping criteria and functions for importing and
exporting data, and other general features.

In summary, in order to conduct the assessment, the optimization procedures for each approach must be outlined
first. The outlined procedures can be seen as templates for future implementations. Once the procedures are
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defined, the complexity (as opposed to the efficiency) in terms of the computational effort can be rated qualitatively.
Since both, flexibility provider and external entity, are involved in this process, individual ratings can be assigned.
The complexity rating can be derived by looking at the structure of the associated ANNs, the dimensions of the
possible input and output vectors, as well as the size of the search space, which all influence the time required
to train a model and to identify possible solutions using a trained model. These parameters are, in turn, strongly
dependent on the considered time horizon in time steps. The more time steps are considered, the larger the space
of feasible schedules grows. Regarding the number of time steps, it is also important to consider whether the time
horizon is fixed or not, and if it is limited by the surrogate. While some approaches can handle varying horizons,
others can not. Another aspect relevant to DSM is the scalability of an approach. External entities like aggregators
or grid operators usually intend to make use of large numbers of DERs. Even though surrogates have the ability to
aggregate many DERs, as the previous chapter shows, there is the need to handle many surrogates in parallel and
coordinate the solution finding processes. For this reason, qualitative ratings for the scalability are derived in the
context of the outlined optimization procedures and the general applicability is discussed. It is assumed that all
data needed for training the ANNs is freely available.

The assessment is concluded with a quantitative analysis of the state-based simulation approach presented in
Section 6.4. It shows the performance in comparison to an SVDD-based model and an analysis using the same
criteria applied in Chapter 5.

6.2 Optimizing with Artificial Neural Network Based Surrogates

While the basic functionality and usage patterns of the different surrogate modeling approaches are outlined in
Section 5.2, the question of how to make the best use out of the data provided by the surrogates has not been
addressed yet. For the sake of comprehensibility, it is assumed the following two optimization problems need to be
solved by the external entity:

Problem I, following an aggregated target schedule:

min
𝑎𝑖

0:𝑇−1 ,𝑖=1,2...,𝑁

1
2

�̄� − 𝑁∑︁
𝑖=1
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2

2

s.t. 𝑎𝑖0:𝑇 −1 ∈ M𝑖 (𝑠𝑖0), 𝑖 = 1, 2, . . . , 𝑁

Number of flexibility providers 𝑁

Length of schedules 𝑇

Target schedule �̄� ∈ R𝑇

Schedule of flexibility provider 𝑖 𝑎𝑖0:𝑇 −1 = (𝑎𝑖0, 𝑎
𝑖
1, . . . , 𝑎

𝑖
𝑇 −1) ∈ R

𝑇

Set of feasible schedules in state 𝑠𝑖0 M𝑖 (𝑠𝑖0) ⊂ R
𝑇
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Problem II, restricting the aggregated load at time 𝜏 < 𝑇 :

min
𝑎𝑖
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Length of schedules 𝑇

Cost of requesting a given schedule 𝑐(·)
Boundaries for the aggregated load 𝑏, �̄�

Schedule of flexibility provider 𝑖 𝑎𝑖0:𝑇 −1 = (𝑎𝑖0, 𝑎
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1, . . . , 𝑎

𝑖
𝑇 −1) ∈ R

𝑇

Set of feasible schedules in state 𝑠𝑖0 M𝑖 (𝑠𝑖0) ⊂ R
𝑇

The objective of the first optimization problem is to minimize the distance between the aggregated load of all
involved flexibility providers and a given target schedule. This kind of problem has, for instance, been considered
in [11]. The second optimization problem minimizes costs while restricting the aggregated load at time step 𝜏
to stay within given boundaries. Only a few surrogates discussed in this thesis provide information about costs.
It is therefore assumed that flexibility providers and external entities close contracts in which they specify how
the providers should be compensated. The cost is then calculated accordingly. Since the true sets of feasible
schedulesM𝑖 (𝑠𝑖0) are unknown to the external entity, the schedules 𝑎𝑖0:𝑇 −1 are selected from sets M̂𝑖 (𝑠𝑖0) consisting
of elements, i.e., load schedules, sampled with the help of the surrogates. Given that the surrogates are approximate
models, some elements of M̂𝑖 (𝑠𝑖0) may lie outside of M𝑖 (𝑠𝑖0). As pointed out earlier in this thesis, if necessary,
additional communication steps could be added in the exploitation process to ensure feasibility.

In general, if a surrogate can be used to derive either feasible load schedules or realizable signals for influencing
DERs, simply generating a set of (random) feasible options and selecting the best one via a binary optimization
problem is always possible (as proposed in [313, 312]). It is, however, apparent that a purely random choice is
only suitable when the space of feasible schedules is small or the optimized target is only loosely depending on the
exact load schedule. Whenever the search space is too large, a systematic rather than a purely random approach
for generating feasible options should be used. To see this, consider trying to solve an optimization problem by
simply drawing random points. The resulting set of points provides the options to choose from. The larger the set
of admissible points grows, the smaller the chance of drawing a point even close to the optimum. Hence, a more
systematic approach should generally yield better results. If, on the other hand, the set of optimal points is very
large, drawing points randomly may still suffice. In terms of load schedules this is the case, when the exact load is
only relevant at a few points in time, for instance if only the maximum load is of interest (and costs are secondary).
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Table 6.1: Challenges associated with the individual surrogate modeling approaches and possible solutions. Most challenges are faced by the external entity (ExEn) who
wants to make use of the flexibility offered by each flexibility provider (FlPr).

Surrogate Challenge Faced by Proposed solution
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n
Generation

Mapping from representation to load schedule FlPr May be learned, see [298]

Generic crossover and/or mutation functionality
ExEn May be learned, see [266]
ExEn Generic algorithms without problem-specific knowledge

State-based simulation Selection of good actions ExEn Reinforcement learning

Repair
Consistent mechanism for schedule repair FlPr Stepwise correction
Finding good schedule for each FlPr ExEn Heuristics determining desirable reference schedules, see [11]

Fragmented classification Selection of good actions ExEn Perform stepwise repair with surrogate and use solution for repair approach

Classification
Identifying feasible schedules as input ExEn Backpropagation to the input

Finding good schedule for each FlPr
ExEn Heuristics determining desirable reference schedules
ExEn (Binary optimization using derived sets of schedules)

Identifying feasible schedules as input ExEn Backpropagation to the input
ExEn Heuristics determining desirable reference schedulesCost evaluation

Finding good schedule for each FlPr
ExEn (Binary optimization using derived sets of schedules)

Si
gn

al
se

le
ct

io
n

Tariff outcome
Finding a good input for a single FlPr

ExEn Backpropagation to the input
ExEn Heuristics inspired by black-box optimization

Finding good inputs for each FlPr ExEn Heuristics inspired by black-box optimization
Request outcome Identifying suitable requests for each FlPr ExEn Binary optimization using derived sets of options
Constraint outcome Identifying suitable requests for each FlPr ExEn Binary optimization using derived sets of options

ExEn Backpropagation to the input
Finding a good input for a single FlPr

ExEn Heuristics inspired by black-box optimizationDeception outcome
Finding good inputs for each FlPr ExEn Heuristics inspired by black-box optimization
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Table 6.1 summarizes the various challenges to overcome in order to derive signals with the help of each surrogate
and proposes solutions. For some challenges two alternatives are listed. In the following, the individual approaches
are discussed one by one. It is important to keep in mind, this is a purely theoretical analysis and the stated solutions
are merely propositions.

Generation: For learning a mapping 𝑎0:𝑇 −1 = 𝑔(𝑧, 𝑠0) from an abstract representation 𝑧 to a load schedule
𝑎0:𝑇 −1 = (𝑎0, 𝑎1, . . . , 𝑎𝑇 −1) in the given state 𝑠0, there either needs to be an existing mapping to learn from, or a
new one needs to be developed first. If the respective flexibility provider makes use of evolutionary algorithms,
such a mapping is already available. If not, one must be created, which is a process requiring in-depth knowledge
and experience if done by hand. However, there are approaches to automate this process via machine learning
(e.g., [298]). As the composition of DERs varies and the learning process creating the mappings is influenced
by randomness, each flexibility provider 𝑖 transmits their own specific mapping 𝑔𝑖 (𝑧, 𝑠0) to the external entity, all
with different representations 𝑧. While it would be possible to use these mappings for generating load schedules
by simply passing random inputs 𝑧, the provided functionality suggests utilizing the mapping in an evolutionary
algorithm. In theory, by combining the representation (or genotype) 𝑧 of multiple flexibility providers to a new
individual 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑁 ) and computing the load schedule 𝑎0:𝑇 −1 =

∑𝑁
𝑖=1 𝑔

𝑖 (𝑧𝑖 , 𝑠𝑖0), their joint operation can
be optimized with an evolutionary algorithm. The target function of optimization Problem I simply changes to

1
2

�̄� − 𝑁∑︁
𝑖=1

𝑔𝑖 (𝑧𝑖 , 𝑠𝑖0)
2

2

.

In optimization Problem II, the constraint changes to

𝑏 ≤ 𝑎𝜏 ≤ �̄�.

Given the different mapping 𝑔𝑖 (𝑧𝑖 , 𝑠𝑖0) for each flexibility provider, adapting mutation and crossover functionality for
different combinations of flexibility providers seems very resource intensive. Hence, either should these functions
be generic or learned in an automated way (e.g., [266]).

