1,282 research outputs found

    Advances in machine learning applications for cardiovascular 4D flow MRI

    Get PDF
    Four-dimensional flow magnetic resonance imaging (MRI) has evolved as a non-invasive imaging technique to visualize and quantify blood flow in the heart and vessels. Hemodynamic parameters derived from 4D flow MRI, such as net flow and peak velocities, but also kinetic energy, turbulent kinetic energy, viscous energy loss, and wall shear stress have shown to be of diagnostic relevance for cardiovascular diseases. 4D flow MRI, however, has several limitations. Its long acquisition times and its limited spatio-temporal resolutions lead to inaccuracies in velocity measurements in small and low-flow vessels and near the vessel wall. Additionally, 4D flow MRI requires long post-processing times, since inaccuracies due to the measurement process need to be corrected for and parameter quantification requires 2D and 3D contour drawing. Several machine learning (ML) techniques have been proposed to overcome these limitations. Existing scan acceleration methods have been extended using ML for image reconstruction and ML based super-resolution methods have been used to assimilate high-resolution computational fluid dynamic simulations and 4D flow MRI, which leads to more realistic velocity results. ML efforts have also focused on the automation of other post-processing steps, by learning phase corrections and anti-aliasing. To automate contour drawing and 3D segmentation, networks such as the U-Net have been widely applied. This review summarizes the latest ML advances in 4D flow MRI with a focus on technical aspects and applications. It is divided into the current status of fast and accurate 4D flow MRI data generation, ML based post-processing tools for phase correction and vessel delineation and the statistical evaluation of blood flow

    Mitral valve regurgitation assessed by intraventricular CMR 4D-flow: a systematic review on the technological aspects and potential clinical applications.

    Get PDF
    Cardiac magnetic resonance (CMR) four-dimensional (4D) flow is a novel method for flow quantification potentially helpful in management of mitral valve regurgitation (MVR). In this systematic review, we aimed to depict the clinical role of intraventricular 4D-flow in MVR. The reproducibility, technical aspects, and comparison against conventional techniques were evaluated. Published studies on SCOPUS, MEDLINE, and EMBASE were included using search terms on 4D-flow CMR in MVR. Out of 420 screened articles, 18 studies fulfilled our inclusion criteria. All studies (n = 18, 100%) assessed MVR using 4D-flow intraventricular annular inflow (4D-flowAIM) method, which calculates the regurgitation by subtracting the aortic forward flow from the mitral forward flow. Thereof, 4D-flow jet quantification (4D-flowjet) was assessed in 5 (28%), standard 2D phase-contrast (2D-PC) flow imaging in 8 (44%) and the volumetric method (the deviation of left ventricle stroke volume and right ventricular stroke volume) in 2 (11%) studies. Inter-method correlations among the 4 MVR quantification methods were heterogeneous across studies, ranging from moderate to excellent correlations. Two studies compared 4D-flowAIM to echocardiography with moderate correlation. In 12 (63%) studies the reproducibility of 4D-flow techniques in quantifying MVR was studied. Thereof, 9 (75%) studies investigated the reproducibility of the 4D-flowAIM method and the majority (n = 7, 78%) reported good to excellent intra- and inter-reader reproducibility. Intraventricular 4D-flowAIM provides high reproducibility with heterogeneous correlations to conventional quantification methods. Due to the absence of a gold standard and unknown accuracies, future longitudinal outcome studies are needed to assess the clinical value of 4D-flow in the clinical setting of MVR

    Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging

    Get PDF
    Background: The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. Results: The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. Conclusions: The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Full text link
    Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Get PDF
    4D Flow MRI; Hemodynamics; RecommendationsRessonància magnètica de flux 4D; Hemodinàmica; RecomanacionsResonancia magnética de flujo 4D; Hemodinámica; RecomendacionesHemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.1R01HL149787-01A1 (S. Schnell, M. Markl), 1R21NS122511-01 (S. Schnell), 1R01CA233878-01 (J.Collins) J.Sotelo thanks to ANID–Millennium Science Initiative Program–ICN2021_004 and FONDECYT de iniciación en investigación #11200481. Dr. Oechtering receives funding from the German Research Foundation (OE 746/1-1)

    Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Get PDF
    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.113Ysciescopuskc

    Improving patient-specific assessments of regional aortic mechanics via quantitative magnetic resonance imaging with early applications in patients at elevated risk for thoracic aortopathy

    Get PDF
    Unstable aortic aneurysms and dissections are serious cardiovascular conditions associated with high mortality. The current gold standards for assessment of stability, however, rely on simple geometric measurements, like cross-sectional area or increased diameter between follow-up scans, and fail to incorporate information about underlying aortic mechanics. Displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) has been used previously to determine heterogeneous circumferential strain patterns in the aortas of healthy volunteers. Here, I introduce technical improvements to DENSE aortic analysis and early pilot application in patients at higher risk for the development of aortopathies. Modifications to the DENSE aortic postprocessing method involving the separate spatial smoothing of the inner and outer layers of the aortic wall allowed for the preservation of radial and shear strains without impacting circumferential strain calculations. The implementation of a semiautomatic segmentation approach utilizing the intrinsic kinematic information provided by DENSE MRI reduced lengthy post-processing times while generating circumferential strain distributions with good agreement to a manually generated benchmark. Finally, a new analysis pipeline for the combined use and spatial correlation of 4D phase-contrast MRI alongside DENSE MRI to quantify both regional fluid and solid mechanics in the descending aorta is explored in a limited pilot study

    Artificial intelligence and automation in valvular heart diseases

    Get PDF
    Artificial intelligence (AI) is gradually changing every aspect of social life, and healthcare is no exception. The clinical procedures that were supposed to, and could previously only be handled by human experts can now be carried out by machines in a more accurate and efficient way. The coming era of big data and the advent of supercomputers provides great opportunities to the development of AI technology for the enhancement of diagnosis and clinical decision-making. This review provides an introduction to AI and highlights its applications in the clinical flow of diagnosing and treating valvular heart diseases (VHDs). More specifically, this review first introduces some key concepts and subareas in AI. Secondly, it discusses the application of AI in heart sound auscultation and medical image analysis for assistance in diagnosing VHDs. Thirdly, it introduces using AI algorithms to identify risk factors and predict mortality of cardiac surgery. This review also describes the state-of-the-art autonomous surgical robots and their roles in cardiac surgery and intervention
    corecore