1,126 research outputs found

    A Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to Knowledge Acquisition

    Get PDF
    Fuzzy Association Rule Mining Expert-Driven (FARME-D) approach to knowledge acquisition is proposed in this paper as a viable solution to the challenges of rule-based unwieldiness and sharp boundary problem in building a fuzzy rule-based expert system. The fuzzy models were based on domain experts’ opinion about the data description. The proposed approach is committed to modelling of a compact Fuzzy Rule-Based Expert Systems. It is also aimed at providing a platform for instant update of the knowledge-base in case new knowledge is discovered. The insight to the new approach strategies and underlining assumptions, the structure of FARME-D and its practical application in medical domain was discussed. Also, the modalities for the validation of the FARME-D approach were discussed

    Fuzzy rule-based system applied to risk estimation of cardiovascular patients

    Get PDF
    Cardiovascular decision support is one area of increasing research interest. On-going collaborations between clinicians and computer scientists are looking at the application of knowledge discovery in databases to the area of patient diagnosis, based on clinical records. A fuzzy rule-based system for risk estimation of cardiovascular patients is proposed. It uses a group of fuzzy rules as a knowledge representation about data pertaining to cardiovascular patients. Several algorithms for the discovery of an easily readable and understandable group of fuzzy rules are formalized and analysed. The accuracy of risk estimation and the interpretability of fuzzy rules are discussed. Our study shows, in comparison to other algorithms used in knowledge discovery, that classifcation with a group of fuzzy rules is a useful technique for risk estimation of cardiovascular patients. © 2013 Old City Publishing, Inc

    Prediction model for coronary artery disease using neural networks and feature selection based on classification and regression tree

    Get PDF
    Background and aims: Risk of implementing invasive diagnostic procedures for coronary artery disease (CAD) such as angiography is considerable. On the other hand, Successful experience has been achieved in medical data mining approaches. Therefore this study has been done to produce a model based on data mining techniques of neural networks that can predict coronary artery disease. Methods: In this descriptive- analytical study, the data set includes nine risk factors of 13228 participants who were undergone angiography at Tehran Heart Center. (4059 participants were not suffering from CAD but 9169 were suffering from CAD). Producing model for predicting coronary artery disease was done based on multilayer perceptron neural networks and variable selection based on classification and regression tree (CART) using of Statistica software. For comparison and selection of best model, the ROC curve analysis was used. Results: After seven-time modeling and comparing the generated models, the final model consists of all existing risk factors obtained with the area under ROC curve of 0.754, accuracy of 74.19%, sensitivity of 92.41% and specificity of 33.25% .Also, variable selection results in producing a model consists of four risk factors with area under ROC curve of 0.737, accuracy of 74.19%, sensitivity of 93.34% and specificity of 31.17% was produced. Conclusion: The obtained model is produced based on neural networks. The model is able to identify both high risk patients and acceptable number of healthy subjects. Also, utilizing the feature selection in this study ends up in production of a model which consists of only four risk factors as: age, sex, diabetes and high blood pressure

    Linear and nonlinear analysis of normal and CAD-affected heart rate signals

    Get PDF
    Coronary Artery Disease (CAD) is one of the dangerous cardiac disease, often may lead to sudden cardiac death. It is difficult to diagnose CAD by manual inspection of electrocardiogram (ECG) signals. To automate this detection task, in this study, we extracted the Heart Rate (HR) from the ECG signals and used them as base signal for further analysis. We then analyzed the HR signals of both normal and CAD subjects using (i) time domain, (ii) frequency domain and (iii) nonlinear techniques. The following are the nonlinear methods that were used in this work: Poincare plots, Recurrence Quantification Analysis (RQA) parameters, Shannon entropy, Approximate Entropy (ApEn), Sample Entropy (SampEn), Higher Order Spectra (HOS) methods, Detrended Fluctuation Analysis (DFA), Empirical Mode Decomposition (EMD), Cumulants, and Correlation Dimension. As a result of the analysis, we present unique recurrence, Poincare and HOS plots for normal and CAD subjects. We have also observed significant variations in the range of these features with respect to normal and CAD classes, and have presented the same in this paper. We found that the RQA parameters were higher for CAD subjects indicating more rhythm. Since the activity of CAD subjects is less, similar signal patterns repeat more frequently compared to the normal subjects. The entropy based parameters, ApEn and SampEn, are lower for CAD subjects indicating lower entropy (less activity due to impairment) for CAD. Almost all HOS parameters showed higher values for the CAD group, indicating the presence of higher frequency content in the CAD signals. Thus, our study provides a deep insight into how such nonlinear features could be exploited to effectively and reliably detect the presence of CAD

    A comprehensive study on disease risk predictions in machine learning

    Get PDF
    Over recent years, multiple disease risk prediction models have been developed. These models use various patient characteristics to estimate the probability of outcomes over a certain period of time and hold the potential to improve decision making and individualize care. Discovering hidden patterns and interactions from medical databases with growing evaluation of the disease prediction model has become crucial. It needs many trials in traditional clinical findings that could complicate disease prediction. Comprehensive survey on different strategies used to predict disease is conferred in this paper. Applying these techniques to healthcare data, has improvement of risk prediction models to find out the patients who would get benefit from disease management programs to reduce hospital readmission and healthcare cost, but the results of these endeavours have been shifted
    • …
    corecore