State-based simulation: In the state-based simulation, the surrogate consists of two parts, a classifier identifying
feasible actions and a predictor estimating the state after performing a given action. The challenge is to decide
which action (=power) to choose at each time step. In other words, the problem at hand is to find a good policy
𝜋(𝑎 |𝑠) specifying the probability of selecting action 𝑎 in state 𝑠. Identifying such a policy is the goal of RL. The
utilization of RL in order to solve this challenge therefore suggests itself. For a brief introduction to RL please see
the Section 2.5.8. The implementation options are not limited to ANNs, learning classifier systems are another
popular approach in RL [54, p.19], which could be applied. In the RL framework, policies are rated based on
the expected rewards 𝑟 (𝑠𝑡 , 𝑎𝑡 ) accumulated over time. Hence, in order to solve the two optimization problems
considered here, the target function must be expressed as total reward

∑𝑇 −1
𝑡=0 𝑟 (𝑠𝑡 , 𝑎𝑡 ).

In case of Problem I this is simple, as ‖𝑥‖2
2 =

∑
𝑘 𝑥

2
𝑘

can be separated into individual terms. By selecting
𝑟 (𝑠𝑡 , 𝑎𝑡 ) = − (�̄�𝑡−𝑎𝑡 )2

2 , the negated target function is exactly replicated. The function is negated since rewards
are maximized, and maximizing the negative deviation yields the identical, minimal solution only with the target
function value being negated. For optimizing the aggregated schedule, all flexibility providers must be considered
simultaneously. This means that the global state 𝑠𝑡 = (𝑠1𝑡 , 𝑠2𝑡 . . . , 𝑠𝑁𝑡 ) is composed of all individual states, and
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the action 𝑎𝑡 = (𝑎1
𝑡 , 𝑎

2
𝑡 , . . . 𝑎

𝑁
𝑡 ), which is selected with the help of the policy 𝜋(𝑎 |𝑠), is a vector comprising all

individual actions. Therefore, the reward function is

𝑟 (𝑠𝑡 , 𝑎𝑡 ) = −
(�̄�𝑡 −

∑𝑁
𝑖=1 𝑎

𝑖
𝑡 )2

2
.

With the states 𝑠𝑖𝑡 provided by the surrogates and the reward function defined, all theoretical prerequisites for
applying RL are satisfied. However, the feasibility of actions has not yet been considered. Probably the simplest
way to make use of the information provided by the surrogates’ action classifiers is separately checking if the
selected actions 𝑎𝑡 ∼ 𝜋(𝑎 |𝑠𝑡 ) are feasible and selecting the closest feasible actions, i.e., power levels, instead if
they are not (compare post-posed shielding in RL [299]). Alternatively, if the state transition model itself is able
to perform this correction and output the corrected result, a classifier is not needed at all. Either way, the corrected
action is passed to the reward function instead of the infeasible one.

As outlined in the fundamentals, RL provides many options for learning policies. Model-based RL methods are
especially promising, if the state transition ANN given by the surrogate can directly be integrated into the gradient
computation for deriving policy updates. If ANN-based RL is applied, the result is a trained ANN that can be used
to determine which actions should be taken in response to given states. In this case, determining actions is very
easy once a policy function has been trained. It is furthermore possible to improve the policy during operation.
Problem II can be solved similarly, by adapting the rewards to consider costs instead and by further restricting the
action selection. In contrast to the first optimization problem, the aggregated action is part of a constraint. Should
the aggregated load in time step 𝜏 not satisfy the constraints 𝑏 ≤ ∑𝑁

𝑖=1 𝑎
𝑖
𝜏 ≤ �̄�, a valid combination of actions

needs to be identified and used instead. To avoid having to train an individual policy for each combination of 𝜏 and
constraints 𝑏, �̄�, these three parameters could be added to the state vector.

Repair: Teaching an ANN how to repair infeasible load schedules, so that it transforms them into feasible ones, is
a nontrivial task. The first issue arising in this process is the question of how the intended repair should be achieved.
Consider an empty BESS with a capacity of 10 kWh and the schedule 𝑎0:3 = (1, 10, 2, 1), where each element
is the charging power in kW consumed over the period of one hour, for example. When neglecting efficiency,
SOC dependent behavior, and similar factors, it is apparent that the schedule is infeasible, as it adds up to a total
of 14 kWh to be stored. One possibility to fix this schedule would be to cut back the biggest load (1, 6, 2, 1).
Alternatively, the loads could be scaled 10

14 · (1, 10, 2, 1). The schedule could also be traversed chronologically
replacing the values step by step with the closest feasible power, resulting in (1, 9, 0, 0), as 9 kWh free capacity
are left in step two and afterwards the BESS is full. Even in this simple example, there are countless possibilities
to fix this schedule. In [312] we attempted to repair load schedules by finding the closest feasible schedule with
the help of a MILP. However, depending on the metric for determining the distance between schedules, there may
be many good or even optimal solutions. Take the MAE, for instance. All three schedules given in the example
above have an MAE of 4

4 = 1. Hence, any of these schedules could be the solution of the MILP. Furthermore, with
parameters like the optimality gap, time limits, and potential random effects due to parallelization, even with the
identical input, different repaired solutions may be found by the MILP. For an ANN, in order to learn a meaningful
relation between input and output, it must be present in the training data. Like the results in [312] indicate, this
is not necessarily the case with schedules repaired by a MILP. One way to deal with this problem could be to
measure distances with other metrics that give a more clear solution, if existent. Another option, which is also the
proposed solution found in Table 6.1, is to stick to the chronological step by step repair. This method of repair
always produces the identical output for a given input. Once a well performing surrogate for the repair task is
available, there are different options to solve optimization problems.
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Bremer [11] demonstrates how different heuristics, namely particle swarm optimization (PSO), artificial bee colony,
and harmony search, can be combined with such a schedule repair approach. The integration is achieved by running
the algorithm on the space of all schedules, which comprises all feasible and infeasible schedules, and doing a repair
whenever a point needs to be evaluated. In the case of PSO, as an example, this means that the particles can freely
move within a hypercube, but are mapped individually to feasible schedules only for the purpose of evaluating the
target function value at the given location. If a combination of 𝑁 flexibility providers needs to be evaluated, like in
Problem I, the dimension of the search space grows from 𝑇 to 𝑇 × 𝑁 . In the PSO example, each particle therefore
consists of 𝑁 schedules of length 𝑇 , which are repaired individually with the help of the respective surrogate.
Hence, all 𝑁 schedules must be processed with their associated surrogate every time a target function value is
computed. Aside from using these meta-heuristics, Bremer proposes a repair-based heuristic for the decentralized
coordination, which aims to solve Problem I without repairing all 𝑁 schedules every single iteration. The heuristic
repeatedly selects one flexibility provider at a time, who then greedily determines the a good schedule to follow
while ignoring all constraints. In case of Problem I, the best schedule would be the difference between the target
and the current aggregated schedule of all other flexibility providers, i.e., its own schedule not included. If the
flexibility provider was able to follow this greedy solution, the sum of all schedules would exactly meet the target.
However, the resulting greedy schedule is generally not feasible, hence, a repair is conducted before updating the
own schedule accordingly. Until some stopping criterion is reached, this process is repeated. To solve Problem II,
in addition to determining a desirable (greedy) schedule, it is necessary to check if the aggregated schedules do not
exceed the given boundaries in time step 𝜏. If they do, the only option is to continue until at least one admissible
combination is found. While it could help to pass only schedules to the repair function that already satisfy the given
bounds, there is no guarantee that the repaired schedule will do as well.

Fragmented classification: The fragmented classification makes use of one or multiple ANNs to predict whether
a schedule 𝑎0:𝑡−1 = (𝑎0, 𝑎1, . . . , 𝑎𝑡−1) of length 𝑡 is feasible 𝑓 (𝑎0:𝑡−1) = 1 or not 𝑓 (𝑎0:𝑡−1) = 0. In contrast to
the state-based simulation with its dedicated model for identifying feasible load levels for each time step, the
fragmented classification provides this information only indirectly. Starting with a schedule 𝑎0:0 = (𝑎0) of length
one, the classifier can be used to find all feasible loads 𝑎0 by simply testing each 𝑓 ((𝑎0)). With the help of
frameworks like TensorFlow and PyTorch, all these classifications can easily be parallelized by passing batched
inputs to the ANNs. Afterwards, 𝑎0 can be selected from the identified admissible options. Since a schedule only
becomes infeasible once an infeasible power is appended, the same process can be repeated for 𝑎𝑡 by computing
𝑓 (𝑎0:𝑡 ) = 𝑓 ((𝑎0, 𝑎1, . . . , 𝑎𝑡 )) until length 𝑇 is reached, that is, until 𝑡 = 𝑇 − 1. Identifying and selecting actions is
thus the main challenge associated with this approach. However, the previously proposed solution of applying RL
for this kind of problem is not directly applicable here, as the state of each time step is a required policy input. While
the initial state is made available by the flexibility provider, all subsequent states are unknown, as the classifiers do
not provide the predicted state.

