7,803 research outputs found

    A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons

    Full text link
    We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility

    The Operation of Autonomous Mobile Robot Assistants in the Environment of Care Facilities Adopting a User-Centered Development Design

    Get PDF
    The successful development of autonomous mobile robot assistants depends significantly on the well-balanced reconcilements of the technically possible and the socially desirable. Based on empirical research 2 substantiated conclusions can be established for the suitability of "scenario-based design" (Rosson/Carroll 2003) for the successful development of mobile robot assistants and automated guided vehicles to be applied for service functions in stationary care facilities for seniors.User-Centered Technology Development, Knowledge-Transfer, Participative Assessment Methods, Robotics

    Interactive Execution Monitoring of Agent Teams

    Full text link
    There is an increasing need for automated support for humans monitoring the activity of distributed teams of cooperating agents, both human and machine. We characterize the domain-independent challenges posed by this problem, and describe how properties of domains influence the challenges and their solutions. We will concentrate on dynamic, data-rich domains where humans are ultimately responsible for team behavior. Thus, the automated aid should interactively support effective and timely decision making by the human. We present a domain-independent categorization of the types of alerts a plan-based monitoring system might issue to a user, where each type generally requires different monitoring techniques. We describe a monitoring framework for integrating many domain-specific and task-specific monitoring techniques and then using the concept of value of an alert to avoid operator overload. We use this framework to describe an execution monitoring approach we have used to implement Execution Assistants (EAs) in two different dynamic, data-rich, real-world domains to assist a human in monitoring team behavior. One domain (Army small unit operations) has hundreds of mobile, geographically distributed agents, a combination of humans, robots, and vehicles. The other domain (teams of unmanned ground and air vehicles) has a handful of cooperating robots. Both domains involve unpredictable adversaries in the vicinity. Our approach customizes monitoring behavior for each specific task, plan, and situation, as well as for user preferences. Our EAs alert the human controller when reported events threaten plan execution or physically threaten team members. Alerts were generated in a timely manner without inundating the user with too many alerts (less than 10 percent of alerts are unwanted, as judged by domain experts)

    Investigating the Effect of Trust Manipulations on Affect over Time in Human-Human versus Human-Robot Interactions

    Get PDF
    The current study explored the influence of trust and distrust behaviors on affect over time. We examined the differences in affect when participants (N=97) were paired with a human or a robot while playing amodified version of the investorgame. Results indicated that there were no differences in affect between partner types when the partner performed a trustful behavior. When the partner performed a distrustful behavior, positive affect was higher for human partners than for robot partners. When robot partners performed a distrustful behavior, negative affect had a steeper incline compared to human partners. These findings suggest that people are more sensitive to distrust behaviors that are performed by a robot over a human

    Intelligence for Human-Assistant Planetary Surface Robots

    Get PDF
    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area

    Human-Machine Communication: Complete Volume. Volume 6

    Get PDF
    his is the complete volume of HMC Volume 6
    corecore