One possibility to deal with this issue could be the augmentation of the state vector, adding the selected loads one
by one, but this would require the RL model to learn even more about the DERs’ dynamics. For this reason another
solution is proposed: given the surrogate performs well in the classification task, the approach can be used to make
step by step repairs of load schedules. For a desired schedule �̄�0:𝑇 −1 = (�̄�0, �̄�1, . . . , �̄�𝑇 −1), the repaired schedule
�̃�0:𝑇 −1 is built by selecting the admissible action closest to the given target in each time step. In the first step, �̄�0
can be tested by computing 𝑓 ((�̄�0)). If it is feasible, that is, 𝑓 ((�̄�0)) = 1, we have �̃�0:0 = (�̄�0). If it isn’t, the
closest feasible 𝑎0 is searched and �̃�0:0 = (𝑎0). Repeating this process for �̄�1, �̄�2 and so on, yields the repaired
schedule. With the help of this repair mechanism, the same approaches described for the schedule repair surrogate
are applicable.
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Classification: Identifying feasible load schedules 𝑎0:𝑇 −1 using only a classifier 𝑓 (𝑎0:𝑇 −1) is rather challenging,
as feasible schedules only make up a small fraction of the space of all schedules [11]. Providing external entities with
further information to make the search process easier is conceivable, but would probably require a lot of additional
knowledge. Backpropagation, which is a fundamental mechanism used for updating the weights of an ANN, could
be a possible solution to deal with this issue without the need for extra data. In a typical backpropagation step,
the ANN input is a fixed function argument and the weights are updated according to the gradients computed by
determining the derivative of the loss function with respect to the weights. However, it is possible to compute the
derivative with respect to the input vector instead, while, this time, the weights remain fixed. The classifier’s rating
𝑓 (𝑎0:𝑇 −1) ∈ [0, 1] indicates the confidence for a schedule to be feasible. A higher value means a stronger belief.
As gradients always point in direction of the steepest ascent, the gradient ∇𝑎0:𝑇−1 𝑓 (𝑎0:𝑇 −1) points in direction of
supposed feasibility. It therefore provides an indication of how an infeasible input should be updated to improve
the rating. By repeated updates, the schedule could be transformed step by step until it is supposedly feasible, that
is, until a given threshold for the rating is exceeded. Performing such a procedure multiple times with different
starting inputs and different step sizes for the gradient steps, could yield a set of feasible schedules. Whether this
proposed procedure is efficient and results in diverse load schedules or not remains to be seen. While this, again,
can be seen as a repair mechanism, it is to be expected to need even more computational resources, because of the
repeated gradient computations. Therefore, the methods proposed for the repairing approach that require frequent
schedule repairs are not entirely deemed suitable. The distributed coordination approach presented in [11] and
outlined above, on the other hand, performs fewer repairs by determining a desired schedule for every flexibility
provider and repairing this schedule in hope of it being similar to the desired one. Such an approach could still
be applicable for the exemplary Problem I and Problem II, even though more computations are needed with the
backpropagation steps.

Cost evaluation: Predicting the cost 𝑓 (𝑎0:𝑇 −1) of realizing a schedule 𝑎0:𝑇 −1 is somewhat related to predicting a
schedule’s feasibility. The cost 𝑓 (𝑎0:𝑇 −1) is not to be confused with the cost 𝑐(𝑎0:𝑇 −1) found in the target function
of Problem II. While 𝑐(𝑎0:𝑇 −1) is the cost paid by the external entity for requesting schedule 𝑎0:𝑇 −1, 𝑓 (𝑎0:𝑇 −1) is the
operational cost faced by the flexibility provider for following said schedule. In order for the ANN output 𝑓 (𝑎0:𝑇 −1)
to be meaningful, it is generally not sufficient to train with feasible schedules alone. As pointed out before, there
are relatively few feasible schedules is the space of all schedules R𝑇 . Hence, training with only feasible samples,
the ANN output would be unpredictable for infeasible regions. By associating infeasible schedules with very high
costs, that is, 𝑓 (𝑎0:𝑇 −1) = M, like the penalty function method does, it is possible to distinguish between valid
and invalid ones. Therefore, given a trained ANN capable of fulfilling this prediction task, the same solution as
proposed for the classification approach can be applied. Since a smaller cost instead of a larger rating indicates
feasibility, here, the gradient needs to be subtracted instead of added. Furthermore, with this surrogate, there is the
added benefit of having cost estimates at hand. For instance, if the planned schedule �̄�0:𝑇 −1 is known, the cost of
deviating could be estimated by computing 𝑐(𝑎0:𝑇 −1) = 𝑓 (𝑎0:𝑇 −1) − 𝑓 (�̄�0:𝑇 −1).

Tariff outcome: The trained ANN in this approach provides the expected schedule 𝑎0:𝑇 −1 = 𝑓 (𝑐0:𝑇 −1) as a
response to a tariff 𝑐0:𝑇 −1 = (𝑐0, 𝑐1, . . . , 𝑐𝑇 −1) given as input. Using backpropagation as described above, it could
be possible to derive tariffs incentivizing a flexibility provider in such a way that they exactly produce a desired
schedule ¯𝑎0:𝑇 −1. Alternatively, a tariff could be searched by performing systematic adaptations until a target is
approximated close enough. The field of black-box optimization could provide approaches to implement such a
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systematic search algorithm (see Section 2.5.5 for further information on black-box optimization). For Problem I,
when adding the surrogate, the target function value is

𝑧 =
1
2

�̄� − 𝑁∑︁
𝑖=1

𝑓 (𝑐𝑖0:𝑇 −1)
2

2

.

Aside from the surrogate 𝑓 (·) being only part of the objective rather than the objective itself, the objective function
can still be treated as a black-box. For Problem I and Problem II, the external entity is only indirectly searching
𝑎𝑖0:𝑇 −1 ∈ M𝑖 (𝑠𝑖0), 𝑖 = 1, 2, . . . , 𝑁 by trying to identify tariffs 𝑐𝑖0:𝑇 −1 ∈ R𝑇 , 𝑖 = 1, 2, . . . , 𝑁 . The target function of
Problem II changes analogously and becomes

𝑁∑︁
𝑖=1

𝑐(𝑐𝑖0:𝑇 −1).

Tariffs pose as an incentive to change the planned schedule of DERs and, thus, only allow to influence their
operation. Flexibility providers are free to change their plans at any time. Because of this, there is no guarantee
that a predicted solution for Problem I or Problem II plays out as planned. Nevertheless, as in Problem II only the
load 𝑎𝜏 in time step 𝜏 is relevant, the problem is much easier to solve reliably than Problem I.

Request outcome and constraint outcome: These two surrogate modeling approaches are very similar to each
other. Both predict the fulfillment of a given request or constraint by providing an estimate of the duration it can be
satisfied. As outlined before, further outputs could provide additional information on the change in consumed or
produced energy and possible rebound effects. The major difference between the two is that the former approach
requests a defined change in load, while the latter one only imposes constraints and leaves the exact change in load
up to the flexibility provider. In comparison to the other surrogate modeling approaches discussed here, the two
approaches possess rather limited functionality and are only suited to influence the operation of DERs for a limited
time. Therefore, they are not proper options for solving Problem I. Problem II, on the other hand, is perfectly
solvable. Instead of searching 𝑎𝑖0:𝑇 −1 ∈ M𝑖 (𝑠𝑖0), 𝑖 = 1, 2, . . . , 𝑁 , the external entity now searches the load difference
Δ𝑎𝑖𝜏 ∈ M𝑖 (𝑠𝑖𝜏), 𝑖 = 1, 2, . . . , 𝑁 (request outcome) or checks beforehand whether the bounds 𝑏 and �̄� can be satisfied
or not (constraint outcome). The base load �̄�𝑖0:𝑇 −1, which is required to compute the resulting load

∑𝑁
𝑖=1 �̄�

𝑖
𝜏 + Δ𝑎𝑖𝜏

in time step 𝜏, and the predicted state 𝑠𝑖𝜏 are provided by the flexibility provider 𝑖. Due to the limited use of the
surrogates, the space of possible input combinations is comparatively small. It is hence possible to simply evaluate
every desirable option and pick the best combinations for the different flexibility providers.

Deception outcome: This approach is based on the manipulation of environmental state variables, which are sent
to the flexibility providers in order to deceive them and incentivize a change in their behavior. These environmental
variables are an input for the ANN, which in turn predicts the resulting schedule. Basically this approach is a
generalization of the tariff outcome approach. Instead of a tariff, which could also be interpreted as part of the
environmental state, some other variable is passed. For this reason, the identical solutions are proposed.
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6.3 Qualitative Assessment

Now, with the optimization approaches outlined in the previous section, a qualitative evaluation can be conducted.
The criteria comprise the adaptability of the time horizon, the complexity of implementing and using the surrogate
modeling approach, as well as its scalability. Complexity, in this context, refers to the required amount of
computational resources. All results are compiled in Table 6.2. Independent of the model, a longer time horizon
can be achieved by either increasing the number of time steps, or increasing the length of a time step. Usually the
length of a time step is a fixed parameter. If it was changed during operation, new surrogates would have to be
trained, regardless of the surrogate modeling approach. Increasing the number of time steps, on the other hand,
adds more dimensions to the space of load schedules, which in turn makes training and using the model more
demanding. While each trained ANN takes a fixed number of inputs for computing a fixed number of outputs,
some models are applicable for load schedules of variable lengths and others are not. For each surrogate, it is
therefore distinguished if it operates on a fixed or a flexible number of time steps. Also, by design, some surrogates
can only cover short periods of time. Whether they are only applicable for short time horizons or not, is indicated
by the labels “short” and “any”, respectively. For complexity and scalability, the ratings low (L), medium (M),
and high (H) are assigned. While a high scalability is generally a good feature, a high complexity is not. The
complexity is not rated for the overall approach, but for three separate steps of the exploitation process: firstly,
the generation of the surrogate itself by each flexibility provider. Secondly, the training of models by the external
entity needed for the proposed solution method. Lastly, the exploitation with the help of the surrogate, that is, the
external entity’s search for the best signals to send to the flexibility providers. Based on these complexity ratings,
the overall scalability is judged. Please note that even though arguments for all judgement are provided, the ratings
are based on very general assumptions and are (inevitably) to some degree subjective.

Table 6.2: Qualitative assessment of the suitability to control DERs. In case of being applicable for “any” time horizon, a surrogate modeling
approach is rated with a long horizon, e.g., 96 quarter hours, in mind. A short time horizon is, for instance, a single hour and
comprises only few time steps. Complexity refers to the required amount of computational resources. Possible ratings are low (L),
medium (M), and high (H). Providing a rating for the deception outcome approach is not possible without making further assumptions.

Surrogate Time horizon Complexity Scalability
Training FlPr Training ExEn Exploitation

Sc
he

du
le

ge
ne

ra
tio

n

Generation fixed any M/H (H) M M
State-based simulation flexible any H H L M
Repair (fixed) any M M H
Fragmented classification (flexible) any M/H M/H M
Classification fixed any L H L
Cost evaluation fixed any M H L

Si
gn

al
se

le
ct

io
n

Tariff outcome fixed any M M M
Request outcome flexible short L L H
Constraint outcome flexible short L L H
Deception outcome * * * * * *
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The surrogate of the generation approach takes the state, as well as an abstract load schedule representation as an
input and computes the associated load schedule. This load schedule has a fixed size, as the number of output
neurons is fixed. If an RNN is used, the number is flexible, but this also requires a representation able to scale
in length. The number of output neurons and thereby the schedule length can freely be chosen prior to training.
Hence, the approach is theoretically applicable for any time horizon. In practice, the associated computational
requirements limit the number of time steps, which is also true for all other ANN-based surrogate modeling
approaches. The surrogate is trained by the flexibility provider, either using data gathered from an already existing
EA implementation, or by automatically generating a new mapping by means of machine learning. A medium to
high complexity rating has been assigned for this step, as multidimensional inputs are mapped to multidimensional
outputs, and the task of creating such a mapping for an EA requires the ability to abstract. If an external entity
achieves the transformation of representations with the help of custom learned models, instead of using generic
functions able to handle generic representations as inputs, the associated models must be learned. This involves,
again, the learning of mappings from multidimensional to multidimensional vectors, and must be repeated for any
combination of flexibility providers to optimize them collectively. Therefore, a high complexity rating has been
chosen. For the exploitation, an EA is executed, a meta-heuristic often able to perform well with comparatively
small computational resources. However, the usage of ANNs in one or multiple EA steps highly intensifies the
computational complexity, which is the reasoning for the assigned medium rating. Taking all these ratings into
consideration, scalability has been rated medium as well, since the EA can be expected to scale well with the
number of flexibility providers (see for instance [300] which tests different EAs, a PSO algorithm, and a scatter
search algorithm on problems with scalable numbers of variables), but the burden of the ANN computations is
added.

The second listed surrogate modeling approach is the state-based simulation. Since the state transition model is
used like an RNN, creating load schedules by adding one element after another, schedules of any length can be
created. This versatility comes at the cost of needing increasingly precise models with growing schedule length,
as the errors introduced with each transition add up. Furthermore, not only a state transition model needs to be
trained, but also a classifier. For this reason, a high complexity rating has been chosen. The proposed solution for
deriving signals is RL, which involves the learning of a policy. While such a policy can be learned from scratch and
improved during the operation, it is reasonable for an external entity to train a basic policy beforehand. In order to
train the policy, a very large number of ANN computations is required. Therefore, a high rating was given. During
exploitation, with a trained policy at hand, the remaining effort is low, as the policy provides the action to choose
for a given state. Even though the exploitation has been rated low complexity, scalability is deemed only medium
as the training for both, the flexibility provider and the external entity, is quite resource intensive. One factor is the
increasing size of the state vector with each additional flexibility provider. A possible way to deal with this issue is
to make use of an autoencoder, like proposed in [113]. For all remaining surrogate modeling approaches, there is
no need for the external entity to train ANNs.

Next is the repair approach. It returns a (likely) feasible schedule, given a potentially infeasible one. If the
underlying repair mechanism works step by step, an RNN could be used, allowing the application for any time
horizon. When no RNN is used, the number of time steps in the schedule is fixed, but can be chosen arbitrarily before
training the model. In this approach one ANN is trained, mapping multidimensional inputs to multidimensional
outputs, which is rated medium complexity. The exploitation is rated likewise, as the proposed heuristic involves
repeated updates of the load schedules. In contrast to the generation approach a high rating has been selected for
the scalability, since no additional ANNs or generic transformation functions are needed.

Schedules of variable length are classified in the fragmented classification approach. Hence, the time horizon is
flexible, but may be bounded, depending on the trained ANN’s topology. Prior to training, any time horizon may be
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selected. Even though the ANN only needs to learn a mapping from multiple to a single dimension, the complexity
has been classified as medium to high. The reason is that either the ANN must be able to handle schedule inputs
of varying length, or individual ANNs for each schedule length up to 𝑇 must be trained. In the first case, the
classification task becomes more complex, as the ANN essentially needs to learn a complete flexibility model to
reenact every step of the schedule. The latter variant requires the training of many ANNs, where the sheer number
of ANNs leads to a high complexity for a large time horizon 𝑇 . As for the exploitation it is proposed to use the
classifier to repair schedules step by step, the remaining ratings are based on those given to the repair approach. In
contrast to the repairing ANN, which directly yields the repaired schedule, the classifiers must be used many times
in order to repair a single schedule, one value after another. Hence, the exploitation complexity is medium to high,
and the scalability is only medium.

The classification and cost evaluation approaches are very similar to each other. They take a fixed input comprising
the state and a schedule, and provide either a feasibility rating or the estimated cost for the given schedule. The
length of the schedule passed to the ANN is generally fixed with an arbitrary number of time steps. Using an RNN
is conceivable and would lead to flexible time horizons, but would yield the fragmented classification approach
instead of the classifier. Since the cost of realizing a schedule includes the information whether a schedule is
feasible or not, the cost predicting ANN is facing the more difficult task. Hence, the classifier is rated low and the
cost predictor medium complexity. The identified exploitation strategy for both surrogates requires the repeated use
of gradient descent algorithms, and is therefore very costly, leading to a high complexity score. Scalability is thus
deemed low.

In the tariff outcome approach, load schedules are influenced by adapting price profiles. The surrogate predicts
schedules from price profiles, both with the same arbitrary but fixed length. Since a price change in one time
step affects the resulting load of other time steps as well, the whole schedule must be computed all at once. The
task involves mapping a multidimensional input to a multidimensional output and is therefore rated with a medium
complexity. From a general perspective, the set of possible tariffs is huge, but in practice it would be limited by
certain constraints, for instance, minimum and maximum prices, or a given fixed average (e.g., [5]). It is furthermore
possible to discretize the price levels appearing in the price profile, as price differences between time steps must be
large enough to compensate for efficiency losses. Take, for instance, a BESS with a 0.92% round-trip efficiency and
assume it could be charged from the grid at a cost of 25 cents per kWh. This would only be economical if at a later
time step energy is more expensive or can be fed into the grid for more than 25

0.92 = 27.17 cents per kWh. Hence,
minor price variations in a price profile, lead to minor schedule changes at most. For the exploitation, heuristics
based on black-box optimization techniques have been proposed as main solution. Taking the less, but still large
input space into account a medium rating has been selected for the complexity and scalability.

The request outcome and constraint outcome approaches both share the same ratings, as they are very similar in
their use: Both surrogates estimate the duration a request or imposed constraint can be fulfilled. Since the returned
duration varies from input to input, the time horizon is flexible. Depending on the exact request or constraint, the
result may even be zero time steps, meaning the tested input is not feasible for the flexibility provider. Interventions
based on such mechanisms are only sensible in the short term, as the set of options the external entity chooses from
is limited and stacking such requests is not directly possible. The rather limited set of possible inputs reduces the
complexity. Furthermore, the dimensions of the inputs and outputs the ANNs must process are smaller than for
all the other approaches. Therefore, low complexity scores in combination with a high scalability rating have been
assigned.
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The procedure for deriving scores employed in this chapter is not applicable to the deception outcome approach,
as it is unclear how the input to the surrogate model would be structured. However, ratings similar to those of the
tariff outcome approach can be expected.

6.4 Exemplary Implementation

In order to prove that ANN-based surrogates can be used to exploit the flexibility of DERs, a search algorithm based
on MCTS has been implemented for solving optimization Problem I (following an aggregated target schedule) with
the help of the state-based simulation approach. A basic explanation of MCTS is provided Section 2.5.8.

6.4.1 Monte-Carlo-Tree-Search-Based Target Schedule Approximation

Typically, MCTS is applied in an MPC fashion, i.e., only one action is selected and implemented, and then the
algorithm is executed again. In its search for the best choice, MCTS builds a tree in which it tracks explored actions
and states, growing both in breadth and depth. However, in order to find a load schedule, a solution covering the
entire planning horizon must be generated. It is therefore crucial to ensure that the optimization algorithm advances
to terminal states, instead of exploring too far in breadth. This is achieved with two adaptations: firstly, making
a full depth search in each iteration, before starting at the root again, and, secondly, adding all trajectories gained
through simulation steps to the tree.

A challenge in finding good solutions is the vast number of possible actions. Take the aggregate of 10 BESSs, for
instance. Usually, each BESS should be able to either charge or discharge, meaning at least half of the individual
action space is feasible. With 201 discrete actions (100 charging, 100 discharging, 1 idle), as tested in the previous
chapter, this means that at any time there are at least (100 + 1)10 ≈ 1.105 · 1020 possible combinations. Exploring
each option is obviously impossible. An aggravating factor is the high cost of running simulations. In order to
select an edge and compute the state for the associated child node, two ANNs need to be evaluated for every single
DER in the ensemble. This high cost is the reason as to why each simulated trajectory is entirely added to the tree,
instead of discarding the computed states. Furthermore, each node is only expanded with a few randomly selected
child nodes. If a node is visited more than once, it lies on the best trajectory known yet and is therefore expanded
again.

In summary, the adapted algorithm makes a full depth search in each iteration and adds simulation results to its
exploration tree. The search is conducted by expanding each visited node randomly, running a simulation for each
newly added child, propagating the simulation results upwards to the root, and then selecting the best child node.
This is repeated until the terminal state is reached, which marks the end of an iteration. Subsequent iterations may
visit the same branches again. Algorithm 1 provides a detailed explanation of the individual steps.

The first input is �̄� ∈ R𝑇 , which is the aggregated target schedule the 𝑁 flexibility providers should achieve.
This schedule is determined by the external entity, according to their needs. The individual flexibility providers
𝑖 = 1, . . . , 𝑁 supply their current state 𝑠𝑖0, forecasts 𝑝𝑖𝑡 , and binary masks 𝑏𝑖𝑡 for the time steps 𝑡 = 1, . . . , 𝑇 . Forecasts
and the binary masks are only needed in case the surrogate does not make its own predictions. Each forecast 𝑝𝑖𝑡
and mask 𝑏𝑖𝑡 is a vector of the same dimension as 𝑠𝑖𝑡 . In order to inject the forecast into the schedule generation
process, the state 𝑠𝑖

𝑡+1 is replaced with (1 − 𝑏𝑖
𝑡+1) · 𝑠

𝑖
𝑡+1 + 𝑏

𝑖
𝑡+1 · 𝑝

𝑖
𝑡+1 each time a new state has been predicted. The

mask 𝑏𝑖𝑡 determines which elements are replaced by the external forecast and which are not.
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Algorithm 1: MCTS-based target schedule approximation

Data: Target schedule �̄� ∈ R𝑇 ; initial state 𝑠𝑖0, state-based simulation surrogate (𝐴𝑖 (𝑠𝑖), 𝑓 𝑖 (𝑠𝑖 , 𝑎𝑖)),
external forecast (𝑝𝑖𝑡 )𝑡=0,...,𝑇 −1, and binary mask (𝑏𝑖𝑡 )𝑡=0,...,𝑇 −1 for each flexibility provider
𝑖 = 1, . . . , 𝑁; maximum number of iterations K; number of simulations per node L

Result: Schedules 𝑎𝑖0:𝑇 −1 ∈ R𝑇 , 𝑖 = 1, . . . , 𝑁
begin

𝑛𝑟𝑜𝑜𝑡 = Node(parent = None, 𝑡 = 0, 𝑠 = (𝑠𝑖0)𝑖=1,...,𝑁 , 𝑎 = None, 𝑟<𝑡 = 0, 𝑟𝑎 = 0, 𝑟sim = 0, 𝑛 = 0)
for k = 0 to 𝐾 − 1 do // do 𝐾 iterations

𝑛search = 𝑛𝑟𝑜𝑜𝑡 // selection, start at the root
for 𝑡 = 0 to 𝑇 − 1 do // iterate full time horizon (full depth search)

for 𝑙 = 0 to 𝐿 do // expansion of each node via 𝐿 simulation runs
𝑛sim = 𝑛search // simulation starting in node 𝑛search
for 𝑡 = 𝑛sim.𝑡 to 𝑇 − 1 do // simulate steps until time step 𝑇 is reached

Δ�̄�𝑡 = �̄�𝑡 // aggregated power difference to target
𝑗 = 0 // counter
foreach 𝑖 in randomizeOrder( [1, . . . , 𝑁]) do // iterate flexibility providers

𝑎𝑖𝑡 = randomAction(𝐴𝑖 , 𝑛sim.𝑠
𝑖 ,Δ�̄�𝑡 , 𝑁, 𝑗) // select action via Algorithm 2

Δ�̄�𝑡 = Δ�̄�𝑡 − 𝑎𝑖𝑡 // update aggregated delta
𝑠𝑖
𝑡+1 = 𝑓 (𝑛sim.𝑠

𝑖 , 𝑎𝑖𝑡 ) // predict subsequent state
if 𝑡 < 𝑇 − 1 then

𝑠𝑖
𝑡+1 = (1 − 𝑏𝑖

𝑡+1) · 𝑠
𝑖
𝑡+1 + 𝑏

𝑖
𝑡+1 · 𝑝

𝑖
𝑡+1 // inject external forecasts

end
𝑗 = 𝑗 + 1

end
𝑛sim = Node( parent = 𝑛sim, 𝑡 = 𝑡 + 1, 𝑠 = (𝑠𝑖

𝑡+1)𝑖=1,...,𝑁 , 𝑎 = (𝑎𝑖𝑡 )𝑖=1,...,𝑁 ,
𝑟<𝑡 = 𝑛sim.𝑟<𝑡 + 𝑛sim.𝑟𝑎, 𝑟𝑎 = −|delta_target|, 𝑟sim = 0, 𝑛 = 0)

end
if 𝑛sim.𝑟<𝑡 + 𝑛sim.𝑟𝑎 = 0 then

return 𝑎𝑖0:𝑇 −1 extracted from nodes leading to 𝑛sim // found an optimal solution
end
𝑟∑ 𝑎 = 𝑛sim.𝑟𝑎 // 𝑛sim is currently a leaf
while 𝑛sim ≠ 𝑛𝑟𝑜𝑜𝑡 do // backup simulation results

𝑛sim = 𝑛sim.parent // step towards root
𝑛sim.𝑟sim = 𝑛sim.𝑟sim + 𝑟∑ 𝑎 // update total simulation reward
𝑛sim.𝑛 = 𝑛sim.𝑛 + 1 // increment simulation count
𝑟∑ 𝑎 = 𝑟∑ 𝑎 + 𝑛sim.𝑟𝑎 // subsequent simulation reward

end
end
𝑛search = child of 𝑛search with the highest reward // selection of next node

end
end
return 𝑎𝑖0:𝑇 −1 extracted from sequence of nodes with the highest reward

end
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All surrogates (𝐴𝑖 (𝑠𝑖), 𝑓 𝑖 (𝑠𝑖 , 𝑎𝑖)) needed by the state-based simulation approach are already known by the external
entity, as they have been communicated beforehand and updates are only required whenever the underlying model
changes. Further parameters are the maximum number of iterations 𝐾 , that is, the number of times a full depth
search starting at the root is conducted, and the number of simulation runs per visited node. Since simulation runs
are added to the tree, expansion is conducted via simulation and the number of simulation runs equals the number
of added child nodes. The algorithm returns schedules of length 𝑇 for the 𝑁 individual flexibility providers.

Each tree node stores a pointer to its parent node, the associated time step 𝑡, a list 𝑠 of the individual state vectors 𝑠𝑖𝑡 ,
a list 𝑎 of the individual actions 𝑎𝑡−1 selected in the previous state, and several rewards explained in the following.
The variable 𝑟<𝑡 stores the reward accumulated by the parent nodes. Rewards gained by action 𝑎𝑡−1 are stored in
𝑟𝑎. Finally, the total of all subsequent rewards gained from 𝑎𝑡 to 𝑎𝑇 −1 is held by 𝑟sim. The expected reward at a
node is given by 𝑟sim

𝑛
, where 𝑛 is the number of simulated trajectories leading through the respective node.

Actions are selected randomly, one by one for each flexibility provider 𝑖 = 1, . . . , 𝑁 , using Algorithm 2. The chance
of a combination of actions to be selected depends on their absolute distance from the target load. Combinations
with a greater distance from the target are less likely to be chosen. In order to achieve this, the remaining total
distance from the target schedule Δ�̄�𝑡 , the number of flexibility providers 𝑁 , and the number of already selected
actions 𝑗 are passed to the algorithm each time an action is selected. Further inputs are the classifier 𝐴𝑖 (𝑠𝑖), which
is part of the state-based simulation surrogate, and the (predicted) state 𝑠𝑖 . The classifier assigns a rating from the
interval [0, 1] to each considered action. Actions are deemed feasible and added to the set �̂�𝑖 if their rating exceeds
the threshold 𝛼. The algorithm returns a single random action 𝑎𝑖 , meant for flexibility provider 𝑖, drawn randomly
from �̂�𝑖 .

The chance of drawing the 𝑚-th action is determined by the weight vector 𝑤 and equals 𝑤𝑚∑
𝑛 𝑤𝑛

. This weight vector
is built in two steps, in which actions leading towards the target are assigned with higher weights. Initially, 𝑤 is a
vector of ones, which means a uniform chance of selecting any action in �̂�𝑖 . The total power difference from the
target Δ�̄�𝑡 is split equally between the individual flexibility providers that have not been assigned with an action
yet. If every flexibility provider was able to provide �̄�𝑖 = Δ�̄�𝑡

𝑁− 𝑗
, the target would exactly be met. This individual

target determines which actions receive higher weights. Firstly, actions close to �̄�𝑖 are considered. Whether actions
are close or not is defined by the parameter 𝛽. All actions within distance 𝛽 of �̄�𝑖 are considered to lie in its
neighborhood. The weights associated with these neighboring actions are updated in a way giving them a total
chance of 𝛾 · 100% to be selected. Hence, after this update, only with a chance of (1 − 𝛾) · 100% an action
outside the neighborhood is chosen. In a second step, the weight of the single feasible action closest to �̄�𝑖 is set to
| �̂�𝑖 | · 𝛿 · (1 + 𝑗). With a multiple of | �̂�𝑖 |, the chance of selecting this option greatly increases each time an action
has been fixed. The parameter 𝛿 can be used to tune the chance and reduce or increase the significance of this
step. In the experiment presented below, 𝛿 equals 1. Neglecting the first weight adaptation and with 𝛿 = 1, the
chance of selecting the closest action is around 50% in the first, around 66% in the second, and around 75% in the
fourth iteration, and so on. It should be noted that the closest feasible action is not necessarily an element of the
neighborhood, since the neighborhood may be empty. Further parameter choices in the experiment are 𝛼 = 0.5 and
𝛾 = 0.75. The distance 𝛽 is set to 5% of the range between the theoretical minimum and maximum power.

Since Algorithm 2 selects actions for one flexibility provider after another and becomes increasingly greedy in this
process, the chance of randomly drawing a non-greedy action is very low for flexibility providers in the back of
the queue. In order distribute the greedy choices more evenly, Algorithm 1 randomizes the order of the flexibility
providers in each simulation step.
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Algorithm 2: Random action selection with target
Data: Classifier 𝐴𝑖 (𝑠𝑖), state 𝑠𝑖 , threshold for classifying actions feasible 𝛼, total difference from target

load Δ�̄�𝑡 , number of flexibility providers 𝑁 , number of selected actions 𝑗 , neighborhood radius 𝛽,
neighborhood impact 𝛾 ∈ (0, 1), impact of the closest action 𝛿

Result: Action 𝑎𝑖
begin

�̃�𝑖 = 𝐴𝑖 (𝑠𝑖) // rate actions
�̂�𝑖 = {𝑎 | 𝑎 is associated with a rating in �̃�𝑖 greater than 𝛼} // classify feasibility
if | �̂�𝑖 | = 0 then // if �̂�𝑖 has zero elements, i.e., is empty

return action 𝑎𝑖 with the highest classifier rating in �̃�𝑖

else
�̄�𝑖 = Δ�̄�𝑡/(𝑁 − 𝑗) // split target load between flexibility providers
𝑤 = (1, 1, . . . , 1) ∈ R | �̂�𝑖 | // weight vector for random selection

/* find actions close to the individual target, i.e., neighbors, and increase their weight */
�̂�𝑖neighborhood = {𝑎 ∈ �̂�𝑖 | |𝑎 − �̄�𝑖 | < 𝛽}
if | �̂�𝑖 | > | �̂�𝑖neighborhood | then

/* | �̂�𝑖 | and | �̂�𝑖neighborhood | are not identical */
set weight of each action in �̂�𝑖neighborhood to

| �̂�𝑖 |− | �̂�𝑖neighborhood |
𝛾

− (| �̂�𝑖 | − | �̂�𝑖neighborhood |)

| �̂�𝑖neighborhood |

/* neighboring actions are now selected with a chance of 𝛾 · 100% */
end
/* identify the feasible action closest to the individual target, i.e., the most greedy choice */
𝑎 = arg min

𝑎∈ �̂�𝑖 |�̄�𝑖 − 𝑎 |
set weight associated with 𝑎 to | �̂�𝑖 | · 𝛿 · (1 + 𝑗)
/* the fewer flexibility providers remain, the higher the chance of selecting 𝑎 */

return 𝑎𝑖 , randomly drawn from �̂�𝑖 based on weights 𝑤
end

end

All parameter values, as well as the algorithms Algorithm 1 and Algorithm 2 are naive choices and implementations,
yielding a greedy heuristic. They are meant to prove that ANN-based surrogates of the flexibility of DERs are
capable to provide sufficient information to control flexibility providers. Finding particularly good algorithms is
not possible in the scope of this thesis, but should be a goal of future research. In the following, the conducted
experiments are presented.
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6.4.2 Results

The goal of optimization Problem I is to achieve a given target schedule with an ensemble of flexibility providers.
Following the example of [11], all flexibility providers are identical and only differ in their initial state. Aggregated
target schedules are generated with the help of the simulation models, each time starting in new randomly drawn
states. The schedules are therefore feasible and the best target function value achievable is 0, meaning a perfect
match. In order to generate more realistic and less volatile schedules, actions are selected randomly with the
reference-based strategy (see Section 5.3.5) and 8 equally sized reference intervals. The same reference schedule
is shared between all DER, as in reality a DSMgr generally would like a uniform reaction across all flexibility
providers, instead of random ones. Drawing purely random actions would likely lead to better results, as the general
evaluation in Chapter 5 suggests. In [11], target schedules are either random and guaranteed to be feasible, or based
on standard load profiles and possibly infeasible.

Results for the schedule search experiment are presented in Table 6.3 and Table 6.4. For each tested configuration
and time horizon, 100 aggregated target schedules were generated and passed to Algorithm 1. Then, each of the
resulting 100 · 𝑁 schedules was evaluated with the help of the simulation models. Each search was conducted
with 𝐾 = 100 iterations and 𝐿 = 5 simulations in each selected node. All errors in Table 6.3 relate to the total
schedule, achieved by all DERs in combination. The absolute error in energy is determined by computing the
absolute difference between the target schedule and the simulated aggregated load of all DERs in terms of energy.
Dividing the absolute error in energy by the total amount of energy provided or drawn yields the relative error. The
MAE is the average absolute difference between the target power and the achieved load. Finally, the expected MAE
is computed using the output of Algorithm 1 and the ANNs, instead of the simulation results. MAE and expected
MAE deviate if the ANN-based surrogates generate infeasible load schedules.

Table 6.3: Comparison of results for the joint control of 10 identical DERs. Each device starts from a different initial state.

State-based simulation, 2% and 2°C buffer SVDD, 10 modulating CHPPs
10 BESSs 10 EVSEs 10 CHPPs Random Standard load profile

8 time steps

Absolute error (energy in kWh) 0.214 1.379 2.496 0.023 0.013
Relative error (energy) 0.004 0.011 0.110 0.0005 0.0003
MAE (power in kW) 0.107 0.689 1.248 0.011 0.007
Expected MAE (power in kW) 0.107 0.689 1.055 - -

32 time steps

Absolute error (energy in kWh) 2.412 11.900 10.753 4.995 37.124
Relative error (energy) 0.016 0.055 0.077 0.031 0.238
MAE (power in kW) 0.302 1.488 1.344 0.624 4.640
Expected MAE (power in kW) 0.302 1.485 1.311 - -

The results listed in Table 6.3 vary between DERs and time horizons. Overall, the BESS surrogate yielded the
lowest errors. In the 8 time steps time horizon, that is, 2 hours in steps of 15 minutes, the EVSE surrogate performed
better than the CHPP surrogate. At 32 time steps, the EVSE surrogate and CHPP surrogates produced similar
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results. The MAEs were 1.488 kW and 1.344 kW, respectively. However, while the EVSE ensemble can potentially
draw up to 220 kW from the grid, the CHPP aggregate can only provide up to 55 kW in sum. Therefore, the relative
MAE of the CHPP is greater. In regard to the expected MAE and MAE, the BESS surrogate generated identical
values, which is due to the achieved 100% feasibility that is also shown in Table 6.4. For the EVSE surrogate, the
values at 32 time steps deviate slightly. The rather big deviation for the CHPP surrogate was caused by the fast
drop in feasibility in the first 8 time steps visible in Table 6.4. As the time horizon increased the difference between
expected MAE and MAE became smaller.

Like in Chapter 5, the results of the ANN-based exploitation and SVDD-based exploitation are not directly
comparable, as both were tested with different types of CHPPs. However, the similarity of the EVSE and the
modulating CHPP has already been pointed out. For the 8 time steps time horizon the ANN-based results are factor
10 to 100 worse. Allowing more iterations of the search algorithm would probably lead to better results as the
32 time steps time horizon suggests, where the ANN-based results were similar to those achieved with the SVDD.

Table 6.4: Performance of the state-based simulation in a DSM task. Evaluation of 1000 load schedules for each DER and time horizon.

State-based simulation, 2% and 2°C buffer
BESS EVSE CHPP

8 time steps

Feasible 100.0% 100.0% 97.3%
MAE* - - 873.125
RMSE* - - 1744.679

32 time steps

Feasible 100.0% 99.7% 97.2%
MAE* - 73.333 218.149
RMSE* - 411.582 836.597

*only infeasible schedules (according simulation)

For each configuration and time horizon, the 100 target schedules resulted in 1000 individual BESS, EVSE, or
CHPP schedules, which have also been evaluated with the help of the simulation models. Table 6.4 lists the
results, providing clues how well the ANN-based surrogates describe the flexibility of the DERs in a practical DSM
application. Like in the previous experiment, using the BESS with a buffer resulted in 100% feasible schedules
and no errors. The EVSE results are comparable to the previous results from Chapter 5, too. Only the CHPP
surrogate performed worse. In contrast to the previous 100% feasibility when using a buffer, slightly above 97%
of the produced schedules were feasible. An analysis of the state trajectories revealed that these errors were mostly
caused by incorrect forecasts of the operation mode, even when the temperature of the associated HWT was well
within the acceptable range, and by incorrect classification of actions, deeming actions feasible even though they
would allow the CHPP to turn on or off before the minimum dwell times have been reached. Since only a 1°C
buffer was applied in Chapter 5 and the prediction quality of ANNs can vary throughout different parameter ranges,
it is conceivable that a smaller buffer may lead to a better result. However, more thorough experiments need to be
conducted in order to come to a final conclusion.
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Overall, the experiment shows that the state-based simulation approach can indeed be used to search for load
schedules in a DSM application. Almost all generated schedules were truly feasible and hence the found solutions
could mostly be implemented by the flexibility providers. The presented algorithms are a first step in the direction
of practical DSM applications. Further research identifying better algorithms is needed, as there is potential
for improvement, not only in terms of better algorithms, but also in terms of a computationally more efficient
implementation.

6.5 Summary

Not every surrogate modeling approach is fitting for every use case, as the discussion of the exemplary optimization
problems Problem I and Problem II in this chapter illustrates. Generally, approaches of the signal selection
category are more limited in their use than those of the schedule generation kind. Whether an approach is
suitable or not, needs to be assessed on a per-case basis, but even within the schedule generation class, there are
differences. The examples and Table 6.2 show that the state-based simulation approach is amidst the most versatile
ones. Furthermore, the conducted experiment demonstrated that the approach can be used to implement DSM
applications.

All approaches have in common that they come at the high cost of having to train ANNs. Nonetheless, even
though this is resource intensive, it is only required once every time the configuration of modeled DERs changes.
Other surrogate modeling approaches, like for instance the SVDD based decoder [11], need a newly generated
surrogate in every new state. In order to conduct the ensemble scheduling experiment from the previous section
with 10 flexibility providers and 100 target schedules, one needs 1,000 SVDD models, but only 10 state-based
simulation surrogates with a total of 20 ANNs. Furthermore, in a practical application, it is possible to make use of
transfer learning (see [27] on the topic of transfer learning), which starts the training process with an ANN trained
for a similar application and may lead to better results within short time compared to learning an ANN from scratch.
This has the potential to greatly reduce the required amount of computations.
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The exploitation of flexibility, especially on the former demand side, is crucial for the reliable operation of our
future energy system. In this thesis, the exploitation in general is analyzed and ANN-based surrogate modeling
approaches are derived and assessed.

Exploitation of flexibility: There exist various mechanisms to achieve control of DERs and thereby exploit their
flexibility. However, each mechanism has its own, distinct characteristics. Five general patterns for the exploitation
of flexibility have been identified based on prior publications and an extensive literature review (see Section 4.2).
The patterns can be used to classify and thereby compare different exploitation mechanisms on an abstract level.

A more detailed comparison is possible by additionally analyzing the employed types of models. With the help of
the aforementioned literature review, a set of different general modeling approaches has been derived and related
to the exploitation patterns, all while keeping the goal of communicating flexibility in mind (see Section 4.3). The
results show that the modeling approaches — and therefore the ways of communicating flexibility — vary from
exploitation pattern to exploitation pattern. While for the direct exploitation DERs are modeled individually, in the
abstract and market-based patterns devices are clustered. In the indirect and state information based patterns, models
can provide a huge variety of information, depending on the exact implementation. In addition, the abstractness and
genericness of the individual modeling has been assessed. Therefore, it is possible to compare the genericness of
selected exploitation mechanisms, by relating the employed models to the identified general modeling approaches.
Furthermore, by doing so, potential similar and alternative solutions become apparent. Overall, the identified
categories and relationships provide a general framework for analyzing exploitation mechanisms and their models.

There are many trade-offs to consider when developing a mechanism for the exploitation of flexibility and specifying
a model. Depending on the exact use case, each have their own advantages and disadvantages. The systematics
developed and presented in this thesis can aid in the conception of new exploitation mechanisms by providing an
overview of solutions and pointing out typical modeling approaches. Furthermore, the review itself lists plenty of
examples for the different types of models.

ANN-based surrogate models: In our prior publications we already showed that ANNs are capable of learning
the flexibility of DERs. The general approach of utilizing ANN-based surrogate models to learn and describe the
flexibility of DERs is further concretized in this thesis. By asking which information is needed to control DERs and
analyzing the previously identified exploitation patterns and modeling approaches in this regard, multiple potential
ANN-based surrogates have been identified and outlined (see Section 5.2). A selection of the most promising
approaches has then been compiled and presented. While the majority of the selected models is intended for the
generation of load schedules, the remaining models provide information for deriving specific signals, such as tariffs
or curtailment signals, required only in particular use cases.

One of the identified ANN-based surrogate modeling approaches is the state-based simulation, which is a learned
state space model augmented with a classifier for identifying feasible control inputs. Due to its design and the
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large amount of information it provides, it is one of the most versatile approaches to encode the flexibility of DERs
into ANNs. For this reason, this approach has been selected and evaluated in order to establish a baseline for the
achievable quality of approximation provided by ANN-based flexibility surrogates (see Section 5.3). The results
provide further proof that it is indeed possible to encode the flexibility of DERs into ANNs. A total of six DER
configurations, ranging from individual DERs to a large ensemble consisting of 100 BESSs, has been tested and a
multitude of criteria has been assessed. The criteria include the share of truly feasible load schedules generated with
the help of the surrogate, as well as the classification performance, which is used to analyze whether the models are
able to capture the entire space of feasible schedules. The results varied from configuration to configuration. An
increasing number of DERs and more complex constraints generally resulted in less accurate models. One method
to improve these results is by applying buffers during the training and relaxing the constraints during application.
While this narrows down the space of feasible schedules and thus reduces the overall exploitable flexibility, it
greatly increases the likelihood of generating feasible schedules. Overall, the trained surrogates performed better in
producing feasible schedules than they did in recognizing feasible schedules. This was likely caused by overfitted
models. Better generalizing surrogates probably would exhibit a better classification performance, at the cost of a
worse generation performance. However, whether a larger percentage of feasible schedules or a better description
of the true flexibility is more important must be assessed in the context of a specific use case.

Controlling DERs with the help of ANN-based surrogates: The suitability of the identified ANN-based sur-
rogate modeling approaches has been assessed in a qualitative analysis (see Section 6.1 to Section 6.3). This
analysis outlines characteristics that have to be considered when selecting one of the approaches for a practical
implementation. Furthermore, it is proposed how control signals could be derived with the help of the individual
types of surrogate models. Overall, these results can provide guidance for future research in the field of ANN-based
flexibility surrogates.

Additionally, quantitative experiments have been conducted for the state-based simulation approach (see Sec-
tion 6.4). In each experiment, load schedules for ensembles of 10 identical DERs have been generated with the goal
of reproducing a given, feasible, aggregated target schedule. The results show that the great majority of schedules
generated in the optimization process was feasible. They also show that the findings of the previous analysis hold
up in a practical scheduling task and thereby demonstrate the potential of ANN-based surrogates. Nevertheless,
further research in this area is required in order to develop the necessary algorithms and evaluate the approach in a
real DSM application.

In all experiments, the schedules have been generated once and then the resulting total deviation from the target has
been measured. However, in a real application, an MPC-based control scheme would likely be implemented, which
means that in each time period new schedules are generated by the external entity and distributed to the flexibility
providers. Especially in combination with MPC, the investigated surrogates have the potential to perform well,
since they showed very good performance for short time horizons. Focusing on short time horizons may also lower
the computational complexity, as a shallower exploration of the state space may suffice. Nevertheless, whether this
is the case or not remains a question for future research. Additionally, and by no means limited to MPC, flexibility
providers could provide feedback in case a requested schedule is not feasible.

Public materials: All source code, including the implemented simulation and optimization models, the trained
ANNs, and the logs from the training and evaluation runs have been published on GitHub at https://github.c
om/kfoerderer/ANN-based-surrogates and, together with this document, in the KITopen repository.
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7.1 Research Questions Briefly Answered

In the following, the research questions introduced in Chapter 1 are explicitly and briefly answered. Please see
Chapter 4, Chapter 5, and Chapter 6, for detailed analyses and results regarding RQ1, RQ2, and RQ3, as well as
the individual subquestions.

RQ1 Which models can be used for communicating flexibility?
Whether a type of model is suitable or not, depends on the specific exploitation pattern. A set of general
modeling approaches has been derived with the help of a literature review and related to the individual
patterns. They range from models precisely formulated for individual DERs, to coordination schemes that
do not even rely on the communication of models. See Figure 4.3 for an overview.

RQ1.1 What are the motivations for communicating flexibility?
The primary motivations identified are monetary incentives and the qualitative security of supply.
However, many further motivations may exist, including environmental incentives, legal compulsion,
and the visualization of flexibility.

RQ1.2 How can flexibility be communicated and exploited?
By making use of one or multiple exploitation patterns and the associated modeling approaches.

RQ1.3 Which modeling approaches do exist and how can they be categorized?
A set of general modeling approaches has been derived with the help of the mentioned literature review
and related to the individual patterns. See Figure 4.3 for an overview.

RQ2 What is the quality of approximation ANN-based surrogate models can achieve?
There are different ways of encoding the flexibility of DERs into ANNs, of which many are derived and
outlined in this thesis. Not all of them are directly comparable. Hence, it is only possible to establish a
baseline for the achievable quality. One of the more versatile ANN-based surrogates, namely the state-based
simulation approach, has been assessed in this thesis. It performed well in the load schedule generation tasks,
yielding high percentages of feasible schedules. However, for more complex DERs and ensembles of DERs
buffers are required. Furthermore, the true flexibility was only partially captured by in the experiments.
There probably exist ANN-based surrogates exhibiting a better performance for different use cases.

RQ2.1 What are the advantages and disadvantages of using surrogate models?
Surrogate models can be generated from data in an automated process. Given a suitable data basis,
they may even be generated from recorded data, potentially eliminating the need of manual modeling.
Furthermore, they may act as generic models for the flexibility of all types or combinations of DERs.

RQ2.2 How can ANNs serve as surrogates for the flexibility of DERs?
A variety of approaches has been derived and outlined in this thesis. The most promising ones are
listed in Table 5.1.

RQ2.3 What is the quality of the trained ANN-based surrogate models?
As explained earlier, the different approaches are not all directly comparable. A baseline has been
established, using the state-based simulation approach. It performed well in the load schedule generation
tasks, yielding high percentages of feasible schedules when buffers are used. The true flexibility was
only partially captured by in the experiments. For different use cases, other ANN-based surrogate
modeling approaches may perform even better.
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RQ3 How adequate are the different ANN-based modeling approaches for controlling schedules of flexibility
providers?
Since the individual surrogate-modeling approaches provide different kinds of data, they are generally limited
to specific use cases. In theory, each identified surrogate is able to act as a model for the flexibility of DERs, as
long as the considered use case is suitable and the quality of the trained model is sufficiently high. However,
the utilization of ANN-based surrogates introduces high computational complexity required for training and
utilizing the models. To compare the individual characteristics, a qualitative assessment of the identified
approaches has been conducted. Furthermore, for the state-based simulation approach, a first quantitative
evaluation is provided, demonstrating the general possibility to use such surrogates in scheduling tasks.
Nevertheless, for a real application further improvements and performance optimizations are required.

RQ3.1 Which criteria can be used for assessing the adequacy of a modeling approach?
Due to the different nature of each surrogate modeling approach, only a few qualitative criteria are
applicable for a comparison of all of them. After considering different criteria from the field of
benchmarking and meta heuristics, the focus was laid on the computational complexity and scalability.

RQ3.2 What is the assessment of the individual ANN-based modeling approaches?
In order to assess an approach, it is necessary to specify how the exploitation of flexibility should
be achieved. Depending on the algorithm built around the specific ANN-based surrogate modeling
approach, the assessment can vary massively. A summary of the proposed methodology for deriving
control signals with the help of each surrogate and the resulting assessments can be found in Table 6.1
and Table 6.2. Additionally, in a series of experiments it has been demonstrated that the state-based
simulation approach could be used by an external entity to solve scheduling tasks. However, further
research on better algorithms is required.

7.2 Outlook

When we first proposed the utilization of ANNs as surrogate models for the flexibility of DERs, we proposed
five different approaches [313]. Later we identified a sixth option [308]. Building upon these, in this thesis,
a total of 10 promising approaches is named, each with its own characteristics. Further research is needed to
assess each single option, preferably in practical use cases. Moreover, even though a more practical test of the
state-based simulation approach has been conducted in this thesis, only a first step towards a real use case has been
made. Further work on the training and selection of the best models, as well as better performing optimization
algorithms are required. For instance, during the training process, training samples could be generated and selected
intelligently, instead of purely random.

ANN-based flexibility surrogates are statistical models and their output can generally be seen as a set of predictions.
Utilizing suitable ANN output dimensions and loss functions, it is possible to predict entire distributions instead
of single data points. This ability of ANNs is also used in this thesis in order to predict discrete state variables by
selecting the mode of the predicted distribution, i.e., the point with the highest probability. In future research, the
entire stochastic information could be used in order to make the models more robust. Moreover, all outputs could
be modeled as distributions.

Other aspects that should be evaluated are the training using only recorded data and the interplay of the state-based
simulation approach with model-based RL. Learning a flexibility model from recorded data is one of the primary

184



7.2 Outlook

requirements for being able to generate them in an automated process and without the need of manual modeling.
The major challenges, however, are the limited amount of data and the need of data that reflects the true flexibility.
This is related to the challenge of exploring the state space in RL. ANN-based flexibility surrogates are especially
a promising concept when model-based RL is employed by potential flexibility providers in order to control their
DERs, since the learned model may be re-used. Future research should hence investigate the connection of the
state-based simulation approach and model-based RL more closely.
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A.1 Ideas for Learning Abstract Representations

Generative models like variational autoencoders (VAE, see [301, 27]) or generative adversarial networks (GAN,
see [302]) are able to transform random inputs into synthetic samples. By training such a model, one does not only
receive a mapping from some random representation to a synthetic sample, but also inputs which can encode distinct
features, similar to genotypes. In [303], this has been demonstrated for a GAN which generates pictures of faces.
By averaging the inputs for male faces with glasses, male faces without glasses, and female faces without glasses
respectively, the authors created three average representations encoding the concepts male, female, and glasses.
In the next step, they simply computed “(male with glasses) − (male without glasses) + (female without glasses)”,
and the result generated by the GAN was indeed a female face with glasses. Several further examples for generative
models can be found in [27]. In the following it is outlined how VAEs and GANs, selected as exemplary approaches
due to their popularity, could be used as surrogates. This may also be seen as a blueprint for implementing other
generative models, as they could be utilized in a similar fashion. The generative models discussed here are both
based on ANNs. Therefore they come with all the benefits and challenges of ANNs, including the need for huge
amounts of data for training. Hence, to implement these approaches, it is still necessary for the flexibility provider
to have access to large sets of feasible load schedules. If the historic data does not suffice, be it too few or too
homogenous samples, and dataset augmentation cannot help, synthetic load schedules need to be generated. This
task could be performed by the flexibility provider’s EMS. Furthermore, if it is not intended to create a new
surrogate every time the external entity requires an updated description of the flexibility, the models need to be able
to take the current state into account (compare Figure 4.2). For both, VAE and GAN, there are extended versions
which take an additional condition as an input, namely the conditional VAE [304] and the conditional GAN [305].
For modeling flexibility, this condition is the current state, as it defines which load schedules are feasible and which
are not. The current state comprises all data necessary to derive whether a load schedule is feasible or not. This
can also include forecasts, e.g., for the consumption of electricity or the availability of an EV.

A conditional VAE is depicted in Figure A.1. Variables known during the individual phases, like 𝑥 and 𝑦 in the
training process, are illustrated in green color. The resulting model, which can be used as a surrogate, is highlighted
in orange. Aside from the usual input 𝑦, which is encoded and decoded, an additional input 𝑥 is introduced. This
𝑥 is the condition, and passed to the encoder and decoder. During the training, the encoder is estimating the
parameters required for sampling from the distribution 𝑞Φ (𝑧 |𝑥, 𝑦), which approximates the intractable posterior
𝑝Θ (𝑧 |𝑥, 𝑦) [301]. With these parameters 𝑧 can be sampled and passed to the decoder, which is meant to reconstruct
the original 𝑦 by drawing from the distribution 𝑝Θ (𝑦 |𝑥, 𝑧). In order to generate a synthetic output with a VAE, a
sample of 𝑧 is required. Which distribution 𝑧 has to be drawn from is dictated by the loss function used to train
the VAE. Figure A.1 depicts the choice of a standard normal distribution, but many other options are available,
as [301] outlines. For the purpose of modeling flexibility the VAE learns to generate feasible load schedules
conditioned on the state. This model is trained by the flexibility provider and can be passed to the external entity.
Given the current state and the distribution 𝑧 is sampled from, new load schedules can be generated. As the model
is trained with feasible load schedules, the syntheticaly generated load schedules should be likely to be feasible as
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well. Nevertheless, there is no guarantee for feasibility. Different options to deal with this uncertainty, such as
conducting multiple iterations with feedback from the flexibility provider, or using a secondary model, have already
been named in the introduction to Section 5.2.

A GAN, like a VAE, requires the training of two individual parts, a generator and a discriminator. Similar to the
conditional VAE, the conditional GAN integrates a condition into the GAN by simply passing it as an additional
input to the two respective models. Such a conditional GAN is depicted in Figure A.2. The notation is similar
to [305], but has been adapted so it harmonizes with that of the conditional VAE presented in the previous paragraph.
Information known during the individual phases is again highlighted in green, and the resulting surrogate in orange
color. Like the standard GAN the conditional GAN takes some random input 𝑧, for instance Gaussian noise,
generates a synthetic sample 𝑦, and passes it to a classifier which tries to distinguish synthetic from real samples.
The additional condition is 𝑥. In order to use such a conditional GAN as a model for flexibility, it could be trained to
generate load schedules conditioned on the current state. Here again, the flexibility provider trains both models and
then transmits the generator part to the external entity. Using this generator model, and knowing the distribution
of the noise 𝑧, the external entity is able to generate new load schedules. This conditional GAN can be seen as
a combination of the generator and classificator approach we evaluated in [312]. As the approaches themselves
produced good results on the test sets in [312], it is conceivable that the combination of both in the form of a
conditional GAN does as well. Especially the classifier, that is, the discriminator in the GAN, showed to be very
accurate in the identification of feasible load schedules. Hence, the generator of the GAN must learn to produce
feasible load profiles in order to beat the discrimnator. Furthermore, as stated before with the example of male and
female faces, it has been shown that the inputs 𝑧 of a trained GAN do encode concepts relevant to the synthetic
output.

These are only two of many more options for generative models that could be employed to generate load schedules
from some representation. Others could be implemented similarly in order to reach the overall goal of modeling
flexibility. Whether the state as an input is required or not depends on whether the surrogate should be able to
serve as a general model for the flexibility or only represent a temporary snapshot. In summary, generative models
provide an approach for avoiding the development of abstract representations, similar to genotypes of EAs, and
mappings from these representations to load schedules.
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